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1. Introduction and notations. In this paper we continue the pro-
gram started in [8] of studing notions of compact operators in type III;
(0 <; λ < 1) factors. Given a type III* factor M operating on a separable
Hubert space H, we represent it as the crossed product of a type Πoo
algebra JV (a factor for 0 < λ < 1 or an algebra with diffuse center for λ = 0)
by an automorphism θ that λ-scales a trace τ (i.e., τ°θ = λτ for 0 < λ < 1
or r o ^ λ 0 r with λ0 < 1 for λ = 0). We embed JV in M and let E be
the canonical normal conditional expectation E: Jlf—>JV, u be the unitary
operator implementing θ (i.e., Aάu = θ) such that {JV, u}" = M and φ =
τ°E be the dual weight of τ. Then φ is a lacunary weight, i.e., 1 is
an isolated point in Spσ^, λ0 = sup{λ eSpo^lλ < 1}, JV is the centralizer
of φ and MΠJV' = JVΓΊJV'. For further references see [2, §4, 5] and [16,
§30.4].

In [8] we denoted by /(JV) the two sided ideal of JV generated by
the finite projections of JV, by J(N) the norm closure of /(JV) and we
defined

/ - span{α G M+ \ E(x) e /(JV)} ,

Mψ = span{# e M+ \φ(x) < °o} f

J = I where the bar denotes the norm closure .

We then obtained the embeddings for 0 < λ < 1 [8, Theorem 6.2]

IdMψ(zJ

analogous to the classical embeddings of finite rank, trace-class and com-
pact operator ideals. For the case λ = 0 we obtained a similar embedding
involving the center of JV [8, Corollary 6.5]. We then proved the gener-
alization of several of the classical properties of compact operators, (Riesz,
Calkin, Rellich and Hubert properties [8, Theorem 5.3, Proposition 5.6]).
In [8, Remark 4.6] we noticed that J is minimal among the C*-algebras
C"DE(C) = ./(JV) which are two sided JV-modules, while the maximal one
is the algebra K given by:

DEFINITION 1.1. K = span{# e M+1 E(x) e J(N)}.
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By [8, Proposition 3.3], we have that K is a hereditary C*-algebra,
a two sided JV-module (actually a two sided module over span N(E), where
the latter is the normalizer group of the expectation E [8, Remark 3.4])
and by [8, Remark 4.6], Kf]N= E{K) = J(N) and JaK. The hereditary
algebras /, Mφ, J and K depend on the choice of the crossed product
decomposition of M (or equivalently, on the choice of the lacunary weight
φ) only up to inner automorphisms of M (this holds for 0 < λ < 1; for
λ = 0 an analogous condition involving central projections of N is given
in [8, Remark 4.7]).

In § 2 we characterize the algebra K in terms of the essential central
range of its elements. In particular we prove that x e K+ if and only if
N' meets the σ-weak closure of the convex hull of {vxv*\v unitary in N}
only in {0}, and we discuss analogous conditions involving the closure in
the uniform topology.

In §3 we study the notion of 0-wandering projections in JV (i.e., pro-
jections p such that pθn{p) = 0 for all nΦΰ) and we prove that every
nonzero projection majorizes a nonzero 0-wandering projection.

Using this notion we introduce in § 4 an isomorphism p of B(l\Z))
onto DdM such that E(ρ(a)) = Σπ=_co annπ(θn{p)). This enables us to fully
characterize in § 5 the positive part of the intersection of D with all the
algebras introduced earlier (/, Mψ1 J and K) in terms of the matricial
form of the elements of B(l\Z)). In particular we show that p(a)eJ+

if and only if the "upper left corner" of the (bi-infinite) matrix of a is
compact in the usual sense. We prove also that in contradistinction to
B(H) or to semifinite factors, the above listed algebras have properly
different sets of projections. In particular this shows that J ' Φ K.

By exploiting module properties of J and K relative to the algebra
generated by u (i.e., the algebra of Laurent operators tensored with 1)
and some subalgebras of it, and by using some results on Toeplitz opera-
tors, we show in § 6 that J is not an ideal of K.

2. The essential central range. In this section we are going to study
a generalization to M of the following characterization of J(N). For every
xeB(H) define

K{x) = cδ{Ad v{x)\v 6 U(N)}

to be the norm closure of the convex hull of the unitary orbit of x, where
Aάv(x) = vxv* and U(N) is the group of unitary elements of N. Let also
C(x) be the σ-weak closure of K{x). Then for all xeN we have by [6,
Theorem 4.12, Corollary 4.17] that K(x)nN' = C(x)nN' = {ω(x)\ω center-
valued state on N, ω(J(N)) = {0}}. Here a center-valued state is a positive
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bounded JVrW-module homomorphism of N onto the center of N with
ω(l) = 1. If N is a factor, then this notion coincides with the usual
notion of state.

Thus C(x) Π N' is the essential central range of x e N, and x e J(N) if
and only if C(x)Γ\N' = {0}. For further information on the notion of
essential central range (modulo the ideal J(N)) we refer the reader to
[6] and [7].

In order to simplify notations, let us define F to be the set of all
finite-support functions / : U(N)->[0, 1] such that Σ {f(v)\v e U(N)} = 1.
Define an action of F on ilf by setting

f-x = Σ { / ( ^ ) A d φ ) b e U(N)} .

Then / is a positive contraction, i.e., \\f-x\\ ̂  ||#|l for all xeM, and
/•& ^ 0 for all #eilf+. The norm closure (resp. the σ-weak closure) of
{f-x I / 6 F} coincides with K(x) (resp. with C(x)). Explicitly, y e K(x) (resp.
yeC(x)) if and only if there is a sequence fneF such that fn-x^>y in
norm (resp. σ-weakly, using the metrizability of the unit ball).

Notice t h a t if xeM and yeK(x) then K(y)czK(x)c:M; E and feF

commute, i.e., E(f-x) = f E(x); f leaves Nf)N' pointwise invariant and
leaves every two sided JV-module globally invariant (in particular N, I,
M9, Jand K). Finally, F is closed under composition, i.e., for all /, g eF,
fog is in F and coincides with the usual convolution product.

Recall that Dixmier [4, Theoreme 1, Ch. Ill, § 5] proved for all von
Neumann algebras N that K{x) Γ\N' Φ 0 for all x e N (Dixmier property)
and Schwartz [15] defined and studied the algebras NaB(H) for which
C(x)Γ)N' Φ 0 for all xeB(H) (P-property). We need to generalize both
properties.

