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0. Introduction. In [Hz], Hirzebruch studied Hilbert modular sur-
faces which are the compactifications of H?/SL,(<”) determined by addition
of a finite number of points called “cusps”, where H:= {ze C;Imz > 0}
is the upper half plane and 2 is the ring of integers in a real quadratic
field. He also constructed the minimal models of these surfaces by using
the method of toroidal embeddings [TE]. This method is local, that is,
this is performed only near each cusp. Tsuchihashi constructed in [T1]
normal isolated singularities, sometimes called “Tsuchihashi cusps”, analo-
gous to Hilbert modular cusp singularities by using toroidal embeddings.
A Tsuchihashi cusp singularity (V, p) is of the form V' \ {p} = 2/G, where
< is a tube domain and G is a subgroup of Aut(2).

Recall that a tube domain is called a Siegel domain of the first kind.
We construct in Section 1 a normal isolated singularity (V, p) such that
V' \\{p} is isomorphic to a quotient of a Siegel domain of the second kind.
We would like to call this singularity also a “cusp”. It is natural to
extend the class of cusp singularities in this way, because the boundary
components of the Satake compactification of a quotient of a bounded
symmetric domain are also called cusps in a generalized sense.

ExAMPLE. Let F be a totally real algebraic number field of degree
vy, F' a totally imaginary quadratic extention of F, B a central division
algebra of degree d over F’ with an involution of the second kind and
h € M,(B) a Hermitian matrix with Witt index one, i.e., k is conjugate to

010
10

0 %

Set Go:= Ryo(SU(h, B/F'|F')) with Weil’s restriction functor R;,. Then
we get

GR=ESU(pilqi)’ D, +q, =4, P, =q,=d.

Let K be a maximal compact subgroup of Gz. When ¢q, = d, we get the
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Satake compactification of K\Ggr/G, by adding a finite number of points,
which are called “cusps”.

When p =1, the homogeneous space K\Gr is isomorphic to the
bounded symmetric domain I,,:={Ze M, (C);1,—'ZZ >0} (p=¢q=1).
The domain I, , can be represented as a Siegel domain of the second kind:

Z = {(Z, u) € S7,(C) QrCx M,_, ,(C); Im Z — *uu € F(C)},

where 257,(C):={ZeM/C);'Z = Z} and F(C):={Ze2£C); Z > 0.
Here Z > 0 means that Z is positive definite.

REMARKS. 1. When g = 1, the domain I, , is the p-ball B? := {(2,) € C?;
? lz,P< 1} and 2 = {(z Uy +++, u,_,) €C? Imz —_g;} |u;|* > 0}.
2. When p = ¢, the domain 2 = 5£,(C) + 1V —1(C) is of tube
type.

From this model we derive data necessary for our construction in
Section 1.

We show in Section 2 that there exist isomorphisms T} = H'(V \ {p},
0,) and H'(U, 6,(—1log X)) = H'(V\{p}, ©,) for some resolution (U, X) of
a “cusp” singularity (V, p) of dimension greater than two. When (V, p)
is a Tsuchihashi cusp singularity, we showed in [O] the former isomor-
phism by using the method analogous to that in [Ft] and [FK]. In the
case of a Hilbert modular cusp singularity (V, ») of dimension two,
dim¢ T3 was calculated by Behnke [B1], [B2] and Nakamura [NK]. The
latter isomorphism shows that our generalized cusp singularities are
equisingular (cf. [W]).

The author would like to thank Professors I. Satake and T. Oda for
their useful advice and Professor I. Nakamura who pointed out the incom-
pleteness of the original proof of Proposition 3.2.

1. Construction of cusp singularities.

1.1. Siegel domains of the second kind. For integers » =1, m = 0,
let us denote n:=7r + m. Fix a free Z-module N of rankr. Let
CcNr:= N®;R be an open convex cone with CN(—C) = {0} and let
H:C"xC™— N¢:= NQ;C be a Hermitian form satisfying the following
conditions:

(1) HOuy + Ny, v) = MH(Uy, v) + N H(uy, v) for n€C, u,, veC™
t=1,2).

