Toéhoku Math. Journ.
39 (1987), 153-173.

COMPACT OPERATORS IN TYPE III; AND
TYPE III, FACTORS, II

HERBERT HALPERN AND VICTOR KAFTAL

(Received Octobar 21, 1985)

1. Introduction and notations. In this paper we continue the pro-
gram started in [8] of studing notions of compact operators in type III,
(0 =\ < 1) factors. Given a type III, factor M operating on a separable
Hilbert space H, we represent it as the crossed product of a type Il
algebra N (a factor for 0 <\ <1 or an algebra with diffuse center for » =0)
by an automorphism 6 that a-scales a trace r (i.e., 7o = At for 0 < A < 1
or 706 < A\, with <1 for A =0). We embed N in M and let E be
the canonical normal conditional expectation E: M— N, u be the unitary
operator implementing 6 (i.e., Ad u = ¢) such that {N, 4}’ = M and ¢ =
7o E be the dual weight of z. Then ¢ is a lacunary weight, i.e., 1 is
an isolated point in Spo?, N\, = sup{€Spo?|rn < 1}, N is the centralizer
of pand MNN' = NN N’'. For further references see [2, §4, 5] and [16,
§ 30.4].

In [8] we denoted by I(N) the two sided ideal of N generated by

the finite projections of N, by J(N) the norm closure of I(N) and we
defined

I =gspan{re M*|E(x)e I(N)},
M, = span{x € M"|p(x) < o},
J =1 where the bar denotes the norm closure .
We then obtained the embeddings for 0 < A\ < 1 [8, Theorem 6.2]

IcM,cJ

analogous to the classical embeddings of finite rank, trace-class and com-
pact operator ideals. For the case » = 0 we obtained a similar embedding
involving the center of N [8, Corollary 6.5]. We then proved the gener-
alization of several of the classical properties of compact operators, (Riesz,
Calkin, Rellich and Hilbert properties [8, Theorem 5.3, Proposition 5.6]).
In [8, Remark 4.6] we noticed that J is minimal among the C*-algebras
COE(C) = JIN) which are two sided N-modules, while the maximal one
is the algebra K given by:

DEFINITION 1.1. K = span{x € M*|E(x) € J(N)}.
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By [8, Proposition 3.3], we have that K is a hereditary C*-algebra,
a two sided N-module (actually a two sided module over span N(E), where
the latter is the normalizer group of the expectation E [8, Remark 3.4])
and by [8, Remark 4.6], KNN = E(K) = J(N) and JCK. The hereditary
algebras I, M,, J and K depend on the choice of the crossed product
decomposition of M (or equivalently, on the choice of the lacunary weight
®) only up to inner automorphisms of M (this holds for 0 <\ < 1; for
» = 0 an analogous condition involving central projections of N is given
in [8, Remark 4.7]).

In §2 we characterize the algebra K in terms of the essential central
range of its elements. In particular we prove that x € K+ if and only if
N’ meets the g-weak closure of the convex hull of {vaxv*|v unitary in N}
only in {0}, and we discuss analogous conditions involving the closure in
the uniform topology.

In §3 we study the notion of #-wandering projections in N (i.e., pro-
jections p such that p#*(p) = 0 for all »n#0) and we prove that every
nonzero projection majorizes a nonzero f-wandering projection.

Using this notion we introduce in §4 an isomorphism o of B(IXZ))
onto DC M such that E(o(a)) = 3% _. a,,7z(6"(p)). This enables us to fully
characterize in §5 the positive part of the intersection of D with all the
algebras introduced earlier (I, M,, J and K) in terms of the matricial
form of the elements of B(I*(Z)). In particular we show that p(a)eJ*
if and only if the “upper left corner” of the (bi-infinite) matrix of a is
compact in the usual sense. We prove also that in contradistinction to
B(H) or to semifinite factors, the above listed algebras have properly
different sets of projections. In particular this shows that J # K.

By exploiting module properties of J and K relative to the algebra
generated by w (i.e., the algebra of Laurent operators tensored with 1)
and some subalgebras of it, and by using some results on Toeplitz opera-
tors, we show in §6 that J is not an ideal of K.

2. The essential central range. In this section we are going to study
a generalization to M of the following characterization of J(INV). For every
x € B(H) define

K(x) = co{Ad v(x)|v € UNN)}

to be the norm closure of the convex hull of the unitary orbit of z, where
Ad v(x) = vxzv™* and U(N) is the group of unitary elements of N. Let also
C(x) be the og-weak closure of K(x). Then for all x€ N we have by [6,
Theorem 4.12, Corollary 4.17] that K(x)N N’ = C(x) NN’ = {w(x)|w center-
valued state on N, w(J(N)) = {0}}. Here a center-valued state is a positive
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bounded NN N'-module homomorphism of N onto the center of N with
w(1)=1. If N is a factor, then this notion coincides with the usual
notion of state.

Thus C(x) NN’ is the essential central range of x € N, and 2 € J(N) if
and only if C(x)NN’' = {0}. For further information on the notion of
essential central range (modulo the ideal J(IN)) we refer the reader to
[6] and [7].

In order to simplify notations, let us define F to be the set of all
finite-support functions f: UN)—|[0, 1] such that > {f(»)|v € UN)} = 1.
Define an action of F on M by setting

fo =2 {f(w)Adv(x)|ve UN)} .

Then f is a positive contraction, i.e., ||f-z|| < |||l for all xe M, and
fx =0 for all e M*. The norm closure (resp. the o-weak closure) of
{f-x| f € F} coincides with K(x) (resp. with C(x)). Explicitly, y € K(x) (resp.
yeC(x)) if and only if there is a sequence f, € F such that f,-x—y in
norm (resp. o-weakly, using the metrizability of the unit ball).

Notice that if x € M and y € K(x) then K(y)CK(x)CM; E and feF
commute, i.e., E(f-x) = f-E(x); f leaves NN N’ pointwise invariant and
leaves every two sided N-module globally invariant (in particular N, I,
M,, J and K). Finally, F is closed under composition, i.e., for all f, g€ F,
fog is in F and coincides with the usual convolution product.

