HORIZONTAL LIFTS OF SPACELIKE CURVES WITH NON-DIFFERENTIABLE ENDPOINTS

STEVEN G. HARRIS

(Received October 1, 1984)

Let P(M,G) be a principal fiber bundle with structure group G over a manifold M; let $\sigma\colon [0,L]\to M$ be a continuous curve in M which is differentiable on the half-open interval [0,L). For a given connection on P, does σ admit a horizontal lift into P defined over the entire closed interval [0,L]? If the connection is flat, it surely does. Here is an example where it does not: $M=R^2$, G=GL(2), P= bundle of linear frames in R^2 , L=1, $\sigma(t)=(1-t)(\cos(1-t)^{-2}, \sin(1-t)^{-2})$, and the connection is the Levi-Civita connection associated with the metric $\exp(-y^2)\cdot (dx^2+dy^2)$; a linear frame, parallel translated, in this metric, from $\sigma(0)$ to $\sigma(t)$, is rotated through an angle of $(1/4)\theta^{-1}\sin 2\theta - (1/2)\ln \theta$, where $\theta=(1-t)^{-2}$, so it has no limit as $t\to 1$.

The purpose of this paper is to show that if M admits a Lorentz metric for which σ is a finite-length spacelike curve with timelike acceleration (when parametrized by arc-length), then σ does, indeed, admit a horizontal lift over the entire closed interval, i.e., the lift over the differentiable part has a limit as $t \to L$. This is done by first showing that the horizontal lift over [0, L] exists in the case that for some Riemannian metric on M, σ has finite length; since σ is compact, if this is the case for one Riemannian metric, so must it be for all Riemannian metrics. Next, it is shown that if σ has infinite Riemannian-length, then any scalar function F on M which, in the given Lorentz metric, has a timelike gradient which is (say) opposite-directed to $V_{\dot{\sigma}}\dot{\sigma}$ with respect to future and past, must have $H_F(\dot{\sigma},\dot{\sigma})$ unbounded below, where H_F is the Hessian of F. Finally, it is shown how to construct, in a neighborhood of any point in any Lorentz manifold, a function with a timelike gradient (either past- or future-directed) and a positive-definite Hessian. Since it is only the behavior of σ and the connection in a neighborhood of $\sigma(L)$ that is significant, this is sufficient for the problem at hand.

THEOREM 1. Let M be a manifold with a Lorentz metric g, let P be a principal fiber bundle over M with structure group G, and let ω be a connection form on P. Let $\sigma: [0, L] \to M$ be a continuous curve in M which is differentiable on [0, L). If σ , on [0, L), is spacelike, is para-

metrized by arc-length, and has timelike acceleration—or, more generally, for some (continuous) unit-timelike vector-valued function N_t defined over σ and some $\kappa(t) \geq 0$, $V_{\dot{\sigma}}\dot{\sigma} = \kappa N$ —then a horizontal lift $v: [0, L) \rightarrow P$ of σ has a limit as $t \to L$.

PROOF. In the course of this proof, the following elementary result from analysis will be used: For any differentiable function x(t) on a finite interval [0, L), if $\int_0^L x(t)dt$ is finite but $\int_0^L |x(t)|dt = \infty$, then both x and x' are unbounded both above and below on [0, L).

Let \mathscr{U} be a neighborhood of $\sigma(L)$ over which P is trivial; it does no harm to assume that σ is contained in \mathscr{U} . Let $u: \mathscr{U} \to P$ be a crosssection; then a lift $v_t = u_{\sigma(t)}a_t$ of σ , with $a:[0,L) \to G$, is horizontal if and only if $\dot{a}_t a_t^{-1} = -\omega[(d/dt)u_{\sigma(t)}]$ $(\dot{v} = \dot{u}a + u\dot{a}, \dot{v}a^{-1} = \dot{u} + u\dot{a}a^{-1}, \omega(\dot{v}a^{-1}) =$ $\operatorname{ad}(a)\omega(\dot{v}) = \omega(\dot{u}) + \omega(u\dot{a}a^{-1}) = \omega(\dot{u}) + \dot{a}a^{-1}; \text{ therefore, } \omega(\dot{v}) = 0 \text{ iff } \dot{a}a^{-1} = -\omega(\dot{u});$ see, e.g., [4], p. 69). Define $\alpha = -u^*\omega$. Let M have an arbitrary Riemannian metric, and let G have an arbitrary right-invariant Riemannian metric, both denoted by $\|-\|$; then at each x in \mathcal{U} , α_x : $T_xM \to \mathfrak{g}$ has a norm $\|\alpha_x\|$ as a linear transformation, and $\|\alpha\|$ is bounded in a (possibly smaller) neighborhood of $\sigma(L)$. The equation $\dot{a}_t a_t^{-1} = \alpha(\dot{\sigma}_t)$ has a solution for $0 \le t < L$. As a curve in G, its length $L(a) = \int_0^L \|\dot{a}_t\| = \int_0^L \|\dot{a}_t a_t^{-1}\| = \int_0^L \|\alpha(\dot{\sigma}_t)\| \le \int_0^L \|\alpha\| \|\dot{\sigma}_t\|$. Therefore, if $\int_0^L \|\dot{\sigma}\|$ is finite, so is L(a). Being homogeneous, G is complete, so if L(a) is finite, a_t has a limit as $t \to L$. Therefore, if σ has finite Riemannian-length, the horizontal lift $u_{\sigma(t)}a_t$ has a limit $u_{\sigma(L)}a_L$.