(ii) H(u, v) = H(v, u)~, where ~ denotes the complex conjugation.

(iii) H(u, w)eC, where C is the closure of C in Na.

(iv) H(u, w) = 0 implies » = 0.

Then we set
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D =29H,C):= {2 u) € NexC™; Imz — H(u, u) € C}

and call it a Siegel domain of the second kind associated with H and C.
Note that the group N(Z):= {(a, ¢) € NpxC™} acts on & by

(@, ¢) (2, u) = 2 +a+2V—=1Hu, ¢) + V' —1H(c, ¢), ¢ + u) .

1.2. Lattice data. Let LCC™ be a free Z-module of rank 2m with
the compact quotient C™/L and I"CAut(lN) a subgroup preserving C and
satisfying the following conditions:

(a) The induced action of I" on D := C/R,, is properly discontinuous
and fixed point free.

(b) The quotient D/I" is compact.

(¢) There exists a homomorphism of groups sending gel” to §e
GL(m, C) so that gH(u, u) = H(gu, u) and gL = L for all geI', ueC™.

(d) H{,U)— H,l)ev —1N for all [, "¢ L.

1.3. Construction. In the following, we use the notation as in [MO].
Let Ty:= N®,C* be an algebraic torus of dimension ». Regarding N,
L as subgroups of N(Z), construet the following diagram:

IN < TyxC™

1 l

DIN-L C (TyxC™)/L .

Here (TyxC™)/L is a Ty-bundle over the Abelian variety A := C™/L with
p: (TyxC)]L — A as the projection, and its transition function is

exp(2n(2H(u, ) + H{, 1)))e Ty for uneC™, leL,

where exp: Nc — Ty = N¢/N. Now take a F-admissibleNrational partial
polyhedral decomposition (r.p.p. decomposition, for short) 4 of CU{0} with
4 modulo I' finite. Then construct a diagram

TyxC* < Tyemb(d)xCm

l l

(TyxC™/L < (Ty emb(d) x C™)/L .

We also use the same notation #: (Tyemb(d)xC™/L — A.

In order to take the quotient with respect to the action of I, we
need to shrink (Ty emb(d) x C™)/L. A real analytic mapping sending (¢, u) €
(TyxC™ to ord(t) — H(u, u) € Ny extends to a mapping @: Ty emb(d)x
C™ — Mc(N, 4), which is L-invariant and hence induces a mapping from
(Ty emb(d)x C™/L to Me(N, 4). We also denote it by the same letter
®. We see that @ is I'-equivariant. Set
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U := @'(the interior of the closure of C in Mc(N, 4))
and
Y:=0\070)),
I' acts on U and ¥ properly discontinuously and without fixed points.
Therefore we can take the quotients:

U:=U/r and X:=7Y/I.

In order to contract X to a normal isolated singular point, we use
the kernel function of & (cf. [Sal] and [Ro]). For (2, u) € &, set

Tz, u):= S exp(—(Im z — Hu, w), ty) -3t ](‘tf)(t) det M) 5, |
Cl
where C*:= {ye N; (x, y> > 0 for all xeC\{0}} is the dual cone of C,
the function ¢.. is the characteristic function of C* defined by Vinberg
[V] and M(t) € M, (C) is defined for a fixed inner produet ( , ) in C™ by

{H(u, v), t) = (M(t)u, v) for all w,veC™, teN}¥.

M(t) is Hermitian symmetric. Moreover, it is positive definite for ¢t e C*.
The function ¥ is N- and L-invariant, and has positive values on &, and
its Hessian is positive definite. For ge I, we have

¥U(gz, gu) = |det g|~*|det §|7*¥ (2, u) .

Therefore ¥ induces a function on U\ X, which we also denote by the
same letter . Set ¥ = 0 on X. Then the function ¥ is plurisubharmoniec
on U and strictly plurisubharmonic on U\ X. Thus we can contract X
to a point p (see [GR]):

(U, X)—(V,p).

