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Introduction. Let W be a domain in C or a Riemann surface and
let S be a Riemann surface of type (g, n) with Sg — 3 + n > 0, where g
is the genus of S and n is the number of punctures of S. In this paper,
we shall consider holomorphic families of S over W (see Section 1, Definition
1) or a locally holomorphic mapping of W to the Teichmϋller space of S,
and study their boundary behavior.

In Section 1, we shall state known results and set up our notations.
In Section 2, we shall investigate a holomorphic family of S over the

punctured disk 0 < \z\ < 1 and the behavior as z—>0. Imayoshi [7]
obtained a similar result. We shall show a uniqueness theorem of
holomorphic families of S (Theorem 2).

In Section 3, we shall discuss holomorphic families over a general
domain or a Riemann surface, and consider the problems as in Section 2.

In Section 4, we construct two examples of holomorphic families
which might be of interest.

Thanks are due to Professors Y. Imayoshi and M. Taniguchi for
useful and stimulating conversation. The author expresses his thanks
also to the referee for valuable suggestions.

1. Preliminaries. We first recall some known results about Teich-
mϋller spaces. Let S be a Riemann surface of type {g, n) as above and
let G be a torsion free Fuchsian group acting on the upper half plane U
such that U/G is conformally equivalent to S. A marked Riemann surface
is a triple (S, /, S'), where S' is a Riemann surface of type (#, n) and /
is a quasiconformal mapping of S onto S'. We say two marked Riemann
surfaces (S, /, S') and (S, g, S") to be equivalent if there exists a con-
formal mapping h of S' onto S" such that g~1oh°f:S-+S is homotopic
to the identity. We denote by [S, /, S'], or [/, S'] for short, the equiva-
lence class of (S, /, S') The set of all these equivalence classes is called
the Teichmϋller space T(β) of S. It is well-known that T(S) is canonically
identified with the Teichmϋller space T(G) of a Fuchsian group G, which
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can be regarded as a bounded domain in C*a~z+n by Bers' embedding (cf.
Ahlfors [1], Bers [2]). Thus, we make no distinction between T(S) and
T(G) in this paper. Hence both T(S) and T(G) have a natural complex
structure.

The Teichmϋller space T(S) is a metric space with the Teichmϋller
distance ί5( , •) which is defined by

tsdf, S']f [g, S"])
= inf{£log JK"(/&): h is a quasiconformal

mapping of S' onto S" homotopic to g^f'1} ,

where K{h) is the maximal dilatation of h. Furthermore, the Teichmϋller
distance is the Kobayashi distance in T(S).

For every φ in T(G)UdT(G) there exists a group isomorphism Θφ of
G into SL'(2, C). If 0 is in T(G), then Θ^G) is a quasi-Fuchsian group.
If φ is in dT(G), then Θ̂ (G) is a Kleinian group called b-group. A 6-
group θφ(G) is called a c^sp if there is a hyperbolic transformation g in
G such that θφ(g) is parabolic. It is called a totally degenerate group if
Ω(θφ(G))f the region of discontinuity of Θ^G), is connected and simply con-
nected. It is called a regular 6-group if the Poincare area of Ω(ΘΦ(G))/ΘΦ(G)
is twice of that of U/G. It is known that a 6-group which is not a cusp
is a totally degenerate group, and a regular δ-group is a cusp.

Now, we shall define holomorphic families of Riemann surfaces.

DEFINITION 1. Let W be a domain in C or a Riemann surface and
let ψ be a locally holomorphic (multivalent) mapping of W to T(S). We
assume that ψ has an analytic continuation along every curve in W. For an
arbitrary branch ψ(w; w0) = [fWfWo, SW>WQ\ of ψ at woe W, we set ψr(w; w0) =
[fl,wo> Sr

WtWQ\ for any curve 7 in W from w0 to a point w in ΫF, where
ψr(w, w0) is the analytic continuation of ψ(w; w0) along 7. We call the
tr iple (W, ψ, S) a holomorphic family of S over W if SW0)WQ and Se

WQ}Wo a re

always conformally equivalent for every w0 in W and for every closed
curve c in W based at w0. Let g be a quasiconformal self mapping of
S. Then a mapping g induces an automorphism X(g) of T(S) by

is called a modular transformation of Γ(S) and the group Mod(S)
of all modular transformations of T(S) is called the modular group of
T(S). It is known that X(g) is a holomorphic isometry with respect to
ts and Z(flr) depends only on the homotopy class [g] of g. So, we set
ZCflO - Jiff].

