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Let P(M, G) be a principal fiber bundle with structure group G over
a manifold M; let ¢:[0, L] > M be a continuous curve in M which is
differentiable on the half-open interval [0, L). For a given connection on
P, does ¢ admit a horizontal lift into P defined over the entire closed
interval [0, L]? If the connection is flat, it surely does. Here is an
example where it does not: M = R?, G = GL(2), P = bundle of linear
frames in R?, L=1, o) =1 — t)(cos(d — ¢)% sin(1 — t)™®), and the
connection is the Levi-Civita connection associated with the metric
exp(—v?) - (dx* + dy*); a linear frame, parallel translated, in this metric,
from ¢(0) to o(t), is rotated through an angle of (1/4)67"sin26 — (1/2)In4,
where 6 = (1 — ¢)7%, so it has no limit as ¢ — 1.

The purpose of this paper is to show that if M admits a Lorentz
metric for which ¢ is a finite-length spacelike curve with timelike accele-
ration (when parametrized by arec-length), then ¢ does, indeed, admit a
horizontal lift over the entire closed interval, i.e., the lift over the
differentiable part has a limit as ¢ — L. This is done by first showing
that the horizontal lift over [0, L] exists in the case that for some
Riemannian metric on M, ¢ has finite length; since ¢ is compact, if this
is the case for one Riemannian metric, so must it be for all Riemannian
metrics. Next, it is shown that if ¢ has infinite Riemannian-length, then
any scalar function F' on M which, in the given Lorentz metric, has a
timelike gradient which is (say) opposite-directed to V;0 with respect to
future and past, must have H(d, 6) unbounded below, where H; is the
Hessian of F. Finally, it is shown how to construct, in a neighborhood
of any point in any Lorentz manifold, a function with a timelike gradient
(either past- or future-directed) and a positive-definite Hessian. Since it
is only the behavior of ¢ and the connection in a neighborhood of &(L)
that is significant, this is sufficient for the problem at hand.

THEOREM 1. Let M be a manifold with a Lorentz metric g, let P be
a principal fiber bundle over M with structure group G, and let @ be a
connection form on P. Let o:[0, L] > M be a continuous curve in M
which 1s differentiable on [0, L). If o, on [0, L), is spacelike, is para-
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metrized by arc-length, and has timelike acceleration—or, more generally,
for some (continuous) unit-timelike vector-valued funmction N, defined over
o and some k(t) =0, V;6 = kN—then a horizontal lift v:[0, L) — P of ¢
has a limit as t — L.

ProOF. In the course of this proof, the following elementary result
from analysis willLbe used: For any digferentiable function «(t) on a finite
interval [0, L), ifs 2(8)dt is finite but S @(t)|d¢ = oo, then both « and o’

0 0
are unbounded both above and below on [0, L).

Let 77 be a neighborhood of ¢(L) over which P is trivial; it does no
harm to assume that ¢ is contained in %. Let u:% — P be a cross-
section; then a lift v, = u,,a, of o, with a:[0, L) — G, is horizontal if
and only if d,0;' = —w[(d/dt)u,,] (0 =0a+ud, va*=a+uda™?, w(@a™)=
ad(a)w(®)=w(@)+o(uda™)=w(w)+ da™"; therefore, @(?)=0 iff do'= —w(%);
see, e.g., [4], p. 69). Define a=—u*w. Let M have an arbitrary Rieman-
nian metric, and let G have an arbitrary right-invariant Riemannian
metric, both denoted by ||-||; then at each z in %, a,: T,M —g has a
norm | a,|| as a linear transformation, and ||«|| is bounded in a (possibly
smaller) neighborhood of ¢(L). The equation d,a;* -—La(ét) hasLa solution
for 0 <t < L. As a curve in G, its length L(a) = s lld.]| = S llaas|] =
S ||ee(a,)]| <S lle||||lg.ll. Therefore, if S l6|| is finite, so is L(a). Being
homogeneous, G is complete, so if L(a) is finite, a, has a limit as ¢ — L.
Therefore, if ¢ has finite Riemannian-length, the horizontal lift u,,a,

has a limit u,a;.
Let U be any (non-vanishing) timelike vector field on AM; let U* be

its perpendicular space; and let Py: T.M — U be projection. Then
(X, V)= (Py(X), P(Y)) + (X, U){Y, U) is a Riemannian metric on M
({~, =) denotes g, as will |-|). Thus, if ¢ has infinite Riemannian-length,

SL(IPU(ci)I2 + (g, U)?)"* = . Since ¢ is of unit-speed and spacelike,

6, 6) = |Py(0)] — <d, UY/|IUF =1,
S0
|Py(d)]* + <ag, UY* =1+ (1 + 1/|UP<g, U)*.