Recall that Dixmier [4, Théoréme 1, Ch. III, §5] proved for all von
Neumann algebras N that K(x) NN’ = @ for all x € N (Dixmier property)
and Schwartz [15] defined and studied the algebras NCB(H) for which

Clx)NN' = @ for all x ¢ B(H) (P-property). We need to generalize both
properties.

DEFINITION 2.1. An embedding ACB has:
(a) the relative Dixmier property if K(x)NA' #= @ for all xe B;
(b) the relative P-property if C(x)N A’ + @ for all z € B.

It is usually difficult to analyze the relative Dixmier property: recall
for instance that the long standing pure state extension problem for B(H)
is equivalent to the relative Dixmier property for the embedding of the
algebra of diagonal operators in B(H) ([1], [9]). In our case, we can
however prove the relative P-property.

THEOREM 2.2. The embedding NC M has the relative P-property.

PrOOF. Let A be a maximal abelian von Neumann subalgebra of N.
Then by [2, 4.2.3], A is maximal abelian in M. Let xe M and let C,(x)
be the ¢-weak closure of the convex hull of {Adwv(z)|ve U(A)}. Then
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Cix)cCx)c M and C,(x) is bounded and hence g-weakly compact. There-
fore by the Markov-Kakutani fixed point theorem [17, Lemma A.1], C.(x)
contains a point y fixed under all maps Ad v, v € U(4) and hence belonging
to A’. But then, ye A’'NM = ACN and hence because of the Dixmier
property for N, the set K(y)N N’ is nonvoid. Since y e C(x), then K(y)C
C(z) and hence @ + K(y)NN'cCx)NN". |

REMARK 2.3. In [12, Corollary 4.9] Longo has proved with different
methods the same result for the case of the embedding of a separably
operating factor N in its crossed product by a discrete group.

COROLLARY 2.4. Let xc M; then
Clx)NN' = C(E(x))NN' = K(E(x))N'.

PROOF. The second equality has been proven in [6, Corollary 4.17].
Let zeC(x)NN’'. Then there is a sequence f, € F such that f,-x—2 (o-
weakly). By the normality and hence o-weak continuity of E and the
fact that ze MNN' = NNN’, we have that

forE(@®@) = E(f,-x)>Exz) =z .

Thus z2€C(E(x)) NN'. Conversely, assume that zeC(E(x))NN’' and let
f. € F be such that f,-E(x)—z (o-weakly). Since f,-x is bounded, we can
assume, by passing to a subsequence if necessary, that f,-x—y (o-weakly)
for some y € C(x). Then again

furE(@)—EY) =z .
By Theorem 2.2, C(y) NN’ # @ and by the first part of this proof
Cy)NN'cCEW)NN' = Clz)NN' = {2}
because the center of N is pointwise invariant under the action of F.
Thus ze C(y)NN'cC(x)NN". |

COROLLARY 2.5. Let x€ M. Then Clx)NN' = {w(x)|w is an NN N'-
valued positive module homomorphism on M, with w(1) =1, w = w-E
and w(J) = {0}}.

ProOF. From Corollary 2.4 we have that C(x) NN’ = {@(E(x))|® is a
center-valued state on N, @(J(N)) = {0}}. Let @ be a center-valued state
on N vanishing on J(IN) and let @ = @o E be its extension to M; then w
is an NN N’'-valued positive module homomorphism on M, with w(l) =1
and w = woE. For every xeJ*, there is a y€ J(N) such that x < y [8,
Theorem 4.3.(b)]; therefore,

0= 0@ 2wy =y =0.
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As J = spanJ*, we thus have w(J) = {0}. Conversely, if w is as in the
statement of the Corollary, its restriction @ to NN is a center-valued state
on N, &(J(N)) = {0} and

o(r) = o(E(x)) = O(E(x)) . O

Thus Clx) NN’ is an essential central range of x. In particular for
0 < A\ <1 the center of N is trivial, center-valued states are simply states
and the essential central range is an essential numerical range. It is thus
natural to investigate the class of elements x of M with C(x)N N’ = {0}.
As we have already mentioned, this condition for NN characterizes the
class of compact operators J(N). In M™ it characterizes K.

THEOREM 2.6. Let x€ M*. Then x€ K* if and only if Clx) NN = {0}.

ProOoF. We have that x€ K* if and only if E(x)e€ J(IN) if and only
if C(E(x))N N’ = {0} if and only if Clx)NN' = {0} (by Corollary 2.4). []

The proof actually shows that for all xe M, E(x)e J(N) if and only
if Cx)N N’ = {0}. The class characterized by this condition is, however,
much too large to be of interest as it includes all the elements x with
E(x) = 0. Let us collect here for ease of reference some facts about K.

ProrosITION 2.7.

(a) K s a hereditary C*-subalgebra of M and a two sided N-module.

(b) K =span K™ = {x € M|E(xx* + x*x) € J(N)}.

(¢) K 1is globally invariant under the action of F.

(d) IcCK, hence JCK.

(¢) KNN= E(K)= J(N).

(f) N+ K={xeM|x— Ex)c K} is a C*-algebra with two sided
ideal K and (N + K)/K is isomorphic to the generalized Calkin algebra
N/J(N).

(g) J1is minimal and K is maximal among the hereditary C*-algebras
C such that E(C) = J(N).

ProOOF. (a) and (b) follow from [8, Proposition 8.3], (¢) is a conse-
quence of (a), while (d) and (e) follow immediately from the definition.
The proof of (f) is essentially identical to the proof of [8, Proposition
4.5] and (g) follows from [8, Proposition 4.5 and Remark 4.6]. O

While for x € N we know that K(x)NN' = C(x) N N’, this is no longer
obvious for x € M and therefore we have to investigate the set K(x)N N’
independently. Notice however that the above equality would hold also
for every z in M if we knew that the embedding NC M had the relative
Dixmier property (see next lemma, part (a)).



158 H. HALPERN AND V. KAFTAL

LEMMA 2.8. Let xe€ M. Then
(a) #f K(f*x)NN'# @ for all feF, then Kx)NN' = Clx)NN’;
(b) f 0 K(f-x) for all feF, then K(x)NN' = {0}.