2. Results. In this paper we consider a singularity (V, p) constructed
in Section 1 which satisfies an additional condition (C, I') € & in the sense
of Tsuchihashi [T1], that is, there exists a duality between I'-admissible
decompositions {j and fj* induced by the convex hulls of CN N and C*NN*,
respectively.

THEOREM 2.1. For the mormal isolated singularity (V, p) constructed
am Section 1, we have isomorphisms

Rig, oy = HY(X, &%) and Rr,y(—X)=0 for 1=1.

REMARK. Theorem 2.1 implies that (V, p) is an isolated Du Bois
singularity (cf. [St]).

2.2. Infinitesimal deformations of (V, p). By a deformation of (V, p)
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we mean a pair of a flat morphism of complex analytic spaces f: (7; v,) —
(T, t,) and an isomorphism (V, p) = (f7'(¢y), v,). A first order infinitesimal
deformation of (V, p) is a deformation f:(7;v,) — (T, 0) of (V, p) with
T = Specan C[e]/(¢*), We are interested in Ty := Ext (2}, &), which
parametrizes the set of first order infinitesimal deformations of (V, p).
For this purpose the following theorem due to Schlessinger [Sc] is useful:

CoMPARISON THEOREM (Schlessinger). Let (V, p) — (C% 0) be a closed
embedding. Then we have an exact sequence

0— T;} - HI(V \{p}! @V) - HJ(V \{p}v (@Cd)IV) ’

where 6, is the holomorphic tangent sheaf on V and (Oca)|, s the restric-
tion to V of the holomorphic tangent sheaf on C°.

We choose a nonsingular r.p.p. decomposition 4 of CU{0}. Then we
get a desingularization 7: (U, X) — (V, p). Let X = U; X, be the decom-
position of X into irreducible components and Ny,, the normal sheaf of
X, in U. Then we define the logarithmic tangent sheaf of (U, X) by

Oy(—log X) := Ker(@y — @D, Nx,v) -
THEOREM 2.2. When n = 3, we have isomorphisms
H'(U, 65(—log X)) = Ty = H'(V\{p}, 6y) .

THEOREM 2.3. When m = 0, that 1s, (V, p) 1s a Tsuchihashi cusp
singularity, we have

HYU, Oy(—log X)) = H(I', N¢) for 1=1,
where the right hand side is the i-th group cohomology of the matural
action of I'CAut(N) on N.
REMARK. From the exact sequence
0 — H'(6y(—log X)) — H'(Oy) > D; H'(Nx,v) »
we see that H'(@y(—log X)) parametrizes the set of first order infinitesimal
deformations of U for which none of X, vanish (cf. [W]). If there exists
a versal family of such deformations, Theorem 2.2 implies that (V, p) is
equisingular.
3. Proof of Theorems.

3.1. First we prove the following two propositions. Let F be a
finite dimensional comp~lex vector space with a [T-action. Set & :=
A (F Q¢ @), where q: U— U = U/I'" is the natural projection.

PROPOSITION 3.1. HYX, & Q.. Ox(—kX)) =0 for i >0 and k > 0.
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ProOPOSITION 3.2. The local cohomology groups HL(U, &) vanish for
1 < n.

3.2. PROOF OF PROPOSITION 3.1. Let [j be the r.p.p. decomposition
of CU{0} induced by a natural I'-invariant polyhedral decomposition of
the boundary of the convex hull of CN N, that is, every member of
is written in the form

R.x = {rx€ Np; €, 7 = 0}

with a polyhedron a appearing in the boundary of the convex hull of
CNN (see [TE] and [T1]). Then we can get a nonsingular r.p.p. decom-
position 4 of CU{0} by subdividing . Let (U, ¥’) be those constructed
as in Section 1 corresponding to fj and U’ := U'/I", X' := Y'/I". Then
we have the morphism z: (U, X) — (U’, X’) induced by the subdivision 4
of ], and have

Oy if 1=0,

0 if 121,

(= X') if i=0,

0 if ¢1=1.

Let : U > U = U'/I" and & := ¢/(F Q¢ &). Then t, % = &' and
H{(X, & Q Py(—kX)) = H(X', 7' Q Py (—kX')) for 1= 0. Hence we
may assume that 4 is the r.p.p. decomposition of CU{0} induced by the
convex hull of CNN and that =: (U, X) — (V, p) is a partial resolution of
singularities corresponding to 4.