In a neighborhood of o(L), |U| JiLs bounded; therefore ¢ has infinite
Riemannian-length if and only if \ |<d, U)| = .

Now consider any scalar functiz)n F llLI — R with F'F timelike;La has
iréﬁnite Riemannian-length if and only if So |6F| = . However, SO oF =
So (d/dt)F(a(t)) = F(o(L)) — F(a(0)), which is finite. Thus, by the remark
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made at the beginning of this proof, if ¢ has infinite Riemannian-length,
then (d/dt)(6F) = 6{0,VF) = (V;6,VF) + {6, ViV F)y = V;6, VF) + Hg(d, )
is unbounded both above and below. But since F;6 and FF are both
timelike (or each a non-negative multiple of a timelike vector field),
V;6,VF) has constant sign. Thus, for example, if V;6 and /F lie in
opposite time-cones, then H.(d, ) must be unbounded below. It follows
that if there is a function in a neighborhood of o¢(L) with timelike
gradient in the opposite time-cone as that of V;6 and with positive-
definite Hessian, then ¢ must have finite Riemannian-length.

The remainder of the proof is devoted to constructing in a neighbor-
hood of an arbitrary point » in a Lorentz manifold M, a function F’ with
timelike gradient (either future- or past-directed, as needed) and positive-
definite Hessian. F' is the sum of a function whose Hessian is positive
definite on a spacelike hyperplane in T,M, and of a second function whose
Hessian is zero on that hyperplane but positive on the vector perpendicular
to it.

The first function, f, is defined by f(x) = {exp;'(x), exp;'(x)), where
g is a point in the chronological past of p (i.e., ¢&p) that needs to be
chosen appropriately. To find /f, consider a vector V in T,M, x23>q, with
V = (d/dv)x, for some curve x,; let z, = exp,(r,T,) with T, unit timelike
and r, = 0. Then f(x,) = —ri. Define B(s, v) = exp,(sr,T,), so that V at
z is extended by the definition to V = B,(3/0v); define S = 8,(9/ds) and
T = §/|S|. Let 7, be the geodesic B(—, v) froms =0 to s =1, so L(v,) =
IS,| =7, Then V,f = (d/dv)f(®,) = —2r(d/dv)r, = —2r,(d/dv)L(7,) =
—2r,[—<V, TOLIiZ = 2|f()|"*(V, T), (first variation of timelike arc-length
has been used here—see, e.g., Corollary 11.24 in [1]). Therefore,

Vf=2[fP"T,

where T is the vector field defined by T, = 7, with v, the unit-speed
geodesic from ¢ to z# (for z>»q). Then, for any vector X at «z,

Palf = AX(=fYIT + 2\f 7T = —|f|"X, V)T + 2|f 17T
= —|fI™"X, 2|f["*T)T + 2|f"7xT = 2(|f|"Vx T — <X, T>T),
yielding
Hy (X, X) = FiVf, X) = 2(If"*F T, X) — (X, T)") .

Therefore, H/(X, Y) = 2(f|*7xT, Yy — (X, T)Y, T)). For V perpendi-
cular to T,, the function », can be taken to be constant at » = |f(x)|'?, so
[V, T]=@/r)[V,S]=0. Then

Hy(V, V) =2|f"}V,T, V) = [fI"TKV, V),
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where V is a Jacobi field along v, with V, = 0.

It remains to be shown how to choose ¢ € p so that H, will be positive
definite on a spacelike hyperplane at p. To this end, pick any future-
directed unit-speed timelike geodesic v with v(0) = p; let T = ¥(0). The
basepoint ¢ will be v(s) for some s < 0, and the hyperplane at p will be
T*. By the calculations above, (Vf), = 2(—s)T, and, for any U in T%,
H, (U, U)=(—s)TKV, V), where T, = v(t) and V is the Jacobi field on
v defined by V(0) = U and V(s) = 0. It will be shown that for s close
enough to 0, H,(U, U) must be positive for all non-zero U in T-.