ProoF. (a) Let zeC(x)NN’. Then ze K(E(x))NN’' (Corollary 2.4)
and thus for every ¢ > 0 there is an f e F such that | f-Ex) — z|| < e.
By hypothesis there is a 2’€ K(f-2)NN' and hence a g€ F such that
l(gef)-x — 2'|| <e. Therefore we obtain

lgef)x—z|| S |(gof)x—2'|| + 2" — (gof)-E@) + |l(g°f)-Ex) — 2|
<e+ [|[E(gof)x—2)+[g-(f-Ex) —2)|| <3¢

by using the facts that E commutes with the action of F, E(2') = 2/,
g-z = z and that both E and g are contractions. Thus ze K(x)NN’. The
opposite inclusion follows from K(x)cC(x).

(b) LetzeK(x)NN',let ¢ > 0 and let f € F be such that || f-2 — z|| <
¢. By hypothesis there is a g€ F such that ||(go f)-x| < e. Thus

lzll = [ge )zl + llgo(fz—2) <2

by the same reasoning as in (a). Consequently, 2 = 0. Also, by (a) and
by Theorem 2.2, K(x)NN' # @. O

PROPOSITION 2.9. Let x€ M*; then 0 € K(E(x)) if and only if 0 € K(x).

Proor. The condition is sufficient, even for a nonpositive z, by
Corollary 2.4 and the inclusion K(x)CC(x). Assume now that 0 e K(FE(x)).
Then 0 is in the central convex hull of the essential central spectrum of
E(x) [6, Theorem 4.4]. Since E(x) =0, 0 belongs also to the essential
central spectrum of E(x) [6, Proposition 3.12]. Hence we can apply [7,
Theorem 2.10] to the case of the (central) ideal J(IV) of N and thus we
can find a sequence of mutually orthogonal equivalent projections p,e N
with central support 1, such that || p,E(x)p,|| < 2™*. By passing if neces-
sary to subprojections, we can assume that z(p,) < . Let p = X2, p..
Then p is properly infinite, p ~ 1 and

P(prp) = t(pE(x)p) = 2 (p,E(x)p,) = S::l 27 (p,) = (p) < o0

Therefore pxp € M,CJ and hence there is a y € J(N) such that pxp <y
by [8, Theorems 6.2 and 4.3(b)]. Thus

= 2(pxp + (1 — p)al — p)) = 2y + 2||z]|1 — p) .

Let ¢ >0 and let 1/n < ¢. Because p ~ 1 and N is properly infinite, we
can find as in the proof of [5, Proposition 5] n unitary operators u,e N
such that {u,(1 — p)u}|i =1, .-, n} are mutually orthogonal. Let feF
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be such that f.z = (1/n) >, w,zu} for all ze M. Then
1£-0 = Pl = W) S u - puz

As f-yeJ(N) we have that 0e€ K(f-y) and hence there is a g€ F such
that ||(gof)-¥| < e. By the order preserving property of the action of
gof, we have that

Igeof)-zll < 2[(gof)-yll + 2z l(gof) A — p)|| =20 + [[z])e .
Therefore 0 € K(x). |

=< (/m)sup|lu,(1 — pur|| =1l/n < ¢.

THEOREM 2.10. Let xc M*. Then the following conditions are
equivalent:

(a) xeKH,

(b) 0eK(f-x) for all feF,

(¢) K@w)NN'= {0} for all ye K=).

ProoF. (a)=(b) Assume that x€ K* and let feF. Then f-zcK*
by Proposition 2.7 (c); but then 0e K(E(f-x)) and hence 0e K(f-x) by
Proposition 2.9.

(b)=(c¢) Let ye K(x) and let ¢ > 0. Then there is an feF such
that || f-@ — y]| < e. Choose any g € F; then by hypothesis 0 € K((go f)-x).
Hence, there is an k€ F such that |[(hogo f) x| < e. Thus, we obtain

Ih-(g DI = |(hog)-(frx— Yl + I(hogof) x| <2,
whence 0e K(g-y). From Lemma 2.8 (b) it follows that K(y)NN’ = {0}.
Clearly (c)=>(b).

(b)=(a) By Lemma 2.8 (a) and (b), we have {0} = K(x)c N’ = C(x)N
N’'. Therefore x€ K* by Theorem 2.6. O

Notice that the equivalence of (b) and (c¢) holds also for a nonpositive
. If NCM had the relative Dixmier property, then (b) and (¢) would
also be equivalent to the condition K(x)NN' = C(x)N N’ = {0}, which by
Corollary 2.4, is equivalent to C(E(x))N N’ = {0} and hence to E(x)c J(N).
This leads us to study the class:

DEFINITION 2.11. K~ = {xe M|K@y)NN' = {0} for all y € K(x)}.

As noted above, K~ = {xe M|0€ K(f-x) for all feF}. In the next
proposition we shall see that K~ satisfies a form of the Weyl Perturbation
Theorem [10, Theorem 3.3].

ProOPOSITION 2.12. (a) K~ is a selfadjoint Banach space contain-
g K,
b) Kx+y)NN' = Kx)NN' for all xe M and yec K~.
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ProoF. (a) Letx,x,€¢ K~, feFande>0. Then thereareg, g,€¢F
such that [|(g.of) x| <e, [[(g:29:°f) x| < e and hence ||(g,° 9,0 1) (2, +
2,)|| < 2¢. Therefore 0e K(f:(x, + «,)) and thus z, + x,€ K~. Clearly
are K~ and 2*e K~ for all aeC and xe€ K~, so that K~ is a linear,
selfadjoint space. As (K~)* = K* by Theorem 2.10, K~> K by Proposi-
tion 2.7 (b). Let now z be in the norm closure of K~ and choose any
feF. For every ¢ > 0 there is a y € K~ such that ||z — y|| < ¢, and since
0e K(f-y), there is a g€ F such that |[(go f)-¥| <e&. But then

lg-(f-o)l < lgef)yll + l(gef) @ — )l < 2.