DEFINITION 2.1. An embedding AaB has:
(a) the relative Dixmier property if K(x) ΐ\Af Φ 0 for all xeB;
(b) the relative P-property if C(x)ΠA' Φ 0 for all xeB.

It is usually difficult to analyze the relative Dixmier property: recall
for instance that the long standing pure state extension problem for B(H)
is equivalent to the relative Dixmier property for the embedding of the
algebra of diagonal operators in B(H) ([1], [9]). In our case, we can
however prove the relative P-property.

THEOREM 2.2. The embedding NaM has the relative F-property.

PROOF. Let A be a maximal abelian von Neumann subalgebra of N.
Then by [2, 4.2.3], A is maximal abelian in M. Let xeM and let CA(x)
be the σ-weak closure of the convex hull of {Aάv(x)\veU(A)}. Then
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CA(X)C:C(X)CZM and CA(%) is bounded and hence α -weakly compact. There-
fore by the Markov-Kakutani fixed point theorem [17, Lemma A.I], CA(x)
contains a point y fixed under all maps Ad v, v e U{A) and hence belonging
to Ar. But then, yeA'ΓϊM = AaN and hence because of the Dixmier
property for JV, the set K(y)Γ\N' is nonvoid. Since yeC(x), then K(y)a
C(x) and hence 0 Φ K(y)nN'c.C(x)f)N'. •

REMARK 2.3. In [12, Corollary 4.9] Longo has proved with different
methods the same result for the case of the embedding of a separably
operating factor N in its crossed product by a discrete group.

COROLLARY 2.4. Let xeM; then

C(x)nN' = C(E(x))ΓίN' = K(E(x))ΓίN' .

PROOF. The second equality has been proven in [6, Corollary 4.17].
Let zeC(x)f)N'. Then there is a sequence fnsF such that fn-x-+z (σ-
weakly). By the normality and hence σ-weak continuity of E and the
fact that zeMnN' = NnN', we have that

Thus zeC(E(x))f)N'. Conversely, assume that zeC(E(x))f)N' and let
fneFbe such that fn E(x)->z (σ-weakly). Since fn-x is bounded, we can
assume, by passing to a subsequence if necessary, iha,tfn x—>y (σ-weakly)
for some yeC(x). Then again

fn-E(x)-+E(y) - z .

By Theorem 2.2, C(y)Γ\N' Φ 0 and by the first part of this proof

C(y)nN'aC(E(y))r)N' = C(z)nN' = {z}

because the center of N is pointwise invariant under the action of F.
Thus z e C(y) nN'czC(x) n N'. D

COROLLARY 2.5. Let xeM. Then C(x)ΓιN' = {ω(x)\ω is an NnN'-
valued positive module homomorphism on M, with ω(l) = 1, ω — ω°E
and ω(J) = {0}}.

PROOF. From Corollary 2.4 we have that C(x)Γ\N' = {ώ(E(x))\ώ is a
center-valued state on N, ώ(J(N)) = {0}}. Let ώ be a center-valued state
on N vanishing on J(N) and let ω = ώ o E be its extension to M; then ω
is an NΓ\N'-valued positive module homomorphism on My with ω(l) = 1
and ω = Q)oE. For every x e J+, there is a y e J(N) such that x <̂  y [8,
Theorem 4.3.(b)]; therefore,

0 ^ α>(α) ̂  ω{y) = ώ(y) = 0 .
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As J = span J+, we thus have ω(J) = {0}. Conversely, if ω is as in the
statement of the Corollary, its restriction ώ to N is a center-valued state
on N, &(J(N)) = {0} and

ω(x) = ω(E(x)) = ώ(E(x)) . Π

Thus C(x) Π N' is an essential central range of x. In particular for
0 < λ < 1 the center of N is trivial, center-valued states are simply states
and the essential central range is an essential numerical range. It is thus
natural to investigate the class of elements x of M with C(x)Γ\N' = {0}.
As we have already mentioned, this condition for N characterizes the
class of compact operators J(N). In M+ it characterizes K+.

THEOREM 2.6. Let x e M+. Then xeK+ if and only if C(x) n N* = {0}.

PROOF. We have that xeK+ if and only if E(x)eJ(N) if and only
if C(E(x))ΠN' = {0} if and only if C(x)nN' = {0} (by Corollary 2.4). •

The proof actually shows that for all xeM, E(x) e J(N) if and only
if C(x)Γ\N' = {0}. The class characterized by this condition is, however,
much too large to be of interest as it includes all the elements x with
E(x) = 0. Let us collect here for ease of reference some facts about K.

PROPOSITION 2.7.

(a) K is a hereditary C*-subalgebra of M and a two sided N-module.
(b) K = span K+ = {x e M\E(xx* + x*x) e J(N)}.
(c) K is globally invariant under the action of F.
(d) JC/JL, hence JaK.
(e) KnN=E(K) = J(N).
(f) N + K = {xeM\x — E{x) eK} is a C*-algebra with two sided

ideal K and (N + K)/K is isomorphic to the generalized Calkin algebra
N/J(N).

(g) J is minimal and K is maximal among the hereditary C*-algebras
C such that E(C) = J(N).

PROOF, (a) and (b) follow from [8, Proposition 3.3], (c) is a conse-
quence of (a), while (d) and (e) follow immediately from the definition.
The proof of (f) is essentially identical to the proof of [8, Proposition
4.5] and (g) follows from [8, Proposition 4.5 and Remark 4.6]. •

While for x e N we know that K(x) f)Nr = C(x) Π N', this is no longer
obvious for xeM and therefore we have to investigate the set K{x)ΠN'
independently. Notice however that the above equality would hold also
for every x in M if we knew that the embedding NaM had the relative
Dixmier property (see next lemma, part (a)).
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LEMMA 2.8. Let xeM. Then
(a) if K(f-x) nN' Φ .0 for all feF, then K(x) ΠN' = C(a) ΓΊ JV";
(b) ί/ 0 e ίΓ(/ a?) /or αM / e F, then K(x) ΠN' = {0}.