First assume that the dual graph of X is orientable and fine in the
sense of Tsuchihashi [T1], that is, {veI; vang # @} = {1} for a, Bed
with angB # @. Let 4(j):={oced;dimo = j} and 4(j):= 4()/[. For
each cone aed(j) let X, be the toric subvariety orb(e)~ in T, emb(d)
corresponding to « and X, := q(@'(ord(X,)). Then we have an exact
sequence

0->0r— D Ox,— D ﬁXﬁ_)'..——) D ﬂxw-—)().

acd1) “ ped® wed(r)
The sequence we obtain from this by tensoring Zy(—kX)&®., & for a
nonnegative integer k is also exact. Hence we get a spectral sequence
(1) B (—kX)i= @  H(Xy 5 @y Tr(—kX))

aed(p+1)

— H*(X, 7 Q., OPx(—kX)) .

Set X, := ¢7'(X,), which is the disjoint union of Yj,:= 0 *(ord(X,,) for
ver. Since ¢ X, — X, is unramified and & ®., Px,(—kX) = ¢5(F Q¢
¢ (—kY)), we have a spectral sequence

Rif*ﬂv = {

Rz, Oy(—X) = {
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(1II) Ep(I, #(—kX)):= H*I', H(X,, F Qc Zz,(—kY)))

= H*"(X, 7 ®uy Or(—kX)) .
We have an isomorphism H'X,, F ®c P, (—kY)) = @yer (F Qc H'(Yr,
ﬁyra(—kY))) as vector spaces and have a Leray spectral sequence
() EP*(A, Ox(—kX)):= H*(A, B'D. Ty (—kY)) = H™*(Y,, Oy (—kY)) .
For each point a€ A,
B9, (—kY) ®., Cla) = H' B (@), Or(—kY)510) = H(X,, Pz ,(—kX))

vanishes for ¢ >0 and k=0, because 4 is convex (see, for instance,
[TE]). Hence we have H?(Y,, ﬁyn(——kf')) = H*(A, ﬁ*@’ya(—k?)). Since
Y, and Y,, are isomorphic for every Y eI, we have an isomorphism as
C[I'J-modules

H'X,y F®c Oi (k) = H'(U Yio, F Qc O, (—kT))

= Hom¢ (C[I'], F) ®@c H(A, p,r,(—kY)) .
Thus (see, for instance, [HS])
H*I', H(X,, FQc s, (—kY)) =0 for p>0.

On the other hand, for a positive integer k, the sheaf ﬁ*ﬂya(—k?) cor-
responds to the holomorphic vector bundle which is the direct sum of the
line bundles ¢“(m) associated to positive definite Hermitian forms 4{m,
H(,)) for me N*Nka*. Here a* is the cone in 3* dual to . Hence
HYA, 3,07 (—kY)) = 0for ¢ > 0and & > 0. Thus for a positive integer
k we have

Er(s(—kX) =0 if ¢>0,

and
Er(F(—kX)) = MAE(}?H) H(I", Hom. (C[I'], F @ H(A, 9.y (—kY))))
= aeﬁ?ﬂ) H°(I', Hom (C[I'], F Q¢ (MI@”WH%A, F(m))))) .

For each m e N*Nka™* there exists a unique B in 4 of the smallest dimen-
sion among cones G satisfying me N*NkB*. Thus we have an exact
sequence as in [T1]

0 F®cH(A, &£ (m)) — ag?ﬁ 1)F®c H(A, & (m))
- @ F®CHO(A7g<m))_—>°'°’

sed(p,2)

where 4(B, 7):= {aed; a < B and dim o = j}. The complex
K= @ FQ( @ HA Lm)

aed(p+1)
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is the direct sum of the complexes
Fim):= B FQcH(A, & (m)) .

aed(8,q)

Thus the E,-term of the spectral sequence (I), which on the one hand
satisfies EP( 7 (—kX)) = H*(X, & Q &x(—kX)), is the direct sum of the
p-th cohomology groups S#?(H(I', Hom¢ (C[I'], 227" (m)))) = S#£*( 2% (m)),
which vanish for p > 0, because B3 is contractible.