Here, we shall introduce the Thurston-Bers classification of modular
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transformations. Let X[g] be in Mod(S) — {id.}. We set

a(X[g]) = mf{ts(φ, X[g](φ)): φ e T(S)} .

We call it elliptic if it has a fixed point in Γ(S), parabolic if a(X[g]) = 0
and there is no fixed point, hyperbolic if a(X[g]) > 0 and there is a point
φ in T(S) with a(X[g]) - ts(φ, X[g](φ))t and pseudo-hyperbolic if a(X[g]) > 0
and a(X[g]) < ts(φ, X[g](φ)) for all φ in T(S). These definitions are equiva-
lent to those defined in terms of homotopy class [g] (cf. Bers [3]).

2. Holomorphic families of Riemann surfaces over the punctured
disk. In this section, we shall consider a holomorphic family (D*, ψ, S)
of a Riemann surface S over the punctured disk JD* = {z eC; 0 < \z\ < 1}.

Fix a point w0 in D* and a branch <̂ ( ; w0) at w0. For a circle c =
{woe

ίθ; 0^^^2π} , there exists Xe e Mod(S) such that ψc(w0; w0) = Xc(ψ(wQ; w0)),
because SWo>WQ and Sc

WQtWQ are conformally equivalent to each other. Fur-
thermore, Xe depends only on the homotopy class c in ΰ * and does not
depend on the choice of w0 and ψ( , w0). It is known that if Xe is the
identity, then ψ is a single valued holomorphic mapping of D* to T(S),
and has an extension to a holomorphic mapping of the unit disk D to
T(S). If Xc is of finite order, then a similar result also holds (cf. Imayoshi

[7]).
Here, we shall consider only the case that Xc is of infinite order.

THEOREM 1. Let (D*, ψ, S) be a holomorphic family of S over the
punctured disk D*. If Xc is of infinite order, then ΘΦ(G) is a regular
b-group for every accumulation point φ of {ψcn(w0; wo)}ί=S.

PROOF. Let π:U^D* be the universal covering of D* with the
covering transformation group (A) = {An; n e Z}9 where A is a parabolic
Mobius transformation keeping U fixed. Then, there is a holomorphic
mapping Ψ:U-> T(S) so that Ψ(A(z)) = Xc{Ψ(z)) (ze U) and the following
diagram is commutative:

T(S)

Since the Teichmϋller distance is the Kobayashi distance on T(S), we
have, by the well-known holomorphic decreasing property,

Pu(z, A(z)) ^ ts{Ψ(z), Ψ(A(z))) = ts{Ψ{z), Xc(Ψ(z))) ^



542 H. SHIGA

where Pu( , •) is the Poincare (Kobayashi) distance on U. And we have

0 = inf pπ(z, A{z)) ^ a(Xc) , i.e., a(Xc) = 0
zeu

because of the parabolicity of A. Since Xc is of infinite order, Xc is not
elliptic (Bers [3]) but parabolic. Therefore, by [12, Theorem 3.1] every
accumulation point of {Ψe\w0; wo)}ί~o = {Z?(Γ(so))}ί"o fr(«o) = w0) is a regular
δ-group. Thus, the statement of Theorem 1 is proved.

For every open arc 7 = {τ(ί); 0 <; t < 1} in J9* with 7(0) = w0 and
= 0, we set 78 = {7(ί); 0 ^ ί ^ s} (s < 1) and /(«) = ^ r (7(s); w0) 6

THEOREM 2. Lei (2)*, α/r, S) δβ a holomorphic family of S over the
punctured disk D*. If Xc is of infinite order, then the cluster set of f(s)
as s—>1 consists of cusps on dT(S). Especially, if dim T(S) = 1, then
lims_>1/(s) exists and it is a regular b-group.