PROOF, (a) Let zeC(x)f]N\ Then zeK(E(x))f)N' (Corollary 2.4)
and thus for every ε > 0 there is an feF such that \\fΈ(x) — z\\ < ε.
By hypothesis there is a z'eK(f x)f)N' and hence a geF such that
\\(g°f) x — z'\\ < ε. Therefore we obtain

\\(gof) x -z\\^ \\(gof).χ -z'\\ + \\z' - (gof)-E(x)\\ + \\(gof)-E(x) - z\\

< ε + \\E((gof).χ - z')\\ + \\g-(f-BKx) - «)ll < 3ε

by using the facts that E commutes with the action of F, E(z') = z',
g-z = z and that both E and g are contractions. Thus z e K(x)f)N'. The
opposite inclusion follows from K(x)aC(x).

(b) Let z £K(x)ΠN', let ε > 0 and let / 6 F b e such that \\f-x-z\\<
ε. By hypothesis there is a g e F such that ||(flfo/) a?|| < ε. Thus

ll̂ ll ^||(flfo/).a;|| + \\go(f.χ - z)\\ < 2ε

by the same reasoning as in (a). Consequently, z = 0. Also, by (a) and
by Theorem 2.2, K(x)Γ)N' Φ 0 . •

PROPOSITION 2.9. Let xeM+; then 0 e K(E(x)) if and only ifOe K(x).

PROOF. The condition is sufficient, even for a nonpositive x9 by
Corollary 2.4 and the inclusion K(x)cC(x). Assume now that 0eK(E(x)).
Then 0 is in the central convex hull of the essential central spectrum of
E(x) [6, Theorem 4.4]. Since E(x) ^ 0, 0 belongs also to the essential
central spectrum of E(x) [6, Proposition 3.12]. Hence we can apply [7,
Theorem 2.10] to the case of the (central) ideal J(N) of N and thus we
can find a sequence of mutually orthogonal equivalent projections pneN
with central support 1, such that \\pnE(x)pn\\ < 2~\ By passing if neces-
sary to subprojections, we can assume that τ(pn) < °o. Let p = Σ~=1 pn.
Then p is properly infinite, p ~ 1 and

φ(pxp) = τ(pE(x)p) = Σ τ(pnE{x)pn) ^ £ 2~nτ(pn) = r(ft) < oo .
n=l n=l

Therefore pxpeMφdJ and hence there is a yeJ(N) such that pxp ^ y
by [8, Theorems 6.2 and 4.3(b)]. Thus

x ^ 2(pxp + (1 - p)χ(l - p)) ^ 2y + 2||aj| |(l - p) .

Let ε > 0 and let 1/n < ε. Because p ~ 1 and N is properly infinite, we
can find as in the proof of [5, Proposition 5] n unitary operators uteN
such that {ut(l — p)u*\i = 1, , n) are mutually orthogonal. Let feF
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be such that f z = (X/n)Σl=1utzuf for all zeM. Then

- V)ut ^ (l/n)sup|| w4(l - p)uΐ || ^ 1/n < ε .

As f yeJ(N) we have that OeK(f y) and hence there is a # e F such
that \\(g°f)-y\\ < ε. By the order preserving property of the action of
goff we have that

\\(gof)-x\\ ̂  2\\(gof).y\\ + 2||*| | ||(sr°/) (l - p ) | | ^ 2(1 + ||z||)ε .

Therefore OeK(x). Π

THEOREM 2.10. Let xeM+. Then the following conditions are
equivalent:

(a) xeK+,
(b) OeK(f-x) for all feF,
(c) K(y) f)N' = {0} /or all y e K(x).

PROOF, (a) =>(b) Assume that x e K+ and let feF. Then f-xeK+

by Proposition 2.7 (c); but then 0eK(E(f-x)) and hence OeK(f-x) by
Proposition 2.9.

(b)=>(c) Let yeK(x) and let ε > 0. Then there is an feF such
that || / x — y \\ < ε. Choose any g e F; then by hypothesis 0 e K((g o /).x).
Hence, there is an heF such that ||(fco0°/) cc|| < ε. Thus, we obtain

| | Λ - ( f l r - ! 0 | | ^ \\(hog)-{f-x - y ) | | + \\{hogof).x\\ < 2 ε ,

whence OeK(g y). From Lemma 2.8 (b) it follows that K(y)f)N' = {0}.
Clearly (c)=>(b).
(b)=>(a) By Lemma 2.8 (a) and (b), we have {0} = K(x)aN' = C(x)Π

N'. Therefore x e K+ by Theorem 2.6. •

Notice that the equivalence of (b) and (c) holds also for a nonpositive
x. If NdM had the relative Dixmier property, then (b) and (c) would
also be equivalent to the condition K(x)Γ\N' = C(x)ΓiN' — {0}, which by
Corollary 2.4, is equivalent to C(E(x))Γ\N' = {0} and hence to E(x)eJ(N).
This leads us to study the class:

DEFINITION 2.11. K~ = {xeM\K(y)Γ\Nf = {0} for all yeK(x)}.

As noted above, K~ = {xeM\0eK(f x) for all feF}. In the next
proposition we shall see that K~ satisfies a form of the Weyl Perturbation
Theorem [10, Theorem 3.3].

PROPOSITION 2.12. (a) K~ is a self ad joint Banach space contain-
ing K,

(b) K(x + y)Γ\N' = K(x)Γ)N' for all xeM and yeK~.
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PROOF, (a) Let x19 x2eK~, feFand ε > 0. Then there are g19 g2eF
such that IKflfi<>/)•»!|| < ε, | |(0 2°0i o/) # 2 | | < ε and hence ||(02°flri°/) G&i +
a?2)|| < 2ε. Therefore O e ^ / fe + a J) and thus x1 + x2eK~. Clearly
ax 6 K~ and x* e K~ for all a e C and # 6 if ~, so that K~ is a linear,
selfadjoint space. As (lf~)+ = 1ΪL + by Theorem 2.10, K~Z)K by Proposi-
tion 2.7 (b). Let now x be in the norm closure of K~ and choose any
f eF. For every ε > 0 there is a y e K~ such that || x — y || < ε, and since
0eK(f-y), there is a # e F such that \\(gof) y\\ < ε. But then

\\g<f x)\\ ̂  IKffo/).y|| + ||(flro/).(s - »)|| < 2ε .

Therefore OeK(f-x) and hence xeK~.
(b) Since — y e ϋΓ~, it is enough to prove that i£(#) ΓΊ N'aK(x + y)Γ\ N'.

Let zeK(x)P\N' and let ε > 0; then there are f, geF such that | | / a> -
21| < ε and ||(flr°/) 2/|| < ε. Thus, we obtain

\\(g°f) (χ + y)- z\\ ^ \\g (f χ - z)\\ + ||(ffo/).y|| < 2ε ,

whence z e K(x + y). •

We have shown in [9, Theorem 3.5], that if a unitary v e M imple-
ments a properly outer automorphism of N, then v belongs to K~. Thus
in particular, we have that ueK~.

