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Let P(M, G) be a principal fiber bundle with structure group G over
a manifold M; let σ: [0, L] —> M be a continuous curve in M which is
differ entiable on the half-open interval [0, L). For a given connection on
P, does σ admit a horizontal lift into P defined over the entire closed
interval [0, L]? If the connection is flat, it surely does. Here is an
example where it does not: M — R2, G = GL(2), P = bundle of linear
frames in jβ2, L = 1, σ(t) = (1 - ί)(cos(l - £)~2> sin(l - t)~2), and the
connection is the Levi-Civita connection associated with the metric
exp( — y2) (dx2 + dy2); a linear frame, parallel translated, in this metric,
from σ(0) to σ(t), is rotated through an angle of (l/^θ"1 sin 20 - (l/2)ln0,
where 0 = (1 — £)~2, so it has no limit as t —> 1.

The purpose of this paper is to show that if Λf admits a Lorentz
metric for which σ is a finite-length spacelike curve with timelike accele-
ration (when parametrized by arc-length), then σ does, indeed, admit a
horizontal lift over the entire closed interval, i.e., the lift over the
differ entiable part has a limit as ί -> L. This is done by first showing
that the horizontal lift over [0, L] exists in the case that for some
Riemannian metric on M, σ has finite length; since σ is compact, if this
is the case for one Riemannian metric, so must it be for all Riemannian
metrics. Next, it is shown that if σ has infinite Riemannian-length, then
any scalar function F on M which, in the given Lorentz metric, has a
timelike gradient which is (say) opposite-directed to V-Oσ with respect to
future and past, must have HF(ά, σ) unbounded below, where HF is the
Hessian of F. Finally, it is shown how to construct, in a neighborhood
of any point in any Lorentz manifold, a function with a timelike gradient
(either past- or future-directed) and a positive-definite Hessian. Since it
is only the behavior of σ and the connection in a neighborhood of σ(L)
that is significant, this is sufficient for the problem at hand.

THEOREM 1. Let Mbe a manifold with a Lorentz metric g, let P be
a principal fiber bundle over M with structure group G, and let ω be a
connection form on P. Let σ: [0, L] —> M be a continuous curve in M
which is differentiate on [0, L). // σ, on [0, L), is spacelike, is para-
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metrίzed by arc-length, and has timelίke acceleration—or, more generally,
for some {continuous) unit-timelike vector-valued function Nt defined over
σ and some κ(t) ^ 0, V>oσ — KN—then a horizontal lift v: [0, L) —• P of σ
has a limit as t—>L.

PROOF. In the course of this proof, the following elementary result
from analysis will be used: For any differentiable function x{t) on a finite

S L CL

x{t)dt is finite but I \x(t)\dt = °o, then both x and xf

o Jo
are unbounded both above and below on [0, L).

Let ^ be a neighborhood of σ{L) over which P is trivial; it does no
harm to assume that σ is contained in ^ . Let u: <2S —> P be a cross-
section; then a lift vt = uσ{t)at of a, with a: [0, L) -» G, is horizontal if
and only if άtaϊι= — ω[(d/dt)uσW] (v = ύa + uά, va~* — ύ-^uda'1, ω(va~1) =
Siά(a)ω(v) = ω(ύ) + ω(uάa~1)=ω(ύ) + άa~u, therefore, ω(v)=0 iff ά α " 1 ^ — ω(ύ);
see, e.g., [4], p. 69). Define a= —u*ω. Let M have an arbitrary Rieman-
nian metric, and let G have an arbitrary right-invariant Riemannian
metric, both denoted by | |- | |; then at each x in ^ , ax\ TXM-*Q has a
norm | |α β | | as a linear transformation, and | |α | | is bounded in a (possibly
smaller) neighborhood of σ(L). The equation άtajι — a{σt) has a solution

S L CL

ll*«ll = \ l l ^ r 1 ! ! =
\ \\a{σt)\\ ^ \ | |α|| | |σ t | | . Therefore, if 1 ||σ|| is finite/so is L(a). Being
Jo Jo Jo

homogeneous, G is complete, so if L(a) is finite, at has a limit as t —»L.
Therefore, if σ has finite Riemannian-length, the horizontal lift uσ{t)at

has a limit uσ{L)aL.
Let Ϊ7 be any (non-vanishing) timelike vector field on ikf; let C/1 be

its perpendicular space; and let PΌ\ TXM-+ Uϊ be projection. Then
(X, Y)\-+{PJJ(X), Pu(Y)} + (X, U)(Y, U} is a Riemannian metric on M
«-, -> denotes g, as will | - | ) . Thus, if σ has infinite Riemannian-length,
\L (\Pu(a)\2 + <σ, Z7>2)1/2 = oo. Since σ is of unit-speed and spacelike,
Jo
so

\Pu(σ)\2 + <σ, Uy = l + (1 + U\U\*Kσ, t/>2 .