Let U be any (non-vanishing) timelike vector field on M; let U^{\perp} be its perpendicular space; and let $P_v \colon T_x M \to U_x^{\scriptscriptstyle \perp}$ be projection. $(X, Y) \mapsto \langle P_{U}(X), P_{U}(Y) \rangle + \langle X, U \rangle \langle Y, U \rangle$ is a Riemannian metric on M $(\langle -, - \rangle$ denotes g, as will |-|). Thus, if σ has infinite Riemannian-length, $\int_{-L}^{L} (|P_{U}(\dot{\sigma})|^{2} + \langle \dot{\sigma}, U \rangle^{2})^{1/2} = \infty$. Since σ is of unit-speed and spacelike,

$$\langle \dot{\pmb{\sigma}},\,\dot{\pmb{\sigma}}
angle = |P_{\it U}(\dot{\pmb{\sigma}})|^2 - \langle \dot{\pmb{\sigma}},\,U
angle^2\!/\!|\,U\!|^2 = 1$$
 ,

SO

$$|P_{\scriptscriptstyle U}(\dot{\sigma})|^{\scriptscriptstyle 2}+\langle\dot{\sigma},\;U
angle^{\scriptscriptstyle 2}=1+(1+1/|U|^{\scriptscriptstyle 2})\langle\dot{\sigma},\;U
angle^{\scriptscriptstyle 2}$$
 .

In a neighborhood of $\sigma(L)$, |U| is bounded; therefore σ has infinite Riemannian-length if and only if $\int_0^L |\langle \dot{\sigma}, U \rangle| = \infty$. Now consider any scalar function $F \colon M \to R$ with ∇F timelike; σ has infinite Riemannian-length if and only if $\int_0^L |\dot{\sigma}F| = \infty$. However, $\int_0^L \dot{\sigma}F = \int_0^L (d/dt)F(\sigma(t)) = F(\sigma(L)) - F(\sigma(0))$, which is finite. Thus, by the remark

made at the beginning of this proof, if σ has infinite Riemannian-length, then $(d/dt)(\dot{\sigma}F) = \dot{\sigma}\langle\dot{\sigma}, \nabla F\rangle = \langle \mathcal{V}_{\dot{\sigma}}\dot{\sigma}, \nabla F\rangle + \langle\dot{\sigma}, \mathcal{V}_{\dot{\sigma}}\mathcal{V}F\rangle = \langle \mathcal{V}_{\dot{\sigma}}\dot{\sigma}, \nabla F\rangle + H_F(\dot{\sigma}, \dot{\sigma})$ is unbounded both above and below. But since $\mathcal{V}_{\dot{\sigma}}\dot{\sigma}$ and $\mathcal{V}F$ are both timelike (or each a non-negative multiple of a timelike vector field), $\langle \mathcal{V}_{\dot{\sigma}}\dot{\sigma}, \mathcal{V}F\rangle$ has constant sign. Thus, for example, if $\mathcal{V}_{\dot{\sigma}}\dot{\sigma}$ and $\mathcal{V}F$ lie in opposite time-cones, then $H_F(\dot{\sigma}, \dot{\sigma})$ must be unbounded below. It follows that if there is a function in a neighborhood of $\sigma(L)$ with timelike gradient in the opposite time-cone as that of $\mathcal{V}_{\dot{\sigma}}\dot{\sigma}$ and with positive-definite Hessian, then σ must have finite Riemannian-length.