Therefore 0 € K(f-x) and hence xe K~.
(b) Since —y e K=, it is enough to prove that K(x) NN'c K(x + y) N N".
Let ze K(x)NN' and let ¢ > 0; then there are f, g € F such that || f-x —
z|| <eand |(gof) y] <e. Thus, we obtain
lgef) (@ +y)—zl|=lg-(f-x—2) + l[(gof)yl <2,

whence z€ K(x + y). ]

We have shown in [9, Theorem 3.5], that if a unitary ve M imple-
ments a properly outer automorphism of N, then v belongs to K~. Thus
in particular, we have that we K~.

3. Wandering projections. In this section we let N be any countably
decomposable von Neumann algebra with a given faithful semifinite normal
trace ¢ (f.s.n. for short) and scaling automorphism 6 (i.e., 706 < Az for
some fixed 0 < )\, < 1). In particular the results of this section will apply
to the algebra N of the rest of this paper.

DEFINITION 3.1. (a) A nonzero projection p € N is called a §-wander-
ing projection (or simply a wandering projection) if p6™(p) = 0 for all
nonzero integers n.

(b) Let g€ N be a projection. Then we call 8-span of q the projection
9, = sup{6"(q)|n € Z}.

Let us collect in the following lemma some simple facts about wandering
projections and 6-spans.

LEMMA 3.2. (a) A momzero projection p is wandering if and only
if po™(p) = 0 for all positive integers.

(b) For every projection q in N, g, N° = {xe N|x = 0(x)} and q is
wandering if and only if it is monzero and q, = >\ _. 6™(q).

(¢) Nonzero subprojections of wandering projections are wandering.

(d) For all projections p, ¢ in N, pq, = 0 if and only if Py, = 0.

(e) The sum of wandering projections is wandering if and only if
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their 6-spans are mutually orthogonal.

THEOREM 3.3. Ewery monzero projection of N majorizes a wandering
projection.

PrROOF. Let g be a nonzero projection. By the semifiniteness of 7,
we can assume without loss of generality that z(q) < . Let k be a
positive integer such that Mt < (1 — A,)/2. Let us denote by l(x) the left
support of x, i.e., the range projection of x. Define p, = g,

P = Pi — UP;0(p;—)) for j=1,2 .-k
p =D, — Upesup{@i(p) 7 =2 k +1}) .

By construction p < p, <9 = -+ =P, = ¢q. Since p(p, sup{di(p.)|j =
k+1}) =0, we have that p6i(p,) =0, hence pfi(p)=0 for j=k+1. Simi-
larly, for j=1,2, ---, k we have that p,#/(p;) = 0, hence pbi(p;) =0,
and thus p@i(p) = 0. Therefore p6i(p) =0 for all 5 >0 and hence for
all § # 0. We have to prove now that p = 0. Recall that I(x) ~ I(x*)
for all xe N. Then

(U056 (D;-0)) = TUO (D;_1)P;-)) = (0 (D)) = NT(D;-,)
Therefore,
T(P;) Z 7(0;—) — Mr(p;-) = A — M)z(p;-y)
and hence 7(p,) = ar(q) where @ = (1 — A\)(1 — A +++ (1 — \F). Similarly,
(Upe sup{fi(p) |5 = k + 1))
= t(sup{¢i(p)|d = k + 1) = X {c(@/(p) |5 = k + 1}
SN i =k + 1) < ()2 .

Thus
7(p) = 7(p) — t(l(pe sup{@i(p) |7 = k + 1})) = ©(0)/2 = ar(g)/2 > 0,
whence p # 0. O

COROLLARY 3.4. Ewery momzero projection qe€ N with finite trace
majorizes a wandering projection p € N = {6*(q)|n € Z}' Cq,Nq,.

PrOOF. It is easy to see that N is #-invariant and contained in Q:Nqy;
thus the restriction of 6 to N is an automorphism. Since the generators
of N have all finite trace, as 7(6"(q)) = ai7(q) < oo, the restriction of 7
to N is semifinite. Clearly it is also faithful, normal and scaled by 6.
Thus Theorem 3.3 applied to N guarantees that the wandering projection
p is in N. O

Notice that if 7(g) = o, the restriction of 7z to N may not be
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semifinite and then N may fail to contain any wandering projections.
As an example, consider a projection 0 = g€ N such that ¢f(q) = 0 and
0%(q) = q; then 7(q) = o and N= Cq @ Cb(q) does not contain wandering
projections.

The following proposition will be used in the next section.

PROPOSITION 3.5. Let q be a monzero projection of N¢ (i.e., 8(q) = q).
Then there is a wandering projection p with finite trace such that q = p,.

ProorF. Let {p;|t=1,2, -+, n £ o} be a maximal family (at most
countable since H is separable) of wandering projections majorized by ¢
and having mutually orthogonal #-spans and finite traces. Since p, < q,
we have (p,)s < qo=4q. Let q,=q — >, (p)s. If q, # 0, then by Theo-
rem 3.3 and Lemma 3.2 (c) there is a wandering projection p, < q, with
finite trace. Since ¢, N? it follows that (p,), < q, and hence (p,), is
orthogonal to D7, (p.,), contradicting the maximality of the family (see
Lemma 3.2 (e)). Thus ¢ = 3, (p,)s. Choose now for each ¢ an integer
m(1) such that z(™9(p,)) < 2% and let p = D7, 6™ (p,). Then p has finite
trace, p < q and p is wandering (Lemma 3.2 (e)). Finally, we have

n

p= 3 0(3200w)) =5 5 o) = 3 3 6w =

M

4 (D:)s
i=1 j=—o0 =1 3=— =1
= q . D

REMARK 3.6. (a) Assume that NN is a continuous algebra. Then the
wandering projection p such that p, = ¢ can be chosen to have infinite
trace.

Indeed, by decomposing if necessary the wandering projection p, in
the proof of Proposition 3.5 into infinitely many subprojections, and by
using Lemma 3.2 (¢) and (e), we can assume that the maximal family {p,}
constructed in the above proof is infinite. Since 706 = \7'z, we can
choose integers m(i) so that z(6™"(p,)) =1 and define p = >, 6™ (p,).
Then 7(p) = «~ and, as in the above proof, we see that p is wandering
and p, = q.