PROOF. Since Xc is a parabolic modular transformation, there is a
hyperbolic Mobius transformation g in G such that (trace Θ(Xn

e(z)\ g)2-+ 4
as n—> ±°° for any ^e T(G), where Θ{φ, •) is the group isomorphism θφ( )
of G for φeT(G)\JdT(G) referred to in Section 1 (cf. [12, the proof of
Theorem 3.1]). Set c = π"\c)(zU. Then c is a horocycle tangent to dU
at the fixed point zA of A. Noting that Xn

c(Ψ(z0)) = Ψ(An(z0)) is in Ψ(c)
for zoeπ~\wo) and ^(An(«0), An+1(^0)) = ^(z0, A(«o)) < +°°, we conclude
that (trace θ(Ψ(z); g) ^ 4 as «—>^ along c (see [11, Proof of Theorem 5
(b)-(ii)]). Since (trace θ(W(z); g)f is a bounded holomorphic function on
U, we have from the Poisson integral on dc

(traceθ(?F(z);<7))2->4

as z-+zA from the inside of c. For 7 = {7(ί) eD*; 0 ^ t < 1, 7(0) = 0,
Inn,-! 7(t) = 0}, 7 = 7Γ-1(7) = {τ(ί); 0 ^ ί < 1} is an open arc terminating
at zA from the inside of c. Hence 4 = lim,^ (trace θ(Ψ(j(s)); g)f =
lim^i (trace θ(Ψr*(Ύ(s)m, w0); g)f = lim,^ (trace θ(f(s); g))2 and we have the
first assertion of Theorem 2.

If dim T(S) = 1, then a cusp is a regular 6-group [9, Theorem 5].
The set {φ e T(S){JdT(S)cC; (trace θ(φ; g))2 = 4} is discrete for every hy^
perbolic geG. Hence lim^/ίs) e {φ e T(S) ΌdT(S); (trace θ(φ; g))2 = 4, for
some hyperbolic geG} exists.

REMARK. When 1 < dim T(S) < +<*>, the author does not know
whether the cluster set of f(s) as s —> 1 consists of only regular 6-groups.
Imayoshi [7] showed that if an arc 7 is contained in an angular domain
{zeD*; θj. < arg z < θ2 ^ θ1 + 2π}, then /(s) converges to a regular δ-group
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as s -> 1. Hence we can show that if

( * ) sup {| Ί{tθ) 11 ΎWl'1; O^tθ<t'θ<l, arg τ(ί,) = arg 7(Q = 5

and arg7(ί) ^ 0 for every t in (ί,, ίj)} = M< +<*> 9

then /(s) converges to a regular δ-group as s—>1. Indeed, the condition
(*) implies that

where Ύ(tn>θ) is a point on 7 satisfying

[**'* darg 7(ί) = 2wττ , weiV, 0 ^ 0 < 2ττ .
J*o,0

Thus, when we take π(z) = e2ίrίz, z 4 = °o and 7(z) = « + 1, there exists
#n><? such that π(znie) = Ύ(tn>θ) and

Hence, we conclude that pπ(Ύ, 70) = M' < oo, where 7 = τr"x(7) and 70 =
π'XirwJlWo]; 0 < r < 1}) and ^(7, 70) is the Poincare distance between 7
and 70. Thus, there exists a point zo(z) on 70 for each 2 on 7 such
that Pu(z, zQ(z)) ̂  M'. Since the Teichmϋller distance is the Kobayashi
distance, we have ts(Ψ(z), Ψ(zo(z))) ̂  pu(z, zo(z)) ̂  M'. Hence, from [4,
Lemma 1] we have the assertion.

Next, we shall show the following uniqueness theorem of holomorphic
families over D*.

We consider a totally geodesic disk D in T(S), namely, there is a
holomorphic embedding F of U into T{G) such that D = F(U) and F is
isometric with respect to pπ( , •) and ί5( , •)• Suppose that there exists
1 e Mod(S) such that 1 is parabolic and %(/)) = Z>. Then A = F'^loF
is a Mobius transformation keeping ί7 fixed and is parabolic. Indeed, if
A is not parabolic, then A is elliptic or hyperbolic. Since X has no
fixed point, neither does A and A must be hyperbolic. Therefore, there
exists a non-Euclidean line L on U such that A{L) = L. F{L) is a geodesic
line with respect to ί5( , •) and 1{F{L)) = F(L). This implies that % is
a hyperbolic modular transformation by [3, Corollary 1 to Theorem 5],
and yields a contradiction. Thus A is parabolic. Marden-Masur [9]
gives a certain parabolic modular transformation keeping a geodesic
disk fixed.