The remainder of the proof is devoted to constructing in a neighborhood of an arbitrary point p in a Lorentz manifold M, a function F with timelike gradient (either future- or past-directed, as needed) and positive-definite Hessian. F is the sum of a function whose Hessian is positive definite on a spacelike hyperplane in T_pM , and of a second function whose Hessian is zero on that hyperplane but positive on the vector perpendicular to it.

The first function, f, is defined by $f(x) = \langle \exp_q^{-1}(x), \exp_q^{-1}(x) \rangle$, where q is a point in the chronological past of p (i.e., $q \ll p$) that needs to be chosen appropriately. To find Vf, consider a vector V in T_xM , $x\gg q$, with $V=(d/dv)x_v$ for some curve x_v ; let $x_v=\exp_q(r_vT_v)$ with T_v unit timelike and $r_v\geq 0$. Then $f(x_v)=-r_v^2$. Define $\beta(s,v)=\exp_q(sr_vT_v)$, so that V at x is extended by the definition to $V=\beta_*(\partial/\partial v)$; define $S=\beta_*(\partial/\partial s)$ and T=S/|S|. Let γ_v be the geodesic $\beta(-,v)$ from s=0 to s=1, so $L(\gamma_v)=|S_v|=r_v$. Then $V_xf=(d/dv)f(x_v)=-2r_v(d/dv)r_v=-2r_v(d/dv)L(\gamma_v)=-2r_v[-\langle V,T\rangle]_{s=0}^{s=1}=2|f(x)|^{1/2}\langle V,T\rangle_x$ (first variation of timelike arc-length has been used here—see, e.g., Corollary 11.24 in [1]). Therefore,

$$\nabla f = 2|f|^{1/2}T$$
,

where T is the vector field defined by $T_x = \dot{\gamma}_x$, with γ_x the unit-speed geodesic from q to x (for $x \gg q$). Then, for any vector X at x,

$$egin{aligned} m{\mathcal{V}}_{m{\mathcal{X}}} m{\mathcal{V}} f &= 2(X(-f)^{1/2})T + 2|f|^{1/2}m{\mathcal{V}}_{m{\mathcal{X}}} T = -|f|^{-1/2} \langle X, m{\mathcal{V}} f
angle T + 2|f|^{1/2}m{\mathcal{V}}_{m{\mathcal{X}}} T \ &= -|f|^{-1/2} \langle X, 2|f|^{1/2}T
angle T + 2|f|^{1/2}m{\mathcal{V}}_{m{\mathcal{X}}} T = 2(|f|^{1/2}m{\mathcal{V}}_{m{\mathcal{X}}} T - \langle X, T
angle T) \;, \end{aligned}$$

yielding

$$H_f(X, X) = \langle \mathcal{V}_X \mathcal{V} f, X \rangle = 2(|f|^{1/2} \langle \mathcal{V}_X T, X \rangle - \langle X, T \rangle^2)$$
.

Therefore, $H_f(X, Y) = 2(|f|^{1/2} \langle \mathcal{V}_X T, Y \rangle - \langle X, T \rangle \langle Y, T \rangle)$. For V perpendicular to T_x , the function r_v can be taken to be constant at $r = |f(x)|^{1/2}$, so [V, T] = (1/r)[V, S] = 0. Then

$$H_f(\mathit{V}, \mathit{V}) = 2|f|^{\scriptscriptstyle 1/2} \langle \mathit{V}_\mathit{V} \mathit{T}, \mathit{V}
angle = |f|^{\scriptscriptstyle 1/2} \mathit{T} \langle \mathit{V}, \mathit{V}
angle$$
 ,

where V is a Jacobi field along γ_x with $V_q = 0$.

It remains to be shown how to choose $q \ll p$ so that H_f will be positive definite on a spacelike hyperplane at p. To this end, pick any future-directed unit-speed timelike geodesic γ with $\gamma(0)=p$; let $T=\dot{\gamma}(0)$. The basepoint q will be $\gamma(s)$ for some s<0, and the hyperplane at p will be T^{\perp} . By the calculations above, $(\nabla f)_p=2(-s)T$, and, for any U in T^{\perp} , $H_f(U,U)=(-s)T_0\langle V,V\rangle$, where $T_t=\dot{\gamma}(t)$ and V is the Jacobi field on γ defined by V(0)=U and V(s)=0. It will be shown that for s close enough to 0, $H_f(U,U)$ must be positive for all non-zero U in T^{\perp} .