(b) Assume furthermore that t06 = Ar. Then, for any preassigned
number « > 0, the wandering projection p such that p, = q can be chosen
to have trace z(p) = a.

Indeed, by (a) we can first find a wandering projection » with infinite
trace, such that r, = q. We then decompose 7 into an infinite sum of
mutually orthogonal projections p,, 1 = 0,1, --- with trace a(l — \) and
we define p = >, 6%p,). Then 7(p) = a and the same argument as
above shows that p, = q.
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(e) If N is not a continuous algebra, then the properties in Remarks
3.6(a) and (b) may be false.

Indeed, consider N = [°(Z), with the canonical basis {m,|neZ} of
rank one projections. Let the automorphism 6 and the trace z be defined
by 6(m,) = m,,, and t(m,) = A" for all n€Z. Then r°6 = At, but the set
of wandering projections of N is {m,|n € Z} and hence neither (a) nor (b)
is true.

Another way of generating wandering projections is the following
generalization of a technique used by Dye for abelian algebras [18,
Lemma 8.8].

PROPOSITION 3.7. Let q be a projection of N with finite trace. Then
there is a wandering projection p with finite trace such that q < >.2_, 6™(p).

PrROOF. Let r = sup{f™(q)|n» = 0}. Then
o(r) < 3% 7(0"(@) S S Me(@) = (L — W) (g) < oo .

Clearly 6(r) < r and thus {*(r)|n» = 0} is monotone decreasing, whence it
is easy to verify that p = r — 6(r) is wandering. Now r = 6"(r) = 6™(p)
for n = 0, hence r = 3=, 60"(p). But X2z 6*p) = r — 6*(r), and hence

o3, 0°)) = tim 2r — 0°) Z lm(1 — M)2r) = 2(r) ,
n=0
whence z(r — >, 0"(p)) = 0. Therefore ¢ < r = 3.2, 0™(p). O

Notice also that for abelian algebras, the wandering projection »
constructed in Proposition 3.7 also satisfies p < q since then

r = suplq, 6(r)} = q + 6(r) — q0(r)
implies
p=r—0r)=ql—-0(r)=q.

4. Type I subfactors of M. For the rest of this paper, we use
explicitly the discrete crossed product decomposition of M = N ®),Z where
0 is a (properly outer) automorphism that scales the trace z of N. If N
acts on the separable Hilbert space H, then M acts on H Q) l*(Z) which we
identify with I*(H, Z) via the correspondence ({ & 7)(n) = n(n) for { € H,
nel(Z) and neZ. We shall henceforth distinguish between N and its
isomorphic image w(N)C M, where for all x€ N, n(x) is defined by:

(m(@)&)(n) = 67 "(x)e(n) for all ¢el*(H,Z) and neZ.
Recall that the unitary operator % which, together with #n(N),
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generates M is given by 4 = 1® w, where w is the bilateral shift on
I¥(Z), i.e., (ug)(n) = &(n — 1) for all ¢el*(H, Z) and ne€Z. Recall also the
covariance formula

Ad u(zn(x)) = n(0(x)) for all ze N
and the characterization of M as
M = {x c NQB(XZ))|(0QAd w*)(x) = x} .

For these and further properties of crossed products, see [3], [17].

For the remainder of this section, let p € N be a wandering projection
with finite trace such that p, = X7 _.6"(p) =1 (see Proposition 3.5).
Define p, = n(6*(p)) for all 1€ Z. A useful tool for studying M is given
by the following embedding of type I factors in M.

DEFINITION 4.1. Let p: B(IXZ))— N @ B(I*(Z)) be defined by
oa)= 3 67(p) ® Adwa) for every acB(XZ)).

=—00

REMARK 4.2. Since the projections 6 "(p) are mutually orthogonal and
|Ad w™(a)|| = ||a||, we see that the series converges in the strong topology
and thus p(a) belongs to N & B(l*(Z)). We actually have more: the con-
vergence is unconditional, in the sense that the net of the finite partial
sums converges strongly to o(a). Notice in particular that if (e H, ne
I*(Z) and keZ then

(P@ @nk) = 3\ (Adw@ms (P

where the convergence is unconditional in the strong topology of H.

For every a € B(IXZ)) let [a,;] be the matrix representation of a with
respect to the canonical basis {¢,|7€ Z} of I*(Z) and let {m,|i€Z} be the
corresponding canonical decomposition of the identity in rank one diagonal
projections. Then we have:

THEOREM 4.3. (a) p is a mormal isomorphism of B(I*(Z)) into M.
(b) p(w) =u and p(m,) = p, for all 1€Z.
(¢) E(o(a) = X7 _.a,.p, for all a e B(Z)).

Proor. (a) Given the unconditional strong convergence of the series,
it is easy to verify that p is indeed a *-isomorphism and hence an iso-
metry. Let a, a, € B(I*(Z)) and assume that a, is increasing to a. Then
for every keZ, {,c6*(p)H and 7 el Z) we have:

o

(p(a) — p(a))C& ® ) = "Z. 67"(p)¢ ® Ad w™(a — a;)n

=—00

= Q@ Ad w*a — a;)n — 0
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in the strong topology. Since the span of the vectors {, & » is dense (by
definition) in H ) [*(Z) and since p(a) — p(a;) is bounded by 2||a||, we see
that p(a;)—p(a), which proves the normality of o. Moreover, for all
a € B(I*(Z)), we have by the normality of 8 Q@ Ad w™ that

(0 @ Ad w™)(p(a)) = ,.i:‘m 0(67(p)) ® Ad w™(Ad w™(a)) = p(a) ,

whence by the above mentioned characterization of M, we see that
ola)e M.
(b) We have that

po(w) = FZ:O 6~"(p) @ Ad w™(w) = ,,:Z_w D) RQW=1Qw=u.
Let {€H and 1, j, k€ Z. Then by Remark 4.2 we have

(Om)E @ p)I) = 35 (Adwm)p))0 @) = 3 (my 1) W6~(D)C

= 8,077 (D)C = (07" (@ (PN & p))(k) = (w6 (p))L @ p.)(k)
= (p;(€ & p))k) .
Since the span of the vectors { & p; is dense in H ) I*(Z), we have that
o(m;) = p; for all j.

