POSITIVE DIVISORS AND POINCARÉ SERIES ON VARIABLE RIEMANN SURFACES

Dedicated to Professor Tadashi Kuroda on his sixtieth birthday

CLIFFORD J. EARLE AND IRWIN KRA

(Received August 18, 1986)

1. Introduction. We are continuing the study of positive divisors on variable Riemann surfaces that we began in [4]. Let T_p be the Teichmüller space of closed Riemann surfaces of genus $p \geq 2$. For any integer $n \geq 1$ there is a fiber space $\pi_n : S_T^n(V_p) \to T_p$ whose fiber over $t \in T_p$ is the space of all positive divisors of degree n on the Riemann surface X_t represented by t. (See [4] for details.) Our goal is to find holomorphic sections of π_n . Such sections, if they exist, define on each X_t a positive divisor D_t of degree n that depends holomorphically on t.

Holomorphic sections of π_n are obtained from certain line bundles in the following standard way. Let $\pi\colon V_p\to T_p$ be the Teichmüller curve of genus p. For each $t\in T_p$ the fiber $\pi^{-1}(t)=X_t$ is the Riemann surface represented by t. By definition a relative section of the holomorphic line bundle $L\to V_p$ is a holomorphic section $\sigma\colon V_p\to L$ such that if σ vanishes identically on some fiber X_t , then σ is trivial (vanishes identically on V_p). If the relative section σ is nontrivial, then either σ has no zeros (and L is the trivial bundle over V_p) or the zeros of σ define a positive divisor D_t on X_t for each $t\in T_p$. In that case the degree n of D_t is independent of t, and the map $t\mapsto D_t$ is a holomorphic section of π_n . See [4] for details.

In this paper we shall use Poincaré series to produce relative sections of many line bundles over V_p . With their help we shall obtain holomorphic sections of π_n for every $n \geq 2p-2$. In fact we shall prove that every point of $S_T^n(V_p)$ lies in the range of some holomorphic section of π_n if $n \geq 2p-2$. For smaller values of n very little is known. Hubbard [8] showed that π_1 has no holomorphic sections unless p=2. We showed in [4] that if p=2, 3, or 4 then π_{p-1} has holomorphic sections such that each divisor D_t is half-canonical but that π_{p-1} has no holomorphic sections with that property if $p \geq 5$. Bers [1] showed that π_{2p-2} has holomorphic

This research was partly supported by National Science Foundation grants DMS 8601016, DMS 8401280, and 8120790.

sections such that each D_t is canonical, but he did not consider non-canonical divisors. Our methods are essentially the same as those of Bers, who also used Poincaré series. We obtain greater generality by using more general factors of automorphy (see § 3).

2. Statement of results. To state our first theorem we must introduce some line bundles over V_p . We shall describe them briefly here, with more details in §3. Let Γ be the fundamental group of V_p . A normalized character of Γ is a homomorphism $\chi: \Gamma \to S^1$ of Γ into the multiplicative group

$$S^1 = \{z \in C; |z| = 1\}$$
.

Each such character determines a line bundle $L(\chi) \to V_p$. The canonical line bundle $K \to V_p$ is the determinant of the holomorphic cotangent bundle of V_p .

Our main result is

THEOREM 1. Let $L \to V_p$ be any line bundle whose tensor power $L^{2p-2} \to V_p$ is the canonical line bundle. Choose any normalized character $\chi: \Gamma \to S^1$ and integer $n \geq 2p-2$. Put

$$(2.1) d = \begin{cases} n - (p-1) & \text{if } n \geq 2p-1 \text{ or } n = 2p-2 \text{ and } \chi \not\equiv 1 \text{ ,} \\ p & \text{if } n = 2p-2 \text{ and } \chi \equiv 1 \text{ .} \end{cases}$$

The line bundle $L^n \otimes L(\mathfrak{X}) \to V_{\mathfrak{p}}$ has d relative sections whose restrictions to each fiber X_t are linearly independent.

THEOREM 2. If $n \geq 2p-2$, the map $\pi_n: S_T^n(V_p) \to T_p$ has holomorphic sections passing through any given point of $S_T^n(V_p)$.