3. Wandering projections. In this section we let N be any countably
decomposable von Neumann algebra with a given faithful semifinite normal
trace τ (f.s.n. for short) and scaling automorphism θ (i.e., τ°θ ^ λoτ for
some fixed 0 < λ0 < 1). In particular the results of this section will apply
to the algebra N of the rest of this paper.

DEFINITION 3.1. (a) A nonzero projection p e N is called a θ-wander-
ing projection (or simply a wandering projection) if pθn(p) = 0 for all
nonzero integers n.

(b) Let q e N be a projection. Then we call θ-span of q the projection
qθ = sup{0"(g)|neZ}.

Let us collect in the following lemma some simple facts about wandering
projections and 0-spans.

LEMMA 3.2. (a) A nonzero projection p is wandering if and only
if pθ\p) = 0 for all positive integers.

(b) For every projection q in N, qθ e Nθ = {x e N \ x = θ(x)} and q is
wandering if and only if it is nonzero and qθ = Σn=-oo θn(q).

(c) Nonzero subprojections of wandering projections are wandering.
(d) For all projections p, q in N, pqθ — 0 if and only if pθqθ.= 0.
(e) The sum of wandering projections is wandering if and only if
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their θ-spans are mutually orthogonal.

THEOREM 3.3. Every nonzero projection of JV majorizes a wandering
projection.

PROOF. Let q be a nonzero projection. By the semifiniteness of τ,
we can assume without loss of generality that τ{q) < °°. Let k be a
positive integer such that λ£+1 ^ (1 — λo)/2. Let us denote by l{x) the left
support of x, i.e., the range projection of x. Define p0 — q,

for j = 1, 2, ., k

») \j ^ k + 1}) .

By construction p tί pk ^ pfc_1 ^ ^ p0 = q. Since p(pΛ suγ>{θ3\pk) \ j ^
fc + 1}) = 0, we have that pθj(pk) = 0, hence pθj(p) = 0 for i ^ & + 1. Simi-
larly, for j — 1, 2, •••,& we have that Pjθ5(pά) = 0, hence pθύ(p3) — 0,
and thus pθ*(p) = 0. Therefore p̂ ^Xp) = 0 for all j > 0 and hence for
all j ^ 0. We have to prove now that p ^ 0. Recall that l(x) ~ Z(cc*)
for all xeN. Then

Therefore,

and hence τ(pk) ^ ατ(g) where a = (1 — λo)(l — λj) (1 — λj). Similarly,

A ) | i ^ fc + 1}) ^ Σ{r(0'(P*))li ^ fc + 1}
^ Σ {λίτ(P*) l i ^ k + 1} ^ τ(p4)/2 .

Thus

τ{p) = τ(pk) - τ(l(pk suV{θ>Xpk)\J ̂  k + 1})) ^ τ(p4)/2 ^ aτ(q)/2 > 0 ,

whence p Φ 0. Π

COROLLARY 3.4. Every nonzero projection qeN with finite trace

majorizes a wandering projection peN = {^n(g)|w6Z}"c^JVlj^.
A

PROOF. It is easy to see that N is ^-invariant and contained in qθNqθ;

thus the restriction of θ to JV" is an automorphism. Since the generators

of JV have all finite trace, as τ(θn(q)) ^ λjr(g) < °°, the restriction of τ

to JV" is semifinite. Clearly it is also faithful, normal and scaled by θ.

Thus Theorem 3.3 applied to JV guarantees that the wandering projection
A

p is in JV. •
Notice that if τ(q) = °°, the restriction of τ to JV may not be
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semifinite and then N may fail to contain any wandering projections.
As an example, consider a projection 0 Φ q e N such that qθ{q) = 0 and
θ\q) = q; then τ{q) = °o and N = Cq 0 Cθ{q) does not contain wandering
projections.

The following proposition will be used in the next section.

PROPOSITION 3.5. Let q be a nonzero projection of Nθ (i.e., θ(q) = q).
Then there is a wandering projection p with finite trace such that q = pθ.

PROOF. Let {p^i — 1, 2, , n ^ °°} be a maximal family (at most
countable since H is separable) of wandering projections majorized by q
and having mutually orthogonal 0-spans and finite traces. Since pt <* q,
we have (p^)θ ̂  qβ = q- Let qQ = q — Σ"=i (PtV If tfo =£ 0, then by Theo-
rem 3.3 and Lemma 3.2 (c) there is a wandering projection pQ ^ q0 with
finite trace. Since qoeNθ, it follows that (po)θ <; q0 and hence (po)θ is
orthogonal to Σ?=i (Pi)θj contradicting the maximality of the family (see
Lemma 3.2 (e)). Thus q — Σ?=i (PiV Choose now for each i an integer
m(i) such that τ(θm{i\p%)) ^ 2~* and let p = Σ?=i ^mU)(Pi). Then p has finite
trace, p ^ q and p is wandering (Lemma 3.2 (e)). Finally, we have

Pe= Σ K Σ ^ ω ( p j ) = Σ Σ 0 i+w(i)(^) = Σ Σ

= <?. D

REMARK 3.6. (a) Assume that N is a continuous algebra. Then the
wandering projection p such that pθ — q can be chosen to have infinite
trace.

Indeed, by decomposing if necessary the wandering projection Pi in
the proof of Proposition 3.5 into infinitely many subprojections, and by
using Lemma 3.2 (c) and (e), we can assume that the maximal family {pj
constructed in the above proof is infinite. Since τ°θ~ι^X~ιτ, we can
choose integers m(i) so that τ(θmH)(Pi)) ^ 1 and define p = Σι~=i #m(ι)(Pί).
Then τ{p) = ^ and, as in the above proof, we see that p is wandering
and pθ = q.

(b) Assume furthermore that τ ° θ = λτ. Then, for any preassigned
number a > 0, the wandering projection p such that pθ = q can be chosen
to have trace τ(p) = a.

Indeed, by (a) we can first find a wandering projection r with infinite
trace, such that rθ = q. We then decompose r into an infinite sum of
mutually orthogonal projections pt, i = 0, 1, with trace α(l — λ) and
we define p = Σi°=o θ\Pi)> Then τ(p) = a and the same argument as
above shows that pθ = q.
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(c) If JV is not a continuous algebra, then the properties in Remarks
3.6(a) and (b) may be false.