Since D* a U/(A), we can easily show that there is an /: D* —>D/(X)
so that the following diagram is commutative:
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F
U • D

(**)

D* : • D/(χ)

where π: D-> /)/<%> is the natural projection. Then, (2?*, ψ, S) is a holo-
morphic family of S over D*, where ψ = fojc"1. We call this holomorphic
family canonical for /> and X. The argument in Marden-Masur [9, §3]
implies the following theorem which shows that the canonical holomorphic
family is unique in a certain sense.

THEOREM 3. Let (D*, ψί9 S) be canonical holomorphic families for D
and X in Mod(S) of S over D* (j = 1, 2). // ψ^wύ w0) = ψ2(w0; w0) for a
point w0 in D*9 then ψt = ψ2 on D*.

3. In this section, we shall consider more general W.

THEOREM 4. Let E be a compact subset of the unit disk D with
capacity positive and let (D — E, ψ, S) be a holomorphic family of S over
D — E. Then there exist a point e in E and an open arc Ύ = {Ύ(t); 0 ^ t < 1}
in D — E with l inw ^(0 = β such that lim,^ /(s) exists and is not a
cusp, where f{s) is the same as that in Theorem 1. Hence if l im^ f(s)
belongs to dT(S), then it is a totally degenerate group.

PROOF. Let π: D^D — E be the universal covering surface of D — E
and let uE be the harmonic measure of E with respect to d(D — E).
Note that π is a bounded holomorphic function and uE<>π (>0) is the
harmonic measure of 3D — π~\dD) with respect to 3D, where π~\dD) is
the subset of 3D corresponding to the border curve 3D of D — E via (the
continuous extension of) π. Then, we can take a measurable subset a of
3D with positive measure in such a way that the radial limits lim,.-,! π(reiθ)
and \imr^ίuEoπ(reiθ) exist for every eiθ in a and \\mr^ιuEoπ{reiθ) — l. Hence,
the open arc7<? = {π(reiθ); 0 < r < 1} in D — E is terminating at a point
on E for every eίθ in α. Applying [11, Theorem 5 (a)-ii)] to Ψ = ψoπ; B—>
Γ(S), we verify that there exists an eiθ in a such that Ίθ is our desired
open arc in D — E. The last statement is an immediate consequence
from Maskit [10, Theorem 4].

Next, we shall show a uniqueness theorem for holomorphic families
of S over a parabolic Riemann surface.

THEOREM 5. Suppose that W is a Riemann surface in OGy namely.
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W has no Green's functions. Let (W, ψjf S) be holomorphic families of
S over W (j = 1, 2). Then ψt = ψ2 if ψ^Wo', w0) = ^2(^0; w0) for a fixed
point WQ in W, and if for each closed curve c in W there is a Xe in
Mod(S) such that ψ)(wQ; w0) = XdψjiWo; w0)) (j = 1, 2).

PROOF. First, we suppose that the universal covering surface of W
is (conformally equivalent to) the unit disk D, and let π: D —> W be the
natural projection. Then, there are holomorphic mappings Ψά (j = 1, 2):
D —> T(S) so that the following diagram is commutative:

T(S)

Since W belongs to OG, the covering transformation group G of W is
a Fuchsian group of divergence type (cf. Tsuji [13]). Hence

( 1 )
m=0

where {αm}~=0 = π~\wQ).
For each closed curve c based at w0 there exists gΰ in G such that

Φi(9e(a>o)) = ^y(αJ = ΨvfrOO) = ΨK^o; w0) = Xc(ψj(Wom, w0)) (j = 1, 2) for some
m. Therefore, we have

( 2 ) y x ( α j = Ψ2(am) , m = 0, l ,2 , . . . .