In a neighborhood of σ{L), \U\ is bounded; therefore σ has infinite
\{σ, U)\ = oo.

0

Now consider any scalar function F:M-*R with FF timelike; σ has

S L CL

\oF\ = oo. However, \ ί F =
\ (d/dt)F(σ(t)) = F(σ(L)) - F(σ(0)), which is finite. Thus, by the remark
Jo
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made at the beginning of this proof, if σ has infinite Riemannian-length,
then (d/dt)(σF) = σ(σ, FF) = (F6σ, FF) + <σ, F6FF) = (F6σ, FF) + HF(σ, σ)
is unbounded both above and below. But since F-aσ and FF are both
timelike (or each a non-negative multiple of a timelike vector field),
(yφy FF) has constant sign. Thus, for example, if F-aσ and FF lie in
opposite time-cones, then HF(σ, σ) must be unbounded below. It follows
that if there is a function in a neighborhood of σ(L) with timelike
gradient in the opposite time-cone as that of Fhσ and with positive-
definite Hessian, then σ must have finite Riemannian-length.

The remainder of the proof is devoted to constructing in a neighbor-
hood of an arbitrary point p in a Lorentz manifold M, a function F with
timelike gradient (either future- or past-directed, as needed) and positive-
definite Hessian. F is the sum of a function whose Hessian is positive
definite on a spacelike hyperplane in TPM, and of a second function whose
Hessian is zero on that hyperplane but positive on the vector perpendicular
to it.

The first function, /, is defined by f{%) = (exp~\x), expose)), where
q is a point in the chronological past of p (i.e., q<p) that needs to be
chosen appropriately. To find Ff, consider a vector V in TXM, xyq, with
V — (d/dv)xv for some curve xυ; let xυ = expq(rvTv) with Tυ unit timelike
and rv ^ 0. Then/(O = -r\. Define β(s, v) = expq(srυTυ), so that V at
x is extended by the definition to 7 = β*(d/dv); define S = β*(d/ds) and
T = S/\S\. Let Ύv be the geodesic β( — ,v) from s = 0 to s = 1, so L(τJ =
\Sυ\ = rυ. Then VJ = (d/dv)f(xυ) = -2rv(d/dv)rυ = -2rv(dldv)L(yΌ) =
- 2 r J - < F , Γ>]:3 = 2|/(α)|1/2<F, T)x (first variation of timelike arc-length
has been used here — see, e.g., Corollary 11.24 in [1]). Therefore,

F / = 2 | / | 1 " Γ ,

where T is the vector field defined by Tx = yx, with 7X the unit-speed
geodesic from q to x (for x^q). Then, for any vector X at x,

= -|/|-1/2<X, 2\f\1/2T)T + 2\f\1/2FxT = 2(\f\1/2FxT - <X, T}T) ,

yielding

H,(X, X) = <FχF/, X> = 2( |/r<F xΓ, X> - <X, Γ>2) .

Therefore, Hf(X, Y) = 2(\f\1/2(FxT, Y) - <X, T)(Y, Γ». For Fperpendi-
cular to Tx, the function rβ can be taken to be constant at r = |/(#)|1/2, so
[F, Γ] = (l/r)[F, S] = 0. Then

Hf(V, V) =
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where V is a Jacobi field along Ύx with Vq = 0.
It remains to be shown how to choose q < p so that iί/ will be positive

definite on a spacelike hyperplane at p. To this end, pick any future-
directed unit-speed timelike geodesic 7 with 7(0) = p; let T — 7(0). The
basepoint q will be 7(s) for some s < 0, and the hyperplane at p will be
TL. By the calculations above, {Vf)p = 2(-s)Γ, and, for any U in T\
# , ( # , tθ = (-s)T0<F, F>, where Tt = γ(ί) and F is the Jacobi field on
7 defined by F(0) = U and F(s) = 0. It will be shown that for s close
enough to 0, Hf(U, U) must be positive for all non-zero U in TL.