Indeed, consider JV = ί°°(Z), with the canonical basis {mn\neZ} of
rank one projections. Let the automorphism Θ and the trace τ be defined
by θ(mn) = mn+1 and τ(mJ = λn for all n e Z. Then τ ° θ = λr, but the set
of wandering projections of JV is {mn | n e Z} and hence neither (a) nor (b)
is true.

Another way of generating wandering projections is the following
generalization of a technique used by Dye for abelian algebras [18,
Lemma 8.8].

PROPOSITION 3.7. Let q be a projection of JV with finite trace. Then
there is a wandering projection p with finite trace such that q ^ Σπ=o θn(p).

PROOF. Let r = sup{0n(g)|w ^ 0}. Then

τ(r) ^ Σ τ{θ\q)) ^ Σ λ?τ(?) = d - λoΓτta) < - .
n=l «=0

Clearly θ(r) ^ r and thus {θn{r) \ n ^ 0} is monotone decreasing, whence it
is easy to verify that p = r — θ{r) is wandering. Now r ^ θn(r) ^ ^n(p)
for n ^ 0, hence r ^ Σn=o ̂ n(p) But ΣKJ θ\p) = r - θn(r), and hence

τ(fj 0n(p)) = lim r(r - θ\r)) ^ lim(l - λj)r(r) = r(r) ,
\n=0 /

whence τ(r - Σn=0 θ\p)) = 0. Therefore g ^ r = ΣΓ=0 ^
n(p) D

Notice also that for abelian algebras, the wandering projection p
constructed in Proposition 3.7 also satisfies p ^ q since then

r = sup{<7, θ(r)} = q + 0(r) - qθ(r)

implies

p = r - 0(r) = g(l - ί(r)) ^ g .

4. Type I subfactors of M. For the rest of this paper, we use
explicitly the discrete crossed product decomposition of M — N®ΘZ where
θ is a (properly outer) automorphism that scales the trace τ of N. If JV
acts on the separable Hubert space H, then M acts on fiΓ(x) l\Z) which we
identify with l\H, Z) via the correspondence (ζ (x) η)(ri) = η(n)ζ for ζeH,
τjel\Z) and %eZ. We shall henceforth distinguish between JV and its
isomorphic image π(N)aM, where for all xeN, πix) is defined by:

(π(x)ξ)(n) = θ-n(x)ξ(n) for all ξ e l\H, Z) and n e Z .

Recall that the unitary operator u which, together with π(JV),
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generates M is given by u = 1 (g) w, where w is the bilateral shift on
l\Z), i.e., (uξ)(n) = ξ(n - 1) for all ξel2(H, Z) and neZ. Recall also the
covariance formula

Ad u(π(x)) = π(θ{x)) for all x e N

and the characterization of M as

M = {x e N®B{l\Z)) | (0(g)Ad w"1)^) = α} .

For these and further properties of crossed products, see [3], [17].
For the remainder of this section, let p e N be a wandering projection

with finite trace such that pθ = Σn=-«> θn(p) — 1 (see Proposition 3.5).
Define pt — π{θ\p)) for all i e Z. A useful tool for studying M is given
by the following embedding of type I factors in M.

DEFINITION 4.1. Let p:B(l\Z))->N(g)B(l2(Z)) be defined by

p(a) = Σ 0"~n(p) ® Ad wn(α) for every α e B(l\Z)) .
n=—oo

REMARK 4.2. Since the projections 0~n(:p) are mutually orthogonal and
|| Adwn(α)|| = | |α | | , we see that the series converges in the strong topology
and thus p(a) belongs to N® B(l\Z)). We actually have more: the con-
vergence is unconditional, in the sense that the net of the finite partial
sums converges strongly to p(a). Notice in particular that if ζ e H, η 6
l\Z) and k e Z then

= Σ (Ad

where the convergence is unconditional in the strong topology of H.

For every a e B(l\Z)) let [α^ ] be the matrix representation of a with
respect to the canonical basis {μJieZ} of l\Z) and let {m^ieZ} be the
corresponding canonical decomposition of the identity in rank one diagonal
projections. Then we have:

THEOREM 4.3. (a) p is a normal isomorphism of B(l\Z)) into M.
(b) p(w) = u and pim^ = pt for all ieZ.
(c) E{p{a)) - Σn=_oo annpn for all a e B(l\Z)).

PROOF, (a) Given the unconditional strong convergence of the series,
it is easy to verify that p is indeed a ^isomorphism and hence an iso-
metry. Let α, ar e B{l\Z)) and assume that ar is increasing to α. Then
for every fceZ, ζk e θ~k(p)H and ηel2(Z) we have:

(p(a) - ρ(ar))(ζk <g) η) = Σ θ~\p)ζk ® Ad w\a - ar)η
n=—oo

= ζk (g) Ad w\a — ar)η -> 0
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in the strong topology. Since the span of the vectors ζk (g) η is dense (by
definition) in £Γ(x)Z2(Z) and since p(a) — p(ar) is bounded by 2||α||, we see
that p(ar)->p(a), which proves the normality of p. Moreover, for all
a e J3(J2(Z)), we have by the normality of θ ® Ad w~ι that

{θ ® Ad w~ι){ρ{a)) = Σ θ{θ-\v)) ® Ad w^Ad wn(a)) = ρ(a) ,
TC= — 0 0

whence by the above mentioned characterization of M, we see that
ρ{a) e M.

(b) We have that
oo oo

Let ζ e H and ί, j, keZ. Then by Remark 4.2 we have

00 OO

Since the span of the vectors ζ® μt is dense in H®12(Z), we have that
^(m,) = py for all j .

(c) Let R be the map from 12(H, Z) onto ZΓ given by Rξ = f(0) for all
£ G Z2(£Γ, Z). Then JS*ζ = ζ ® μQ for all ζ 6 H. Moreover, E(x) = π(RxR*)
for all α> e Jf ([19, Ch. V, § 7] or [14, Ch. 7, § 11]). Therefore, for every
αeJ8(ί2(Z)) and every ζeH, we have

(Rp(a)R*)ζ = (Rρ(a))ζ ® μ0 = β ( Σ ^
\τι=-oo

= Σ R(θ-"(p)ζ ® Ad w-(α)/0 = Σ (Ad
7l = —OO 7l = — OO

= Σ (aμn)(n)θn(p)ζ = ( Σ α.,ί-
7l = — 00 \7l = — 00

Therefore

E{p{a)) = π(Rp(a)R*) = π( Σ ammff-(p)) = Σ αnnpn ϋ

Recall that every x e M has a generalized Fourier series a? =
Σn=-oo π(xn)un where the series converges in the JV-Bures topology and
π(xn) = E(xu~n) for all neZ [13]. Then we easily obtain the following
corollary:

COROLLARY 4.4. (a) For every αeJ5(ί2(Z)) the generalized Fourier
series of ρ(a) is given by p(a) = ΣΓ=-oo (Σ?=-» a<ktk-nVk)un
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(b) D = p(B(l\Z))) is a type I factor with matrix units {U1PQU~5 \ i,
jeZ}.