On any finite interval of γ , the sectional curvature of any plane $X \wedge T$ containing T obeys $K(X \wedge T) \geq -K$ for some constant K > 0 (X can be restricted to T^{\perp} with |X| = 1, a compact set). For a given unitlength vector U in T_0^{\perp} , let $h(t) = \langle V, V \rangle_t$, V defined as above; then $h'' = (T\langle V, V \rangle)' = 2\langle \mathcal{F}_T V, V \rangle' = 2(\langle \mathcal{F}_T^2 V, V \rangle + \langle \mathcal{F}_T V, \mathcal{F}_T V \rangle) = 2(-\langle R(V, T)T, V \rangle + |\mathcal{F}_T V|^2) = 2(K(V \wedge T)|V|^2 + |\mathcal{F}_T V|^2) \geq -2K|V|^2 = -2Kh$. Therefore,

$$h \ge -\frac{1}{2K}h''.$$

Note that h(s)=0 and h(0)=1. For $-(2K)^{-1/2}< s<0$, it can be shown that h'(0)>0: There is some t_1 in [s,0] with $h'(t_1)=-1/s$. With $h'(0)\le 0$, there is some r_1 in $[t_1,0]$ with $h''(r_1)=(-st_1)^{-1}\le (-s^2)^{-1}$. By (*), $h(r_1)\ge (2Ks^2)^{-1}$. From this and h(s)=0, we obtain some t_2 in $[s,r_1]$ with $h'(t_2)=(2Ks^2(r_1-s))^{-1}\ge (-2Ks^3)^{-1}$. With $h'(0)\le 0$, there is some r_2 in $[t_2,0]$ with $h'(r_2)=(-2Ks^3t_2)^{-1}\le (-2Ks^4)^{-1}$. By (*), $h(r_2)\ge (4K^2s^4)^{-1}$. Continuing, we obtain a sequence r_n in [s,0] with $h(r_n)\ge (2Ks^2)^{-n}$. With s as specified, this implies that the continuous function s is unbounded on the interval s in s imposibility. Thus, s is s for such an s ensures that s imposibility. Thus, s is s for such an s ensures that s imposibility. Thus, s is s for such an s ensures that s imposibility.

To define the second function, start with the same vector T at p, but extend it differently: For any U in T_p^\perp , define T_x for $x=\exp_p(U)$ as the parallel translate of T_p along the geodesic from p to x; let γ_x be the geodesic $\gamma_x(s)=\exp_x(sT_x)$; and define T at $\gamma_x(s)$ to be $\dot{\gamma}_x(s)$. Define the function k by $k(\gamma_x(s))=s$. Then Vk=-T. Since $V_TT=0$ and, at p, $V_TT=0$ for U in T^\perp , $H_k=0$ at p. For any function $\phi\colon R\to R$, $V(\phi\circ k)=(\phi'\circ k)Vk$ and $H_{\phi\circ k}=(\phi'\circ k)H_k+(\phi''\circ k)dk\otimes dk$; thus, at p, $V(\phi\circ k)=-\phi'(0)T_p$ and $H_{\phi\circ k}=\phi''(0)\langle -,T_p\rangle \otimes \langle -,T_p\rangle$. Let $F=f+\phi\circ k$. Then, at p,

$$egin{aligned}
aligned \mathcal{V}F &= (-2s-\phi'(0))T_p \;, \ H_{\scriptscriptstyle F} &= H_f + \phi''(0)\langle -, \; T_p
angle \otimes \langle -, \; T_p
angle \;. \end{aligned}$$

For U in T_{p}^{\perp} , $H_{F}(U+aT, U+aT) = H_{f}(U, U) + 2aH_{f}(U, T) + a^{2}H_{f}(T, T) +$

$$\phi''(0)\langle\,U+a\,T,\,T
angle^2=H_f(U,\,U)+(\phi''(0)-2)a^2,\,\,{
m so}\ H_F(X,\,X)=H_f(X^{oldsymbol{\perp}},\,X^{oldsymbol{\perp}})+(\phi''(0)-2)\langle X,\,T_p
angle^2\,,$$

where $X^{\perp} = X + \langle X, T \rangle T$. Thus, H_F is positive-definite at p so long as $\phi''(0) > 2$, and $(\mathbb{F}F)_p$ is timelike so long as $\phi'(0) \neq -2s$: future-directed for $\phi'(0) < -2s$ and past-directed for $\phi'(0) > -2s$. These properties of the Hessian and gradient remain true in a neighborhood of p.