In the general case, we take a normal subgroup I’ of finite index
in I so that for the pair (U’, X’) constructed as in Section 1 for I the
dual graph of X’ is orientable and fine. Then we have

H{(X, & Qop, Ox(—kX)) = H(X', F Qoy, Ox(—kX")"" =0
for © >0 and & > 0. Thus we finish the proof of Proposition 3.1.
For k = 0, we also have

P(F) = @ H, Home (C[I'], & & HY(A, 7))

aed(p+1)
= H"™(X, 7 Q %) .
COROLLARY. When dim A = 0, t.e., m = 0, we have
H*X, & Qo, Ox) = H', F) for p=0.
By the comparison theorm in [BS], we have for 7 > 0
(R'my 5 )y = projlim, H'{U, & | (—kX)),
(R'm 7 (— X)), = projlim, H' U, & (— X))/ (—k + 1)X)) .
The exact sequences ‘
0 — Tx(—kX) = Tyl Oy(—k + 1)X) = &y|Fy(—kX) -0,
0 — Zx(—kX) » Ty(— X)|Op(—(k + 1)X) = Ty(— X)|Ty(—kX) >0,

tensored with .~ remain exact. Applying Proposition 3.1 and the above
comparison theorem, we have

R, 7 =HX, 7 Q) and Rz, #(—X)=0 for ¢>0.
This proves Theorem 2.1.
Since #(U) =V is a Stein space, we also have
H'U, &) =H(V, R, ) = H(X, & Q &%) and
HU, 7 (—X)=0 for i>0.

This, combined with the corollary, proves Theorem 2.3 because in that
case Oy(—log X) = q¢%(N ®, &) holds.
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3.3. PROOF OF PROPOSITION 3.2. We use the following lemma:

LEMMA ([BS]). Let Z be a topological space and K a compact subset
with a countable fundamental system of neighborhoods. Then for a sheaf
& of abelian groups on Z, we have a surjective mapping

(%) HY(Z\K, €)—projlim,_ H(Z\W,Z) for ¢=0.
Moreover, (*) is an isomorphism if for every member W of a fundamental
system of meighborhoods of K the mapping induced by restriction
H*(Z, &) —> H"(Z\W, ¥)
18 surjective.
In our situation, choose a fundamental system of neighborhoods of
X consisting of relatively compact and holomorphically convex neighbor-

hoods U, (v =1, 2, --+) with U,D U,,,. Consider the commutative diagram
of long exact sequences

H;(U, &) — H'U, &) — H'U\X, &) — H;"U, &)

| | l l

H!U, )— HU, 5 )— H'U\U,, 5 )— H*U,, &) .

The cohomology group HI({U,, &) with compact support is the algebraic
dual of H*'(U,, &V Q 2%)-

LemMA. H"Y(U,, 5V Q 2,) =0 for v < n.

ProOF. First assume that I'CSL(N). Then we have 2% = Z7,(—X),
and hence
HYU,, V@ 2,)=H"Y(U,, 5" Q Ty (—X))
=HW, R, # V(— X)) =0
for ¢ < » by Proposition 3.1, because V, := n(U,) is a Stein space. Next,
for a general I" we take a normal subgroup I"’ of finite index in I" so that

I'cSL(N). Let (U’, X") be the pair constructed as in Section 1 for I".
Then Q% = @ (—X'), and hence for ¢ < n

H U, #"Q %)= H U, " Q Zp(—X')N"" =0. q.ed.

Applying the lemmas, we see that the mapping H' U\ X, &)—
projlim, H U\ U,, &) is isomorphic for 2 < — 1 and surjective for
1 =mn —1, and hence that H'{U, ¥ )— H(U\X, &) is isomorphic for
t < n — 1 and injective for ¢ = n — 1. This implies that Hi(U, ) =0
for 7 < n.