The following construction will help shed more light on the pair {p, D).
Let us define the von Neumann subalgebras of N:

Lo = Cl ,

A = Σ ΘC0n(p) = ) Σ anθ
n(p)\aneC, sup|αj < - I ,

7i = — o o \n=—oo

iVfl= Σ θ Nθnip) where JVin(p) is the restriction of θ\p)Nθn{p) to 0n(2>)£Γ.

Clearly LoczDoc:Noc:N are globally 0-invariant algebras and thus we can
form the crossed products

L = LO®ΘZ , D~ = DQ®ΘZ and Mo = N0(g)θZ .

Therefore we have

LaD~aMoc:M.

Notice the Lo and N are independent of the wandering projection p>
hence L and M do not depend on p, while the other algebras do.

Since the action of θ on Lo is trivial, L is the von Neumann algebra
generated by u, hence L = 1 (g) .Sf where Jί^ is the algebra of Laurent
operators, i.e., the algebra generated by the bilateral shift w.

Notice that by the definition of the isomorphism p we easily obtain
that p(a) = 1 (g) α for all a e £?. The expression 1 ® a is independent of
the wandering projection p. In Proposition 6.2, we shall use this fact to
study the module and ideal structure of J.

As Do is generated by {θn(p)\neZ}, D^ is generated by u and
{pn\neZ}, hence has the same generators as D (see Corollary 4.4(b)) and
therefore D~ = Z>.

REMARK 4.5. There is an isomorphism of Z°°(Z) (realized as an algebra
of operators acting on l\Z)) onto />0 under which Adw corresponds to θ
and thus by [3, Proposition 2.13] there is an isomorphism between the
crossed products, namely l°°(Z) (x)AdW Z and D. It is then easy to verify
that p is the composite of this isomorphism with the isomorphism of
B(l\Zj) onto Z°°(Z) ® A d w Z mapping the matrix units {wimow~j | i, j e Z}
onto {(1 (g) wί)τΓ(AdW)(m0)(l (g) w~Ό|i, i e Z}. Notice that this last isomorphism
maps the algebra A = {m$ \ j e Z}" of the diagonal operators of B(l\Z))
onto the image in Z°°(Z) ®χΛwZ of Z°°(Z) and intertwines the corresponding
conditional expectations. Thus if E: B(12(Z))-+A is the conditional expec-
tation given by E(a) = Σ£=-<χ> annmn (i.e., E(a) "is the main diagonal of
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the matrix α"), then p intertwines E and E. This is actually part (c) of
Theorem 4.3.

5. Classes of finite rank, finite trace and compact projections. For
the remainder of this paper we shall assume that 0 < λ < 1. Thus N is
a factor and τ ° θ = λτ. In this section we shall use the embedding of
B{l\Z)) in M introduced in § 4 in order to separate the classes of the
projections of /, Mφ, K and J. In particular this will show that KΦ J.

Let us choose a wandering projection p with finite trace such that
pθ = 1 and let p be the corresponding isomorphism of B{l\Z)) onto DcM.

THEOREM 5.1. Let aeB(Γ(Z))+. Then
(a) p(a)el if and only if {neZ\annΦ 0} is bounded below;
(b) p(a) 6 Mφ if and only if Σπ=-oo Xnann < oo
(c) p(a) e X if and only if ann-+0 for n-^ — oo.

PROOF, (a) p(a) e I if and only if

E(p(a))= Σ annpn = π(± annθ\p))eπ{I{N))
n=—oo \n=—oo /

(by Theorem 4.3 (c) and the definition of 7+), if and only if the range
projection Σ {θn{p)\ann Φ 0} of Σn=-ooannθ

n(p) is finite, if and only if (using
the fact that N is a factor)

τ(Σ {θ\p)\ann Φ 0}) = Σ {Xn\ann Φ 0}τ(p) < oo ,

if and only if ann Φ 0 for only finitely many negative integers n.
(b) p(a) 6 Mψ if and only if

φ(E(p(fl))) - φ( Σ annpn)= Σ αnnλ"r(P)
\n=—oo / n=—oo

< oo

(c) ρ(a) 6 K if and only if E(ρ(a)) = Σn=_oo annpn e π(J(N)) if and only
if the spectral projection

Σ {Pn\ann >ε} = TΓ(Σ {θ\p)\ann > e})

of E{p(a)) corresponding to the interval (ε, oo) is finite for every ε > 0
[10, Propositions 3.8, 3.9], if and only if (again using the fact that N is
a factor)

τ(Σ {θ\v)\ann > e}) = Σ {λn|αnn > ε}τ(p) < oo

for every ε > 0, if and only if ann—>0 for n-+ — oo. •

Notice that since /, Mφ and K are the span of their positive parts,
the conditions in Theorem 5.1 are necessary also for nonpositive operators
in B{l\Z)). Clearly, they are not sufficient, as the example of the bilateral
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shift w e B(l\Z)) shows. Indeed wnn = 0 for all neZ, however K (and
hence / and Mψ) is a *-algebra that does not contain the identity and
hence does not contain any unitary operator.

The following characterization of Df] J will establish a further link
between the class J of M and the ideal of compact opertors K(l\Z)) of
B(l\Z)).

The notion of relative weak (RW for short) vector convergence, intro-
duced by the second named author in [11], plays a role in the theory of
compact operators in von Neumann algebras similar to the role that the
weak vector convergence plays in B(H). A net ξxeH converges to 0
weakly relatively to a semifinite algebra N (ξλ—>0 (JVRW)) if it is norm
bounded and if for every finite projection q in JV, ||9£a||—>0. A generalized
Hubert condition holds for semifinite algebras [11, Theorem 7]. For the
case of a type UIλ (0 < λ < 1) factor, we also have that xeJ+ if and
only if ||a&||->0 for every &->0 (TT(JV)RW), [8, Proposition 5.6]. This
property is used in the following theorem in order to characterize Df)J+.