(¢) Let R be the map from I*(H, Z) onto H given by R& = £(0) for all
gel(H,Z). Then R*( =(Q u, for all {e H. Moreover, E(x) = n(RxR*)
for all xe M ([19, Ch. V, §7] or [14, Ch. 7, §11]). Therefore, for every
a € B(I*(Z)) and every { € H, we have

(Ro@R*)E = (RO@X ® to = B 3, 0()@Ad w(@)p)
= 3 ROGX Q@ Adw(@p) = 3 (Ad w@pm)0)6 )

= 3 @)@t = (5 e.o®) -

Therefore

E(p(@) = 7(Ro@R") = 7( 3 a,.6'®) = 3 a..p, - O

Recall that every xze€M has a generalized Fourier series x =
S _wm(x,)u” where the series converges in the N-Bures topology and
n(x,) = E(xu™) for all neZ [13]. Then we easily obtain the following
corollary:

COROLLARY 4.4. (a) For every ac B(X(Z)) the genmeralized Fourier
series of p(a) is given by P(@) = 3w (N —w Qi p_nDe) U™
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(b) D = p(B(I¥Z))) is a type I factor with matric units {u*pu=?|1,
jeZ}.

The following construction will help shed more light on the pair {o, D}.
Let us define the von Neumann subalgebras of N:

L,=C1,
D,= 3 ®Co®) = | 3 as'®)a.cC, supla,| < =},

n=—c0

N,= 3 @ Ny, where Ny, is the restriction of 6°(p)N6"(p) to 0*(p)H .

n=—co

Clearly L,c D,CcN,CN are globally #-invariant algebras and thus we can
form the crossed products

L=L,QZ, D =D,Q,7Z and M,=N,R,7Z .
Therefore we have
LcDcMcM.

Notice the L, and N are independent of the wandering projection p,
hence L and M do not depend on p, while the other algebras do.

Since the action of § on L, is trivial, L is the von Neumann algebra
generated by u, hence L =1Q & where & is the algebra of Laurent
operators, i.e., the algebra generated by the bilateral shift w.

Notice that by the definition of the isomorphism p we easily obtain
that o(a) = 1®a for all ae & The expression 1@ a is independent of
the wandering projection p. In Proposition 6.2, we shall use this fact to
study the module and ideal structure of J.

As D, is generated by {6"(p)|neZ}, D~ is generated by u and
{p.|m € Z}, hence has the same generators as D (see Corollary 4.4(b)) and
therefore D~ = D.

REMARK 4.5. There is an isomorphism of [*(Z) (realized as an algebra
of operators acting on [*(Z)) onto D, under which Ad w corresponds to 6
and thus by [3, Proposition 2.13] there is an isomorphism between the
crossed products, namely I1°(Z) ®iaw Z and D. It is then easy to verify
that p is the composite of this isomorphism with the isomorphism of
B(I*(Z)) onto I°(Z) Raaw Z mapping the matrix units {w'mw?|1, j€Z}
onto {(1 @ W)T aam(My)(1 Q w™9)|4, j € Z}. Notice that this last isomorphism
maps the algebra A = {m;|je€Z}"’ of the diagonal operators of B(IXZ))
onto the image in I°(Z) Qa4 Z of 1°(Z) and intertwines the corresponding
conditional expectations. Thus if E: B(IXZ))— A is the conditional expec-
tation given by E(a) = 32 _.a,,m, (i.e., E@) “is the main diagonal of
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the matrix a”), then p intertwines & and E. This is actually part (c) of
Theorem 4.3.

5. Classes of finite rank, finite trace and compact projections. For
the remainder of this paper we shall assume that 0 < A < 1. Thus N is
a factor and 706 = ar. In this section we shall use the embedding of
B(IX(Z)) in M introduced in §4 in order to separate the classes of the
projections of I, M,, K and J. In particular this will show that K = J.

Let us choose a wandering projection p with finite trace such that
Py =1 and let p be the corresponding isomorphism of B(l*(Z)) onto DC M.

THEOREM 5.1. Let a € B(IX(Z))*. Then

(a) p(a)el if and only if (neZ|a,, # 0} is bounded below;
(b) p(a)e M, if and only if So o '@y, < ;

(¢) p(a)e K if and only if a,,—0 for n— —oco.

ProOOF. (a) p(a)el if and only if

Bp@) = 3 a,p, =7 3 a.010)enV)

(by Theorem 4.3 (¢) and the definition of I*), if and only if the range
projection > {6"(p)|a,. # 0} of D> _. a,,0™(p) is finite, if and only if (using
the fact that N is a factor)

(3 {0"(p) | @, # 0}) = X (N"] @, # O)T(D) < oo,

if and only if a,, # 0 for only finitely many negative integers =.
(b) p(a)e M, if and only if

PEE@) = ¢( 3 aup.) = 3 a,nwp) < o .

(¢) p(a)e K if and only if E(o(a)) = D« @D, € n(J(N)) if and only
if the spectral projection

S {p.la,, > & = x> {6"(p)|a,. > €})

of E(o(a)) corresponding to the interval (g, o) is finite for every ¢ > 0
[10, Propositions 3.8, 3.9], if and only if (again using the fact that N is
a factor)

(2 {0"(D) Qe > €)) = 2N @nn > €}z(p) < o0
for every ¢ > 0, if and only if a,,—0 for n— — . O

Notice that since I, M, and K are the span of their positive parts,
the conditions in Theorem 5.1 are necessary also for nonpositive operators
in B(I¥Z)). Clearly, they are not sufficient, as the example of the bilateral
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shift w e B(I*(Z)) shows. Indeed w,, =0 for all neZ, however K (and
hence I and M,) is a *-algebra that does not contain the identity and
hence does not contain any unitary operator.

The following characterization of DNJ will establish a further link
between the class J of M and the ideal of compact opertors K(I*(Z)) of
B(IX(Z)).