On any finite interval of <, the sectional curvature of any plane
X A T containing T obeys K(X A T) = —K for some constant K > 0 (X
can be restricted to T with |X| = 1, a compact set). For a given unit-
length vector U in Ty, let h(t) = (V, V),, V defined as above; then b =
(TV, V)Y =2, V, V) =2(FaV, V)+F,V, V. V) =2(—(R(V, T, V)+
V. VE) =2(VATVE+ V. V) = —2K|V|* = —2Kh. Therefore,

* 1 143

(*) h = ﬁh .

Note that &(s) = 0 and 2(0) = 1. For —(2K)™? < s < 0, it can be shown
that A'(0) > 0: There is some ¢, in [s, 0] with A'(t) = —1/s. With
h'(0) =< 0, there is some 7, in [t, 0] with A"(r,) = (—st,)' £ (—s). By
), h(r) = (2Ks*)™'. From this and h(s) = 0, we obtain some ¢, in [s, 7]
with R'(t,) = QKs*(r, — s))™ = (—2Ks*)™'. With A'(0) £ 0, there is some
r, in [t, 0] with A'(r,) = (—2Ks%,)™ < (—2Ks*)™'. By (*), h(r,) = (4K%*)™.
Continuing, we obtain a sequence 7, in [s, 0] with h(r,) = (2Ks*)™. With
s as specified, this implies that the continuous function & is unbounded
on the interval [s, 0], an imposibility. Thus, ¢ = v(s) for such an s
ensures that H,(U, U) = —sh’(0) > 0 for unit-length, hence, any non-zero
Uin T;.

To define the second function, start with the same vector T at p,
but extend it differently: For any U in T}, define T, for = exp,(U)
as the parallel translate of T, along the geodesic from p to z; let v, be
the geodesic 7,(s) = exp,(sT,); and define T at v,(s) to be 7,(s). Define
the function &k by k(v,(s)) =s. Then k= —T. Since V/,T =0 and, at p,
VeT =0 for U in T*, H, = 0 at p. For any function ¢: R — R, V(¢ok) =
(¢ o)k and H,., = (¢'ok)H, + (¢" ok)dk Q dk; thus, at p, V(gok) = —¢'(0)T,
and H;.,, = ¢"(0){—, T,) ®{—, T,>. Let F = f + g¢ok. Then, at p,

VF = (—2s — ¢'(O)T, ,
H; = Hf + ¢”(O)<_’ Tp> ® <—’ Tp> .
For Uin Ty, H{(U +aT, U+aT)=Hy (U, U)+2aH (U, T)+ ’HT, T) +
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¢"(0XU + aT, T)* = Hy(U, U) + (¢"(0) — 2)a’, so
Hy(X, X) = Hy(X*, X*) + (8"(0) — 2KX, T)*,

where X* = X + (X, T)T. Thus, H; is positive-definite at p so long as
¢"(0) > 2, and (FF), is timelike so long as ¢'(0) = —2s: future-directed
for ¢'(0) < —2s and past-directed for ¢'(0) > —2s. These properties of
the Hessian and gradient remain true in a neighborhood of p.

Taking p = (L) completes the proof. ]

As an application of this theorem, consider the bundle of orthonormal
frames over M with the Levi-Civita connection associated with g: a
horizontal lift of ¢ yields parallel translation along ¢. If ¢ is a Frenet
curve with a timelike principal normal vector, then the theorem below
asserts that an appropriate curvature restriction on ¢ allows one to
parallel translate the velocity vector at ¢(0) to a limit vector at o(L),
vielding a differentiable end point at L. With just a little more work,
we need not even assume the existence of the endpoint ¢(L), but infer
its existence (first as a continuous endpoint, then as a differentiable one)
from a completeness condition on M. The condition required is b-com-
pleteness (“b” for “bundle”), defined thus (see [3], p. 259 and Section 8.3):
For ¢:[0, L) > M™ a differentiable curve in a manifold M with a connec-
tion, any basis for T,,M defines a Riemannian metric in the tangent
spaces along ¢ by being parallel-translated all along ¢ and being regarded
as an orthonormal basis at each point. This determines a length for ¢
in terms of this metric, called the Schmidt length of ¢ relative to the
initial basis at ¢(0). Whether a Schmidt length for a given curve o is
finite or infinite is independent of the choice of initial basis. M is called
b-complete if any differentiable curve ¢: [0, L) — M of finite Schmidt length
can be continuously extended to L.