THEOREM 5.2. Let r_ = Σ,°Lo m__, and let a e B(l\Z))+. Then p(a) e J
if and only if r_ar_ e K{l\Z)).

PROOF. For every positive integer n, let qn = Σ{^-<|ί ^ w} Then
qn ^ r_ and qn decreases to zero. Notice that by Theorem 5.1 (a), 1 —
p(qn) e I for all n (actually, 1 — p(qn) e π(I(N)) by Theorem 4.3 (b)). Assume
that r_ar_ is compact in B(l\Z)). Then qnaqn — qnr_ar_qn converges in
norm to zero and hence

|| a - (1 - ί n ) α ( l - ? m ) | | = \\p(a) - (1 - p(qn))p(a)(l - p(qn))\\->0-

As

(1 - p(Qn))p(a)(l - p(qn)) ^ | | α | | ( l - p(qn))el,

we conclude that p(a) e J.
Conversely, suppose that r_αr_ is not compact in B(l\Z)). Now by a

routine argument, we can find an a > 0 and a strictly increasing sequence
{n3) of positive integers such that

IK?*, - Qnj+MQnS - Qnj+1)\\ > Oί

for each j . Let v5 be a unit vector in the range of qnj — qnJ+1 such that

oovj(a) = {avjf Vj) > a .

Let 0 Φ ζo€pH be such that ω^ ^ τ(p p). Since N is a factor and

τ(p) < τiβ-'fr)) = \-jτ(p) for j = 1, 2, ,

we have that p < θ~'(p). Thus there is a partial isometry ud e N such



COMPACT OPERATORS 169

that p = ufUj and u/uf < θ~j(p). Setting ζ, = u£0, we see that ζ3- e θ~j(p)H
and that for every x e N+ and j = 1, 2, , we have

ωζj(x) = <0ζo(u*xuj) =5 τipufxUjP) = τiUjUfxujuf) <̂  τ(θ~i(p)xθ~3'(p)) .

In other words,

ω ζ i ^ τ(θ-j(p) θ-j(p)) for all i .

Define fi = ζ, (g) W'J^ for j" = 1, 2, . Then by using the strong conver-
gence of the series giving p(a), we obtain

Wξif fi) = Σ {{θ~n{p) ® Ad ^n(α))ζ, <g) w^ i f ζy ® w ^ )
7l = — OO

Thus, in view of [8, Proposition 5.6], in order to obtain that p(a) is not
in J, it is enough to show that ξs->Q (τr(iV)RW). Notice that ζά is bounded
since ||fy|| = | | ζ o | | for all j . Let s be any finite projection in JV. Then
we have:

l l ^ Σ ll(w(β)fo)(Λ)|| = Σ
n=—oo n=—oo

= Σ llfl-WCH'Mn - i)|2 ^ Σ
0 lin^ll

from the fact that |^(fc)| ^11^11 = 1 for all k and from the fact that
Vj{k) = 0 for k > —j, because vάeqn.HaqάH. Summing over j , we obtain:

Σ IkWfoll1 ^ Σ Σ IITOCill1 = Σ Σ ^ ( s ) ) ^ Σ Στ{θ-Kv)θ\s)θ
j=l j=l n=0 n=0 i = l n=0 i = l

^ Σ τ O
71 = 0

from the fact that the finite projection s in the factor N has finite trace.
Thus | | jr(β)f y |H0 and hence &->0 (τr(iV)RW). Π

As a consequence of Theorems 5.1 and 5.2 we obtain the following
corollary:

COROLLARY 5.3. The set of the projections in the classes IaMφdJcK
are all distinct', hence, the inclusions are proper.

PROOF. Let ζ be any unit vector in Ϊ2(Z); the one-dimensional pro-
jection s on span ζ has matrix representation sid = C(i)CO'). Choose ζ(ri) =
λ |n |/3, (n e Z) with β = (1 + 2 ΣΓ=i λ 2 T 1 / 2 ; then ΣΓ=_oo Xnsnn < oo but snn Φ 0
for all n. Thus by Theorem 5.1 (a) and (b), ρ{s) e Mψ but p(s) $ I. Choose
now ζ(w) = XM/% (n e Z) with v = (1 + 2 Σn=i λw)"1/2; then Σn=-oo λnβnn = oo.
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Hence by Theorems 5.1(b) and 5.2 ρ(s)eJ but ρ(s) ί Mφ. For any infinite
projection s ^ r_ such that snn —> 0 for n —> — °° 9 we have ^(s) 6 K but
|θ(s) ί •/. Choose for example

(2~k , for ΐ, j = - 2 * - 1, • , -2 f c + 1 and fc = 0, 1, 2, . .
st j — \

(0 , otherwise .

Then s is the direct sum of 2^x2* blocks each of whose entries is equal
to 2~k and thus each block is a rank one projection and s is an infinite
dimensional projection. We see that snn^0 as n^> — °°; hence p(s)eK
but p(έ)$J. D

We conclude this section with an example of two projections in Mφ

whose supremum is the identity of M; this shows that unlike their ana-
logue in a semifinite algebra and unlike /, the classes of the projections
in Mφ, J and K are not closed under supremum, (see also [8, Example
7.4]).

EXAMPLE 5.4. Consider for J G N the rank one projection sk on the
unit vector akμ_k + βkμk where {μk \ k e Z} is the canonical basis of Ϊ2(Z)
and choose 0 Φ ak small enough so that ΣΓ=i λ"*|αfc I

2 < °° Let s = Σ?=i sk
and let m = Σ*U ̂ V> since sup{sfc, mk) = m_A. + mk for all fc, we have that
sup{s, m) — 1 and thus sup{|θ(s), p(m)} = 1. On the other hand we already
know that p(m) e π(I(N)) and we see that p(s) satisfies by construction
the condition of Theorem 5.1 (b). Thus, both projections are in Mφ. •

6. Multipliers of the hereditary algebra J. In this section we investi-
gate module and ideal structures for J. We have already considered in
§4 the algebra «S^cB(l2(Z)) of Laurent operators generated by the bilateral
shift w. There is an isomorphism L: L°°(T)—>Jίf given by Lf = Σn=-oof(ri)wn

where {f(n)\neZ} are the Fourier coefficients of /eL°°(T) and the series
is the generalized Fourier expansion of Lf. The matrix representation
of Lf relative to the standard basis of Z2(Z) is (Lf)tS = f(i — j) for i, j e Z.