Taking $p = \sigma(L)$ completes the proof.

As an application of this theorem, consider the bundle of orthonormal frames over M with the Levi-Civita connection associated with g: a horizontal lift of σ yields parallel translation along σ . If σ is a Frenet curve with a timelike principal normal vector, then the theorem below asserts that an appropriate curvature restriction on σ allows one to parallel translate the velocity vector at $\sigma(0)$ to a limit vector at $\sigma(L)$, yielding a differentiable end point at L. With just a little more work, we need not even assume the existence of the endpoint $\sigma(L)$, but infer its existence (first as a continuous endpoint, then as a differentiable one) from a completeness condition on M. The condition required is b-completeness ("b" for "bundle"), defined thus (see [3], p. 259 and Section 8.3): For $\sigma: [0, L) \to M^n$ a differentiable curve in a manifold M with a connection, any basis for $T_{\sigma(0)}M$ defines a Riemannian metric in the tangent spaces along σ by being parallel-translated all along σ and being regarded as an orthonormal basis at each point. This determines a length for σ in terms of this metric, called the Schmidt length of σ relative to the initial basis at $\sigma(0)$. Whether a Schmidt length for a given curve σ is finite or infinite is independent of the choice of initial basis. M is called *b-complete* if any differentiable curve $\sigma: [0, L) \to M$ of finite Schmidt length can be continuously extended to L.

THEOREM 2. Let M be a b-complete Lorentz manifold, and let $\sigma: [0, L) \to M$ be a unit-speed spacelike curve obeying $\nabla_{\dot{\sigma}} \dot{\sigma} = \kappa N$ with N a unit-timelike vector defined over σ and κ a non-negative scalar defined over σ . If $L = L(\sigma)$ is finite and $|\nabla_{\dot{\sigma}} N|$ is bounded, then σ is differentiably extendible to (and past) L.

PROOF. Let $\tau_s^t\colon T_{\sigma(t)}M\to T_{\sigma(s)}M$ be parallel translation along σ . Define $E(t)=\tau_t^0N(0)$. Let $T=\dot{\sigma}$ and $S=T+\langle T,E\rangle E$, the component of T perpendicular to E. Let 'denote $V_{\dot{\sigma}}$. The main burden of the proof is to show that with L finite and |N'| bounded, $\langle T,E\rangle'$ and |S'| are bounded also (S',b) being perpendicular to E, is spacelike). From this it immediately follows that $\langle T,E\rangle$ is bounded, as well as $|S|=(1+\langle T,E\rangle^2)^{1/2}$. The

Schmidt length of σ , relative to an orthonormal basis at $\sigma(0)$ containing E_0 , is $\int_0^L (\langle T,E\rangle^2 + |S|^2)^{1/2} dt$, which is therefore finite: this yields the (continuous) endpoint $\sigma(L)$. For differentiability, consider $X_t = \tau_0^t S_t$: This vector always lies in the spacelike subspace perpendicular to E_0 ; furthermore, $|X_t'| = |S_t'|$ is bounded. Therefore X_t has a limit X_L . Similarly, $\langle T,E\rangle_t$ has a limit r, so $\tau_0^t T_t = X_t - \langle T,E\rangle_t E_0$ has a limit $X_L - r E_0$. By Theorem 1, τ_L^t is defined. Let $E_L = \tau_L^0 E_0$. Then we have $\tau_L^t \dot{\sigma}(t) = \tau_L^0 \tau_0^t T_t$ has a limit $\tau_L^0 (X_L - r E_0) = \tau_L^0 X_L - r E_L$. It follows that $\dot{\sigma}(t)$ approaches $\tau_L^0 X_L - r E_L$.