The notion of relative weak (RW for short) vector convergence, intro-
duced by the second named author in [11], plays a role in the theory of
compact operators in von Neumann algebras similar to the role that the
weak vector convergence plays in B(H). A net &€ H converges to 0
weakly relatively to a semifinite algebra N (§,—0 (NRW)) if it is norm
bounded and if for every finite projection ¢ in N, || ¢¢;|| —0. A generalized
Hilbert condition holds for semifinite algebras [11, Theorem 7]. For the
case of a type III; (0 <\ < 1) factor, we also have that xeJ™* if and
only if ||xg||—0 for every &—0 (z(N)RW), [8, Proposition 5.6]. This
property is used in the following theorem in order to characterize DNJ".

THEOREM 5.2. Let r_ = X2, m_; and let a € BUXZ))*. Then p(a)eJ
if and only if r_ar_e K(IXZ)).

PrOOF. For every positive integer n, let ¢, = >, {m_;|¢ = n}. Then
¢, < r_ and ¢, decreases to zero. Notice that by Theorem 5.1(a), 1 —
0(q,) € I for all n (actually, 1 — o(q,) € (I(N)) by Theorem 4.3 (b)). Assume
that r_ar_ is compact in B(I*(Z)). Then q,aq, = q,r_ar_q, converges in
norm to zero and hence

la — @ — g)al — g,)l| = [[p(a) — A — p(g))e(@)d — pg.)] —0 .

As
(1 - p@)p@( — p(@) < el — pl@)el,

we conclude that p(a)eJ.

Conversely, suppose that r_ar_ is not compact in B(I*(Z)). Now by a
routine argument, we can find an &« > 0 and a strictly increasing sequence
{n;} of positive integers such that

1(€n; = €n;1)0(Q0; — €050l >
for each j. Let v; be a unit vector in the range of g¢,; — g,;,, such that
o,a) = (av; v;) > a .
Let 0 # {,€ pH be such that @, < 7(p-p). Since N is a factor and
() < 7(07(p)) = NTz(p) for j=1,2 .-,
we have that p < 67%(p). Thus there is a partial isometry u;€ N such
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that p = u}u; and uuf < 679(p). Setting {; = u,{, we see that {; €6 i(p)H
and that for every x€ N* and j=1,2, ---, we have
e () = we(ufru;) < t(pufru;p) = t(uufruul) < (@ (p)x6~i(p)) .
In other words,
w; = (07 (p)-67(p)) for all j.

Define ¢; = {; Q wiv; for j =1,2, -+-+-. Then by using the strong conver-
gence of the series giving p(a), we obtain

(@5 &) = 3 (07(P) @ Ad w (@) ® wivy, & @ wiv))

= 3 (67 CHAd wi(a)y;, vy) = |11 (avy, v;) > all &l .

=—oc0

Thus, in view of [8, Proposition 5.6], in order to obtain that p(a) is not
in J, it is enough to show that £,—0 (#(IN)RW). Notice that &; is bounded

since ||&;|| = ||&,]| for all j. Let s be any finite projection in N. Then
we have:

Iz@ ] = 3 l@@eml = 510 @em]!
= 3 107@ i — i)F < 3 1051,
from the fact that |v;(k)| < ||v;]| =1 for all £ and from the fact that
v;(k) = 0 for k > —j, because v;€q,,HCq;H. Summing over j, we obtain:

M EOESSATLOAES WP UOES IS W EOWOIED)

< 520" = (S V))<=

from the fact that the finite projection s in the factor N has finite trace.
Thus ||7(s)é;||—0 and hence &;—0 (z(IN)RW). n

As a consequence of Theorems 5.1 and 5.2 we obtain the following
corollary:

COROLLARY 5.3. The set of the projections in the classes ICM,CcJC K
are all distinct; hence, the inclusions are proper.

ProOF. Let { be any unit vector in [*(Z); the one-dimensional pro-
jection s on span { has matrix representation s,; = {(4)Z(3). Choose {(n) =
AR, (neZ) with 8= (1 + 2 30, A™) ™2 then 32 _. \"s,, < o but s,, # 0
for all ». Thus by Theorem 5.1 (a) and (b), o(s) € M, but p(s)¢I. Choose
now {(n) = A", (n€Z) with y = (1 + 2 3, A") ™% then 3,3 _. \"S,, = .
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Hence by Theorems 5.1(b) and 5.2 p(s) € J but o(s) ¢ M,. For any infinite
projection s < r_ such that s,,—0 for n— —, we have p(s)e K but
o(s)¢J. Choose for example
2k, for 4,j=—20—1, .-, =2 and k=0,1,2, -+

B6i = 0, otherwise .

Then s is the direct sum of 2¢x2* blocks each of whose entries is equal
to 27* and thus each block is a rank one projection and s is an infinite
dimensional projection. We see that s,,—0 as m— —oco; hence p(s)e K
but o(s) & J. U

We conclude this section with an example of two projections in M,
whose supremum is the identity of M; this shows that unlike their ana-
logue in a semifinite algebra and unlike I, the classes of the projections
in M,, J and K are not closed under supremum, (see also [8, Example
7.4]).

EXAMPLE 5.4. Consider for k€ N the rank one projection s, on the
unit vector a,tt_, + B, where {t,|ke€Z} is the canonical basis of *(Z)
and choose 0 # a; small enough so that >p, A 7*|a,? < . Lets= >i, s,
and let m = >, m,; since sup{s,, m,} = m_, + m, for all k, we have that
sup{s, m} = 1 and thus sup{o(s), o(m)} = 1. On the other hand we already
know that o(m)en(I(N)) and we see that o(s) satisfies by construction
the condition of Theorem 5.1 (b). Thus, both projections are in M,. []

6. Multipliers of the hereditary algebra J. In this section we investi-
gate module and ideal structures for J. We have already considered in
§4 the algebra .&¥ C B(I*(Z)) of Laurent operators generated by the bilateral
shift w. There is an isomorphism L: L*(T)—.% given by L,=>\7__.. Fm)w"
where {f(n)[n € Z} are the Fourier coefficients of f € L~(T) and the series
is the generalized Fourier expansion of L;. The matrix representation
of L, relative to the standard basis of I(Z) is (L,),; = f(i — 7) for %, jeZ.