If we let r+ = Σn=0 m>n> r~ = ΣΓ=o w_n, then the compression of Lf

to r+l\Z) is the Toeplitz matrix Tf = r+Lfr+ with symbol /. Since we
have to consider (because of Theorem 5.2) compressions to r J2(Z), let us
define SeB(l\Z)) to be the (unitary) reflection operator, i.e.,

(Sμ)(n) = μ(-n) for all μ 6 l\Z) and n € Z .

Let / * be the reflexion of /eL°°(T), i.e.,

/*(ί) = /(ί) for ί e T .

Then it is easy to verify that Ad S(r+) = r_ and that for all / e L°°(T)
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we have Ad S(Lf*) = Lf and thus r_Lfr_ = Ad S(Tf*). Let us finally recall
that by [20, Theorems A and 1) if /, g e L°°(T) then

Tfg-TfTgeK{l\Z))

if and only if

H[f]f)H[g]aH~(Ύ) + C(T) ,

where H°°(Ύ) is the Hardy space of the functions / e L°°(T) with f(ri) = 0
for n < 0, C(T) is the space of continuous complex-valued functions on
T and H[f] (resp. H[g]) is the subalgebra of L°°(T) generated by iJ°°(T)
and / (resp. g).

PROPOSITION 6.1. Let /eL°°(T), let peN be any wandering projec-
tion with finite trace and θ-span pθ = Σn=-oo θn(p) — 1, let p be the cor-
responding isomorphism from B{l\Z)) onto DaM and let x = p(Lfr+(Lf)*).
Then

(a) xeK,
(b) xeJ if and only if fe H°°(Ύ) + C(T).

PROOF, (a) The (n, w)-entry of the matrix representation of
L/r+(Lf)* is

Σ Σ \f(n - i ) (Σ Mk) fin - j)~\ = Σ I Λn - ΐ)Γ -^ 0 for n -> - oo
< = -oo j=-oo { \fc=0 / ij ) ί=0

as fel\Z). Thus xeK by Theorem 5.1 (c).
(b) xeJ if and only if r_Lfr+(Lf)*r_eK(l\Z)) (Theorem 5.2). But

r_Lfr+(Lf)*r_ = r_Lf(l — r_+ m^)Ljr_ = r__(Llf\2 — Lfr_Lj)r_ + r_Lfm0Ljr_

= Ad S(Tlf*\2 - Γ/.Γ/.) + r_Lfm0L?r_ e K(l\Z)) ,

if and only if 7^,2 - Tf.Txj^eKφiZ)) (using (P) = / * ) , if and only if
H[f*](zH°°(Ύ) + C(Ύ) [20, Theorems A and 1], if and only if feH°°(Ύ) +
C(T). •

Recall that ρ(Lf) = 1 <g) L7 6 L for all / e L°°(T). The set £r°°(T) +
C(T) is a closed subalgebra of L°°(T), thus its image 1 <g) L(iί°°(T) + C(T))
under p o L is a closed subalgebra of L. Likewise p o L(C(T)) = 1 (g) L(C(T))
is a C*-subalgebra of L.

PROPOSITION 6.2. J is a left module over 1 (x) L(i?°°(T) + C(T))
α ίwo sided module over 1 0 L(C(T)).

PROOF. Let a = 1 <g) L/ for some / 6 jff°°(T) + C(T) and let a? e •/.
Then we have, by [8, Proposition 4.1 (b)], that axeJ if and only if both
x*a*ax and axx*a* are in J + . But x*a*axe J + , since
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x*a*ax^ \\a\\2x*xeJ+ .

As xx* e J + , we can find, by [8, Theorem 4.3 (b)], some z e π(J(N)+) such
that xx* ̂  z and hence axx*a* ^ aza*. Let ε > 0 and let # be the spec-
tral projection of z corresponding to the interval [ε, <*>). We shall prove
that aqa* e J+. Notice first that q is finite in π(N) [10, Propositions 3.8
and 3.9] and hence has finite trace. By Proposition 3.7, there is a wander-
ing projection pr with finite trace such that q <> ττ(Σn=o^n(p')) There is
also a second wandering projection p" with finite trace such that (p")θ —
1 — (v')β (Proposition 3.5). Thus p = pf + p" is also wandering projection
with finite trace (Lemma 3.2 (e)), pθ = 1 and q <; π(Σn=o 0\p)). Let p be
the isomorphism corresponding to p. Then α = 1 (g) L/ = p(Lf) and
r̂(Σn=o 0n(ί>)) = P(r+). Therefore

azqa* ^ ||«||αία* ^ ||^||lo(L/r+(L/)*) e / +

by Proposition 6.1 (b). Hence we have azqa* e J+. Since

|| aza* — azqa* || ^ ε||α||2

and ε is arbitrary, we obtain that aza* and hence axx*a* are in J + .
Thus axeJ and consequently J is a left module over 1 (g) L(iί°°(T) + C(T))
and in particular over 1 (x) L(C(T)).

Since both J and 1 (g) L(C(T)) are selfadjoint, JΓ is also a two sided
module over 1 <g) L(C(T)). •

COROLLARY 6.3. ΓΛe C*-subalgebra J of K is not an ideal of K.

PROOF. Choose a wandering projection p with finite trace and pθ = 1,
and let p be the corresponding isomorphism of B(l\Z)) onto DaM. Let
q = ^(r_ — m0); recall that 1 — q is finite in ττ(JV). Let / be a function
in the complement of H°°(T) + C(T) in L~(T) and let α = 1 (g) L/ = p(Lf)
and /̂ = gα(l — q). Then

(1 - q)a{l - q)a*{l -q)^\\a||2(1 -q)eJ+ ,

and

α(l - g)α* ̂  2(gα(l - g)α*g + (1 - q)a(l - q)a*(l - q)) .

Since α(l — q)a* is not in J (Proposition 6.1 (b)), we conclude that also
VV* = qa(l — q)a*q is not in J. Thus y is not in J .

On the other hand, yy* e JKΓ+ as α(l — q)a* e K (Proposition 6.1 (a)) and
K is a 7r(iV>module. Moreover,

V*y = (1 - ^)α*gα(l - ?) ̂  | |α | | 2 ( l -q)eK+

hence #*2/ 6 ίΓ+ and thus y e K. Therefore y = y(l — q) is the product
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of an element in K and an element in J (actually a finite projection in
π(N)) and does not belong to J. •
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