On any finite interval of 7, the sectional curvature of any plane
X AT containing T obeys K(X A T) ^ -K for some constant K > 0 (X
can be restricted to Tι with |X( = 1, a compact set). For a given unit-
length vector U in To\ let λ(ί) = <F, F>,, F defined as above; then h" =
(T(V, V))' = 2(PTV, F>' = 2«PΓF, V) + (FTV, FTV)) = 2(-(R(V, T)T, F> +
\VτV\η = 2(K(VA T)\F|2 + \VTV\2) ̂  — 2iΓ|F|2 = -2Kh. Therefore,

Note that h(s) = 0 and Λ(0) = 1. For -(2iί)-1/2 < s < 0, it can be shown
that h\0) > 0: There is some ίx in [s, 0] with h\tλ) = -1/s. With
fc'(0) ^ 0, there is some n in [ίx, 0] with Λ"(n) = (-sί j" 1 ^ (-s2)"1. By
(*), fc(rj ^ (2Ks2)~\ From this and λ(s) = 0, we obtain some t2 in [s, r j
with h\Q = (2iίs2(r1 - s))"1 ^ (-2iΓs3)"1. With fe'(0) ^ 0, there is some
r2 in [*2, 0] with λf(r2) = (-2Ks%)-1 ^ (-2KsΎι. By (*), h(r2) ^ (4ZVΓ1.
Continuing, we obtain a sequence rn in [s, 0] with fc(rj ^ (2iΓs2)~n. With
s as specified, this implies that the continuous function h is unbounded
on the interval [s, 0], an imposibility. Thus, q = 7(s) for such an s
ensures that Hf(U, U) = — sΛ'(O) > 0 for unit-length, hence, any non-zero
U in T£.

To define the second function, start with the same vector T at py

but extend it differently: For any U in T£, define Tx for # = expp(ί7)
as the parallel translate of Tp along the geodesic from p to x; let τβ be
the geodesic Ύx(s) = exp^sΓJ; and define Γ at Ύx(s) to be ^(s). Define
the function k by fc(7β(s)) = s. Then Fk= -T. Since F Γ Γ= 0 and, at p,
VJJT = 0 for ί7 in Γ1, iϊfc = 0 at p. For any function φ:R->R, V(φok) =
(φ'°k)Vk and Hφo]e = {φ'°k)Hk + {φfΌk)dk®dk; thus, at p, F(̂ ofc) = -
and ^ o f e = 0"(O)<-» ΓP> ® <-t ΓP> L e t F = f + M T h e n ^ a t ^

, Γp> (x) < - , Tp) .

For [7in Γ ,̂ HF(U+aT, U+aT) = Hf(U, U) + 2aHf(U, T) + aΉf(T, T)
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φ"(0KU+ aT, TY = Hf(U, U) + fo"(0) - 2)a\ so

HF(X, X) = Hf(X\ X1) + (0"(O) - 2)<X, TPY ,

where X1 = X + <X, 71) T. Thus, If*, is positive-definite at p so long as
φ"(0) > 2, and (FF)P is timelike so long as φ'(0) Φ —2s: future-directed
for φ'(0) < —2s and past-directed for '̂(0) > —2s. These properties of
the Hessian and gradient remain true in a neighborhood of p.

Taking p = σ(L) completes the proof. •

As an application of this theorem, consider the bundle of orthonormal
frames over M with the Levi-Civita connection associated with g: a
horizontal lift of σ yields parallel translation along σ. If a is a Frenet
curve with a timelike principal normal vector, then the theorem below
asserts that an appropriate curvature restriction on σ allows one to
parallel translate the velocity vector at σ(0) to a limit vector at σ(L),
yielding a differentiate end point at L. With just a little more work,
we need not even assume the existence of the endpoint σ(L), but infer
its existence (first as a continuous endpoint, then as a differentiable one)
from a completeness condition on M. The condition required is b-com-
pleteness ("b" for "bundle"), defined thus (see [3], p. 259 and Section 8.3):
For σ: [0, L) —> Mn a differentiate curve in a manifold M with a connec-
tion, any basis for Ta{0)M defines a Riemannian metric in the tangent
spaces along σ by being parallel-translated all along σ and being regarded
as an orthonormal basis at each point. This determines a length for σ
in terms of this metric, called the Schmidt length of σ relative to the
initial basis at σ(0). Whether a Schmidt length for a given curve σ is
finite or infinite is independent of the choice of initial basis. M is called
b'Complete if any differentiate curve σ: [0, L) —> M of finite Schmidt length
can be continuously extended to L.

THEOREM 2. Let M be a b-complete Lorentz manifold, and let
σ: [0, L) —> M be a unit-speed spacelike curve obeying Vhσ — /cN with N a
unit'timelike vector defined over σ and it a non-negative scalar defined
over σ. If L — L(σ) is finite and \F^N\ is bounded, then σ is differen-
tiably extendible to (and past) L.