To show the boundedness of $\langle T, E \rangle'$ and |S'|, first we note that $\kappa = \langle N', T \rangle$. At each point $x = \sigma(t)$, define $\pi \colon T_x M \to T_x M$ to be projection onto the (spacelike) subspace perpendicular to both N and T, i.e., $\pi Y = Y + \langle Y, N \rangle N - \langle Y, T \rangle T$. Then $|\pi E|^2 = -1 + \langle E, N \rangle^2 - \langle E, T \rangle^2$, or

$$\langle N, E \rangle = \pm (1 + \langle T, E \rangle^2 + |\pi E|^2)^{1/2}.$$

We thus have $\langle T, E \rangle' = \kappa \langle N, E \rangle = \pm \langle N', T \rangle (1 + \langle T, E \rangle^2 + |\pi E|^2)^{1/2}$, so

$$\langle T, E \rangle^{2'} = \pm 2 \langle N', T \rangle \langle T, E \rangle (1 + \langle T, E \rangle^2 + |\pi E|^2)^{1/2}.$$

Furthermore, using the fact that $\langle \pi X, Y \rangle = \langle X, \pi Y \rangle$, we also have

$$egin{aligned} (3\,) & |\pi E|^{2'} &= 2(\langle E,\,N
angle\langle E,\,N
angle' - \langle E,\,T
angle\langle E,\,\kappa N
angle) \ &= 2\langle N,\,E
angle\langle N'-\langle N',\,T
angle T,\,E
angle \ &= 2\langle N,\,E
angle\langle\pi N',\,E
angle = 2\langle N',\,\pi E
angle\langle N,\,E
angle \ &= \pm 2\langle N',\,\pi E
angle(1+\langle T,\,E
angle^2+|\pi E|^2)^{1/2} \;. \end{aligned}$$

Let $x = \langle T, E \rangle^2$ and $y = |\pi E|^2$. Suppose that $|N'| \leq C$, a constant. Then, since N', T, and πE all lie in the subspace perpendicular to N, we have, from equations (2) and (3)

$$|x'| \le 2Cx^{1/2}(1+x+y)^{1/2} \le 2C(1+x+y)$$
 ,

and

$$|y'| \le 2Cy^{1/2}(1+x+y)^{1/2} \le 2C(1+x+y)$$
.

Let $z = \ln(x + y)$; then

$$(4) |z'| \le (|x'| + |y'|)/(x + y) \le 4C(1/(x + y) + 1) = 4C(e^{-z} + 1)$$

If $\limsup(z)=\infty$ as $t\to L$, then (since $L<\infty$) there is a sequence $\{t_i\}$ with $z(t_i)\geq i$ and $z'(t_i)\geq i$, which contradicts inequality (4). Therefore, z is bounded above, so x and y, i.e., $\langle T,E\rangle^z$ and $|\pi E|^z$, must be also. From equation (1), it follows that $\langle N,E\rangle$ is bounded. Therefore, $\langle T,E\rangle'=\kappa\langle N,E\rangle=\langle N',T\rangle\langle N,E\rangle$ is bounded, as is $|S'|=|\kappa||N+\langle N,E\rangle E|=|\langle N',T\rangle|(\langle N,E\rangle^2-1)^{1/2}$.

Note that if σ is a geodesic in a spacelike hypersurface in M, then it satisfies $\mathcal{V}_{\dot{\sigma}}\dot{\sigma}=\kappa N$, with N the normal vector to the hypersurface. Theorem 2 is used in this context in [2] to show that in a b-complete Lorentz manifold, a closed spacelike hypersurface with bounded principal curvatures must be complete.

REMARK. If the timelike quality of the acceleration vector for σ is removed from the hypotheses of Theorem 1, then it is possible to construct counter-examples. For instance, let $\sigma\colon [\pi,\,\infty)\to R^s$ be defined by $\sigma(t)=(4t^{-1/2},\,t^{-1}\sin(t),\int_\pi^t s^{-1}\cos(s)ds)$. This has a continuous endpoint at $t=\infty$. With metric $dx^2+dy^2-dz^2$, it is spacelike and has finite length, but its Euclidean length is infinite. If the metric used is $e^{\rho(x)}(dx^2+dy^2-dz^2)$ for some function $\rho\colon R\to R$, then the Lorentz length is still finite. If ρ is appropriately chosen, then parallel translation along σ can be precisely calculated, and there is a choice of ρ under which parallel translation along σ fails to have a limit as $t\to\infty$.

ACKNOWLEDGMENT. The author wishes to thank Prof. K. Nomizu of Brown University for bringing this matter to attention.

REFERENCES

- J. K. BEEM AND P. E. EHRLICH, Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
- [2] S. G. HARRIS, "Closed and Complete Spacelike Hypersurfaces in Minkowski Space" (preprint).
- [3] S. W. HAWKING AND G. F. R. ELLIS, The Large Scale Structure of Space-Time, Cambridge University Press, 1973.
- [4] N. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.

DEPARTMENT OF MATHEMATICS OREGON STATE UNIVERSITY CORVALLIS, OR 97331 USA