As we identify T(S) with a bounded domain in CZa~z+n by Bers' embedding,
we can write Ψ5{z) = (^(2), , yy-8+n(2)) (J = 1, 2 and 2 eD), where FJ
0" = 1, 2, fc = 1, , Sg — 3 + n) are bounded holomorphic functions on D.
From the equation (2), we have

(3 ) Ψ)(αm) = ΨRαJ , k = 1, , 3<7 - 3 + n and j = 1, 2 .

On the other hand, the equation (1) implies that {αm}Z=0 does not satisfy
the Blaschke condition (cf. Garnett [6]). Thus, bounded holomorphic
functions Ψ\ - ?* on ΰ must vanish identically (k — 1, , 3# — 3 + n).
So, Ψ1 = Ψ2 and we proved the theorem when the universal covering
surface of W is the unit disk.

Next, if the universal covering of W is not the unit disk, then it
is the entire plane C or the Riemann sphere C. In either case, there
are holomorphic mappings Ψό (j — 1, 2) so that the following diagram is
commutative;
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Cor C

Since T(S) is a bounded domain in c3g~B+n, Ψ3- must be a constant.
Since ψΊ(α0) = ^2(α0)» ^i = ^2 and ψ, = ψ2. The proof of Theorem 5 is
completed.

REMARK. A result similar to Theorem 5 was proved by Borel-
Narashimhan [5], but our proof is different from theirs. Recently,
Imayoshi-Shiga [8] have obtained an extension of Theorem 5.

4. We shall construct two examples of holomorphic families of
Riemann surfaces. The first is an example for which Theorem 4 can be
applied, and the second is an example for which the exceptional set E
is of null capacity but the same result as in Theorem 3 does not hold.

Let S be a Riemann surface of type (0, 4). Then it is well-known

that T(S) = Γ(0, 4) ~ [/ and M{S) = Λf(0, 4) = Γ(S)/Mod(S) a C - {0, 1, 00}.

Hence, the modular group can be identified with a finitely generated

Fuchsian group Γ with U/Γ ~ C — {0, 1, 00}. We denote by a19 , ak

( e C — {0, 1, 00}) the images of elliptic fixed points of Γ via the natural

projection π,: U (= Γ(0, 4)) -> U/Γ ( = Λf(0, 4)), and set R' = C - {0, 1, 00,

QΊ> •'•>#&}• I n this situation, we have the following examples:

EXAMPLE 1. Take a closed disk K in R', and consider a torsion free
Fuchsian group Gκ acting on U so that U/Gκ ~ R' — K. Obviously, Gκ

is finitely generated and the second kind. Let π2 be the natural projection
of Ω(GK) onto Ω(GK)/GK, where Ω{GK) is the region of discontinuity of
Gκ, and let B be an open disk with E = BΠΛ(GK) Φ 0 and dBaΩ{Gκ),
where Λ(GK) is the limit set of Gκ. Since Ω{Gκ)jGκ is a double of U/Gκ,
the Riemann surface Ω(GK)/GK is of type (0, 6 + 2k). Hence we consider
Ω(GK)/GK as a subset of M(0, 4) r̂  C— {0, 1, 00}. Then, a mapping T^U-*
is considered as a holomorphic mapping of B — E to ikf(O, 4). Hence, a
triple (2? — i£, v~ι°π2, S) is a holomorphic family of S over B — E, where
p: T(S) -• j|f(θ, 4) (actually p: ?7-> C - {0, 1, 00}) is the natural projection
of T(S) onto ikf(O, 4). It is known that the capacity of E is positive (cf.
Tsuji [13]). Therefore, we obtain an example to which Theorem 3 is
applicable.

Furthermore, it is easily seen that there exist a sequence {2n}Γ=i in
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B — E converging to a point in E and g in Gκ such that g induces a
hyperbolic modular transformation %, namely π2°g(z) = poX(p"1oπ2(z))
(zeB — E), and zn = gn(zι). For example, take small circles c0, cx in R'
such that

Φ) = j + εe2πit , 0 ^ t < 1 , j = 0, 1 .