If welet r, =3 m, r_=>x,m_, then the compression of L,
to r,lX(Z) is the Toeplitz matrix T, = », L;r, with symbol f. Since we
have to consider (because of Theorem 5.2) compressions to r_I%(Z), let us
define S e B(I*(Z)) to be the (unitary) reflection operator, i.e.,

S)(m) = p(—n) for all pelXZ) and neZ.
Let f* be the reflexion of f e L*(T), i.e.,
f*@t) = f(t) for te'T.
Then it is easy to verify that Ad S(r.) = r_ and that for all fe L*(T)
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we have AdS(L,.) = L; and thus r_L,r_ = Ad S(T,.). Let us finally recall
that by [20, Theorems A and 1) if f, g€ L>(T) then

Tfa - TfTa € K(lZ(Z))
if and only if
H[fINHI[glcH=(T) + C(T),

where H=(T) is the Hardy space of the functions f e L>(T) with f(n) =0
for n < 0, C(T) is the space of continuous complex-valued functions on
T and H[f] (resp. H[g]) is the subalgebra of L=(T) generated by H>(T)
and f (resp. g).

PrOPOSITION 6.1. Let fe L=(T), let pe N be any wandering projec-
tion with finite trace and 6-span Dy = Do _. 0™(p) = 1, let o be the cor-
responding isomorphism from B(IXZ)) onto DC M and let x = o(Lr (L/)%*).
Then

(a) xzeK,

o) xzed if and only if fe H=(T) + C(T).

Proor. (a) The (n, n)-entry of the matrix representation of
Lsr (Lp* is

0 o0

> > {f(n—’i)(gmk>ﬁf(n—j)'}=g|f(n—i)|2—>0 for n— —

i=—00 j=—o0

as fel(Z). Thus x€ K by Theorem 5.1 (c).
(b) zedJ if and only if r_Lyr (L;)*r_e K(I*(Z)) (Theorem 5.2). But

r_Lyr (Lp)*r_=r_L1—r_+m)Lzr_=r_(Lys2— Ly_Lz)r_+r_Lm,Lzr_
= Ad S(T|ft|2 —_ Tf*Tft) + 'r_LfmoLfT_ eK(lz(Z)) ,

if a_nd only if T\se — TrTos € K(I(Z)) (using (7_*_) =f *), if and only if

H[f*]CcH=(T) + C(T) [20, Theorems A and 1], if and only if f € H>(T) +

c(m). O

Recall that o(L;) =1Q& L,e L for all fe L*(T). The set H>(T) +
C(T) is a closed subalgebra of L=(T), thus its image 1 Q L(H>(T) + C(T))
under po L is a closed subalgebra of L. Likewise po L(C(T)) =1 ® L(C(T))
is a C*-subalgebra of L.

PROPOSITION 6.2. J s a left module over 1 Q@ L(H>(T) + C(T)) and
a two sided module over 1 Q L(C(T)).

Proor. Let a =1Q L, for some fe H(T) + C(T) and let zeJ.
Then we have, by [8, Proposition 4.1 (b)], that ax e J if and only if both
2*a*ax and axx*a™® are in J*. But z*a*axreJ*, since
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r*a*ax < ||a|x*xeJT .

As xx*eJ*, we can find, by [8, Theorem 4.3 (b)], some z € n(J(IV)*) such
that x2* < z and hence axx*a* < aza*. Let ¢ > 0 and let ¢ be the spec-
tral projection of z corresponding to the interval [¢, ). We shall prove
that aga* € J*. Notice first that ¢ is finite in z(N) [10, Propositions 3.8
and 8.9] and hence has finite trace. By Proposition 3.7, there is a wander-
ing projection p’ with finite trace such that q < (3, 6*(0")). There is
also a second wandering projection p” with finite trace such that (p”), =
1 — (p")s (Proposition 3.5). Thus » = p’ + p” is also wandering projection
with finite trace (Lemma 3.2 (e)), p, =1 and q¢ < (32, 60"(p)). Let o be
the isomorphism corresponding to p. Then ¢ =1Q L, = po(L;) and
(=, 0™(p)) = p(r,). Therefore

azqa* < ||zllaga* < [|z]|o(Lsri(Lp)*) €T
by Proposition 6.1 (b). Hence we have azqa* eJ*. Since
|aza* — azqa*|| < ¢l|a|?

and ¢ is arbitrary, we obtain that aza* and hence axx*a* are in J™.
Thus ax € J and consequently J is a left module over 1 Q L(H>(T) + C(T))
and in particular over 1 & L(C(T)).

Since both J and 1 Q L(C(T)) are selfadjoint, J is also a two sided
module over 1 & L(C(T)). O

COROLLARY 6.3. The C*-subalgebra J of K is mot an ideal of K.

Proor. Choose a wandering projection p with finite trace and p, = 1,
and let p be the corresponding isomorphism of B(I*(Z)) onto Dc M. Let
q = p(r_ — m,); recall that 1 — ¢ is finite in z(N). Let f be a function
in the complement of H*(T) 4+ C(T) in L>(T) andlet a =1 & L; = p(L;)
and ¥ = qa(1 — q). Then

1 —-gal —qa*1 —q) < |la|’Q —qeJ",
and
a(l — g)a* = 2(qa(l — @)a*g + (1 — @a(l — ga*(1 — q)) .
Since a(l — q)a* is not in J (Proposition 6.1 (b)), we conclude that also
yy* = qa(l — ¢)a*q is not in J. Thus ¥ is not in J.

On the other hand, yy*e€ K+ as a(l — q)a™ € K (Proposition 6.1 (a)) and

K is a n(N)-module. Moreover,
¥y =1 — @a*ga(l —q) < [la|!Q — g K*
hence y*y€ K* and thus ye€ K. Therefore y = y(1 — q) is the product
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of an element in K and an element in J (actually a finite projection in
7(N)) and does not belong to J. O
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