3.4. ProOF OF THEOREM 2.2. The logarithmic tangent sheaf
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Oy(—log X) splits as
0— ¢x(N®; T5) — Oy(—log X) — qx(H(A, 6.,) Qc Ty) — 0 .
Applying Propositions 3.1 and 3.2 to this we have
HY(X, 0y(—log X) ® &x(—kX))=0 for ¢>0and £k >0,
HiU, Oy(—=log X)) =0 for 1< n.
Thus we have for n = 3
H'(U, 6y(—log X)) — H'U\X, 6y)
Ty ——H 1(VH {p}, 6) .

In order to prove Theorem 2.2 it is sufficient to show that the isomor-
phism H'(Oy(—log X)) = H'(V \{p}, ©,) factors through T;. This follows
from the following proposition applied to S = Specan C[¢]/(s?):

PROPOSITION 3.4. For a germ (S, s,) of complex analytic spaces which
need mot be reduced, let w: (Z, u,) — (S, s,) be a deformation of U=
s := w(8,) for which none of X, disappear, that is, there exists a sub-
variety 27 of Z such that, after possible shrinking of S, the restriction
o' = 0l (Z5 ) — (S, 8,) 18 a deformation of X:=U, X,. We assume
that H'U, &y(— X)) = 0. Then there exist meighborhoods 7/’ of Z5:=
' (s in Z and S’ of s, in S so that in the canonical reduction diagram
of @' over S’ in the sense of Riemenschneider [R2]

U =T
N
w’\ o
SI
T 18 @ proper morphism and po: (7; v,) — (S, 8,) s a deformation of (V, p).
PrROOF. By shrinking %/ and S if necessary, we may assume that o
is a l-convex holomorphic mapping with an exhaustion function @ and a

convexity bound ¢, and that S is a Stein space [R2]. Then w can be
factored as follows:

Y =T
PN
S.

In this diagram ¢ is proper and biholomorphic outside the union 2 of
all maximal compact analytic subsets 2;c%, for se€S, p is a Stein
morphism and p|z(22°) is finite. Further % is holomorphically convex
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and 7" is the Remmert quotient of %, i.e., & = 7,2,. Now we have
an exact sequence

O——)ﬁy/(_%)_’a}/”—)ﬂz'—)Oo

Since 7, and . are w-flat, so is &, (—2). Let w,:= w|<.;, c€R.
Since H(Z 7. (—&)) = H'U, &y(—X)) = 0, the canonical restriction
mapping

(wc*a?”)ao = (@ 0),,,

is surjective for every ¢ > ¢,. From the semi-continuity of dim; H(%,,
Ou(—Z3)), s€8, and the vanishing of H'(Z,, T (—22)), we have

0 — (wc*ﬁf/(—-g))so — (wc*ﬁ%)so — (wc*ﬁf)so — 0

1 l l

00— (wc*ﬁwo(_%))xo — (wc*ﬁﬁo 0 (wc*ﬁ:?”o)ao —0.

In the above diagram, two horizontal rows are exact, and the left and
right vertical arrows are both surjective. Hence the middle arrow is
surjective. From this and [R1, Theorem 1] we see that the fiber 7;:=
©07'(s,) is the Remmert quotient of %, i.e., (7 v,) is isomorphie to (V, p)
as germs of complex spaces.

Next we need to show that 7, is p-flat. Since p is a Stein morphism
and the p-flatness of &, is equivalent to the flatness of p,2 over &%
(cf. [Hn, Theorem 1.3]), it is enough to prove that o, is flat over .
Since 27 = X is reduced and connected, the natural morphism &, —
(Wy %), is an isomorphism. In particular, w,Z is flat over & at s,.
By shrinking % and S if necessary, we may assume that w,”. is flat
over & because of the openness of the flat locus ([Fs]). From the
vanishing of HY(Z/ Ou,(—235)), we can show that 7,2,(—2°) is p-flat
as in the proof of [R2, Theorem 2]. Hence we see that p,7,2,(—2) =
0,0, (—Z) is flat over . Consider the exact sequence

Since w,”,(—2) and w,Z» are both flat over &%, so is w,Z, =
OsTxCn% = P q.e.d.
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