And take a smooth Jordan curve β in i?' from e to 1 — ε. Then both 7
in Γ and g in G* corresponding to Coβc^β'1 are hyperbolic. As we regard
C — {0, 1, oo} as Af(0, 4), X in Mod(S) corresponding to c^βc^β'1 (consequent-
ly, corresponding to the conjugacy class of 7) must be hyperbolic. Thus,
the desired X is obtained. Then P~ι°π2{zv) = X{p~ι ° π2{zn_J) = =
Xn~\p~ίoπ2{z^). Hence, from [4, Theorem 1] every accumulation point
of {p-loτr2(zj}n=i ί s a non-cusped totally degenerate group in dT(S).

EXAMPLE 2. We set R = R' — I, where I is the line on R' from 0
to oo. Taking infinite copies Ro, Rlf R_lf R2, R_2, of R, we identify,
along /, the upper edge on Rn with the lower edge on Rn+1 (neZ).
Thus, an infinite sheeted unbranched covering surface R of i ί ' c Af(0, 4)
is obtained. We denote by / the projection of R onto R'. It is easily
seen that R is planar and belongs to OG, i.e., R admits no Green's
functions. Actually, R is conformally equivalent to the sphere with
infinite punctures converging to a point because 0 and oo are logarithmic
branch points of the covering (R is regarded as f~\Rr) = C— /-1({1, alf a2,
• , αj), where f(z) = ez). Take a small closed disk B in R and a Mobius
transformation F: C—>C which maps C — B onto the unit disk. Set
E = D - F(R - B). The capacity of E is zero, since E = F{C - R) =
^(/"'({l, αx, , α*})) UF(oo) is a countable set. We set W = ^(JB - B) =
D — E and ^ = πΓ1°f°F~1. Since f is a locally holomorphic mapping of
T7 to Γ(0, 4), a triple (W, ^, S) is a holomorphic family of S over W.
From the construction and Theorem 1, we see that each point of F(f~\l))
satisfies the property required in Theorem 1. Furthermore, by the same
argument as in Example 1, there exists a sequence {zn}n=i in W { — D — E)
such that zn —> z0 as n^oo and every accumulation point of {τKsn)}5ί=i is
a non-cusped totally degenerate group in dT(S).

REMARKS. (1) For a holomorphic family (W, ψ, S) in Example 2,
we can consider that a Riemann surface Sp = C— {0, 1, oo, w(p)} = C— {0, 1,
oo, foF~\p)} (peW) of type (0,4) is associated (holomorphically) to
each point p in W, namely ψ(p) = [fp, Sp] with a suitable quasicon-
formal mapping fp: S^>SP. Then it is easily shown that w(p) (Φθ, 1, oo)
is a holomorphic function on Wy and V= ΌPewSP is naturally a 2-
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dimensional complex manifold. Furthermore, V = Wx(C — {0, 1, <χ>}) —
{(p, w(p)); V 6 W) is obviously a Stein manifold. Indeed, the set {(p, w(p);
p 6 W} = {(p, w)e V'\ w(p) — p = 0} is a analytic hyper surf ace with codi-
mension 1. Hence V is a Stein manifold.

(2) For a compact subset E of the unit disk D, we consider a
holomorphic family {D — i£, 'f, S) of a Riemann surface S of type (#, n)
(βg — 3 + n > 0) over D — E. Let Λ%, w) be the moduli space of Riemann
surfaces of type (g, n). Then we can define a holomorphic mapping
a:D - E->M(g,ri) by

a(p) = [Sp] , for every peD — E ,

where [Sp] is a point in j|f(βr, w) determined by ψ(p). It is known (cf.
[7]) that if E is discrete, then a is extended to a holomorphic mapping
α: D-+ M(g, ri), where M(g, n) is a reasonable compactification of M(g, n).
Hence, the following problem is raised;

When the logarithmic capacity of E is zero, is a extended to a
holomorphic mapping ά: D —> M(g, n)1

But Example 2 gives a counterexample to this problem. Indeed, in
this case, a(p) — w(p) = f°F~\p) for every p in D — E. a is extended
to a holomorphic mapping a0: D — {F(oo)} —> M(g, n) = C. However, a is
not extended to a holomorphic mapping on D because f(z) = e2 has an
essential singularity at z = oo.
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