PROOF. Let τ\\ Tσ{t)M-> Tσis)Mbe parallel translation along σ. Define
^(ί) = τ°M0). Let T = σ and S = T + <Γ, E)E, the component of T
perpendicular to E. Let ' denote Vh. The main burden of the proof is
to show that with L finite and \N'\ bounded, (T, E)' and |S'| are bounded
also (S', being perpendicular to E, is spacelike). From this it immediately
follows that <Γ, E) is bounded, as well as \S\ = (1 + <Γ, E)2)1/2. The
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Schmidt length of σ, relative to an orthonormal basis at σ(0) containing

Eo, is Γ « T , E)2 + \S\2)1/2dt, which is therefore finite: this yields the
Jo

(continuous) endpoint σ(L). For differentiability, consider Xt = τlSt: This
vector always lies in the spacelike subspace perpendicular to Eo; further-
more, \X't\ = \S't\ is bounded. Therefore Xt has a limit XL. Similarly,
<Γ, E)t has a limit r, so τ\Tt = Xt - <T, 2ZX23Ό has a limit XL - rE0. By
Theorem 1, τ*L is defined. Let EL = riJ£0 Then we have rlά(ί) = zirjl7,
has a limit ri(XL — r£70) = τ°LXL — r£7L. It follows that σ{t) approaches
τ\XL - rEL.

To show the boundedness of (T, E)' and |S'|, first we note that K =
(Nf, T). At each point x — σ(t), define π: TXM-^ TXM to be projection
onto the (spacelike) subspace perpendicular to both N and Γ, i.e., πY —
Y + <Γ, N)N - <Γ, T)T. Then \πE\2 - - 1 + <β, N)2 - <β, T>2, or
( 1 ) (N, E) = ± ( 1 + <Γ, £/>2 + |π#| 2) 1 / 2 .

We thus have <Γ, £7>' = /c<iV, ΐ7> = ±<2V, Γ>(1 + <Γ, E)2 + \πE\2)1/2, so

( 2 ) <Γ, £7>2/ = ±2<iV, T><Γ, £;>(1 + <Γ, ΐ7>2 + \πE\ψ2 .

Furthermore, using the fact that (πX, Y) = (X, πY), we also have

( 3 ) \πE\2' = 2«£7, ΛΓ><£7, JV>' - <£7, T)(E, icN))

= 2(N, E)(N' - (N\ T)T, E)

= 2(N, E)(πN', E) = 2(N', πE)(N, E)

= ±2(N', πE)(l + <Γ, £?>2 + |π£| 2) 1 / 2 .

Let x = <Γ, ΐ?)2 and ?/ = |τr£Ί2. Suppose that |iV'| ^ C, a constant.
Then, since N9, T, and πE all lie in the subspace perpendicular to N, we
have, from equations (2) and (3)

\x'\ ̂  2C^1/2(1 + x + 2/)1/2 ^ 2C(1 + x + y) ,

and

Iv'l ^ 2Cτ/1/2(l + x + yγ» ^ 2C(1 + x + y) .

Let z = ln(ίc + y); then

\y'\)/(x + y ) ^ AC(l/(x + » ) + 1)

If limsup(z) = oo as ί -^L, then (since L < <χ>) there is a sequence
{ίj with z(^) ^ i and z'(^) ^ i, which contradicts inequality (4). Therefore,
z is bounded above, so x and y, i.e., <Γ, E)2 and |TΓJE7|2, must be also.
From equation (1), it follows that <iV, E) is bounded. Therefore, <Γ, £7)' =

, E) is bounded, as is \S'\ = \/c\\N + (N, E)E\ =
. •
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Note that if σ is a geodesic in a spacelike hypersurface in M, then
it satisfies Vφ = icN, with N the normal vector to the hypersurface.
Theorem 2 is used in this context in [2] to show that in a b-complete
Lorentz manifold, a closed spacelike hypersurface with bounded principal
curvatures must be complete.

REMARK. If the timelike quality of the acceleration vector for σ is
removed from the hypotheses of Theorem 1, then it is possible to construct
counter-examples. For instance, let σ: [π, <*>) -» R3 be defined by σ(t) =

(4£~1/2, ί~1sin(ί), I s~r cos(s)ds). This has a continuous endpoint at t — °°.
With metric dx2 + dy2 — dz2

f it is spacelike and has finite length, but its
Euclidean length is infinite. If the metric used is ep{x)(dx2 + dy2 — dz2)
for some function p: R-> R, then the Lorentz length is still finite. If p
is appropriately chosen, then parallel translation along σ can be precisely
calculated, and there is a choice of p under which parallel translation
along σ fails to have a limit as t —> oo.
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