THEOREM 2. Let M be a b-complete Lorentz manifold, and let
0:]0, L) > M be a unit-speed spacelike curve obeying V;6 = kN with N a
unit-timelike vector defined over o and k£ a non-negative scalar defined
over . If L = L(o) is finite and |V;N| is bounded, then o is differen-
tiably extendible to (and past) L.

Proor. Let zi: T,,M — T,, M be parallel translation along ¢. Define
E(t) = ziN(0). Let T=06 and S= T+ (T, E)E, the component of T
perpendicular to E. Let ' denote V;. The main burden of the proof is
to show that with L finite and |N’| bounded, (T, E)’ and [S’| are bounded
also (S', being perpendicular to E, is spacelike). From this it immediately
follows that (T, E) is bounded, as well as [S| = (1 + (T, E)*"*. The
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Schmidt Llength of o, relative to an orthonormal basis at ¢(0) containing
E, is S T, E)* + |SP)"*dt, which is therefore finite: this yields the
0

(continuous) endpoint ¢(L). For differentiability, consider X, = ziS,: This
vector always lies in the spacelike subspace perpendicular to E,; further-
more, |X;| =|S;| is bounded. Therefore X, has a limit X,. Similarly,
(T, E), has a limit », so ¢iT, = X, — (T, E),E, has a limit X; — rE,. By
Theorem 1, 7% is defined. Let E, = 73E,. Then we have t.d(t) = z%7iT,
has a limit %(X, — rE,) = 73X, — rE,. It follows that J(t) approaches
T%XL - TEL.

To show the boundedness of (T, E)" and |S'|, first we note that £ =
(N, T>. At each point x = ¢(¢), define n: T,M — T,M to be projection
onto the (spacelike) subspace perpendicular to both N and T, ie.,, 7Y =
Y+ <Y, N)N— (Y, T)T. Then [zE* = —1 + (B, N)* — (E, T)? or
(1) (N, E) = £(1 + (T, E)* + |[rEP)"" .

We thus have (T, E)' = k{N, E) = +=(N', T)(1 + (T, E)* + |zE|*)'*, so
(2) (T, E)Y = £2{N', T)XT, E)(1 + (T, E)* + [zE")"*.
Furthermore, using the fact that (X, Y) = (X, nY), we also have
(3) |mE[" = 2(CE, N){E, N)' — (E, T)<E, £N))

= 2N, EXXN' = (N, T)T, E)

= 2(N, E){zN', E) = 2(N', rE){N, E)

= +2{N', nE)(1 + (T, E)* + |rE*)"*.

Let z = (T, E)* and y = |rE|*'. Suppose that |[N'| = C, a constant.

Then, since N’, T, and zFE all lie in the subspace perpendicular to N, we
have, from equations (2) and (3)

o] < 2Ce"*(1 + oz + y)"* = 2CQ + z + ¥) ,
and
Y| <20y 1 +z+y)*=2C0 + 2z +y).
Let z = In(x + y); then

(4) 2| = (12| + [¥'D/(x + y) = 4C(A/(x + y) + 1) = 4C(e™* + 1)

If lim sup(z) = «~ as t — L, then (since L < o) there is a sequence
{t.} with z(t,) =1 and 2'(t,) =%, which contradicts inequality (4). Therefore,
z is bounded above, so x and y, i.e., (T, E)* and |zE|’, must be also.
From equation (1), it follows that (N, E) is bounded. Therefore, (T, E)' =
k{N, E) = (N, T){N, E) is bounded, as is |S'| = |£||N + (N, EDE| =
KN, TH|(KN, E)* — 1)*2, O
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Note that if o is a geodesic in a spacelike hypersurface in M, then
it satisfies V;0 = kN, with N the normal vector to the hypersurface.
Theorem 2 is used in this context in [2] to show that in a b-complete
Lorentz manifold, a closed spacelike hypersurface with bounded principal
curvatures must be complete.

REMARK. If the timelike quality of the acceleration vector for o is
removed from the hypotheses of Theorem 1, then it is possible to construct
counter-examplest. For instance, let o:[x, <) — R® be defined by o(t) =
(4t t™* sin(t), S s™'cos(s)ds). This has a continuous endpoint at ¢ = .
With metric dx? fl— dy® — dz?, it is spacelike and has finite length, but its
Euclidean length is infinite. If the metric used is e (dx® + dy® — dz?)
for some function p: R — R, then the Lorentz length is still finite. If p
is appropriately chosen, then parallel translation along o can be precisely
calculated, and there is a choice of p under which parallel translation
along ¢ fails to have a limit as ¢ — .
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