We shall prove Theorem 1 in §§4 and 5. Theorem 2 will be derived from Theorem 1 in §6.

REMARKS. (1) If n is a multiple of 2p-2 and $\mathfrak{X}\equiv 1$, then $L^n\otimes L(\mathfrak{X})$ is a power of the canonical bundle $K\to V_p$ and Theorem 1 reduces to Bers's results ([1], [2]) about holomorphic differentials on variable Riemann surfaces.

(2) Andrew Sommese has communicated to us the following short proof of Theorem 1. The bundle $\omega \colon L^n \otimes L(\mathfrak{X}) \to V_p$ has the property that for each $t \in T_p$, the dimension of the space of holomorphic sections of the restricted line bundle $\omega^{-1}(X_t) \to X_t$ is the number d in (2.1). Since that number is independent of t and the space T_p is contractible and Stein, Grauert's semicontinuity theorem (see [7]) implies that $L^n \otimes L(\mathfrak{X}) \to V_p$ has d relative sections that restrict to a basis for the sections over each

- X_t . Our proof, using Poincaré series, is both more elementary and more concrete.
- (3) The motivation for this investigation was the study of Prym differentials. We wanted to construct a basis for the Prym differentials that varied holomorphically with moduli. Theorem 1 with n=2p-2 yields such a basis.
- (4) Theorem 1 for n > 2p-2 can also be obtained by studying the mapping of $S_T^n(V_p)$ into the universal Jacobian variety $J(V_p)$. In this context see Gunning [5] and Earle [3].
- 3. Some factors of automorphy on the Bers fiber space. Let Γ be a Fuchsian group acting on the open unit disk Δ so that the quotient map $\Delta \to \Delta/\Gamma$ is a universal covering of a closed surface of genus $p \ge 2$. Consider the set of all quasiconformal maps w of the plane onto itself such that
 - (i) $w \circ \gamma \circ w^{-1} = \gamma^w$ is a Möbius transformation for all $\gamma \in \Gamma$, and
 - (ii) w is conformal in the exterior of Δ with behavior

$$w(z) = z + O(z^{-1}), \quad z \to \infty$$

Call two such mappings equivalent if they agree on $\partial \Delta$. The set of all equivalence classes [w] is the Teichmüller space T_p . It is a complex manifold of dimension 3p-3 and can be embedded in C^{3p-3} as a bounded contractible domain of holomorphy. We choose such an embedding.

The Bers fiber space F_p over T_p is the subregion

$$F_p = \{([w], z); [w] \in T_p \text{ and } z \in w(\Delta)\}$$

of $T_p \times C \subset C^{3p-2}$. It is a bounded contractible domain of holomorphy in C^{3p-2} . The group Γ acts properly discontinuously and freely on F_p as a group of biholomorphic maps

$$(3.1) \hspace{1cm} \gamma([w], z) = ([w], \gamma^w(z)) \hspace{3mm} \text{for all} \hspace{3mm} \gamma \in \Gamma \hspace{3mm} \text{and} \hspace{3mm} ([w], z) \in F_p \hspace{3mm} .$$

(Note that the Möbius transformation γ^w depends only on the equivalence class of w.) The projection $([w], z) \mapsto [w]$ of F_p onto T_p induces a holomorphic map π from the quotient manifold $V_p = F_p/\Gamma$ onto T_p , and $\pi: V_p \to T_p$ is the Teichmüller curve of genus p.

Since F_p is contractible and Stein, Γ is the fundamental group of V_p and all line bundles over V_p are determined by factors of automorphy on $\Gamma \times F_p$ (see Gunning [6], pp. 14-16). By definition, a factor of automorphy is a map $\xi \colon \Gamma \times F_p \to C$ such that $\xi(\gamma, \cdot)$ is a nowhere vanishing holomorphic function on F_p for each $\gamma \in \Gamma$, and

$$\xi(\gamma_1\gamma_2,\zeta) = \xi(\gamma_1,\gamma_2(\zeta))\xi(\gamma_2,\zeta)$$

for all $\gamma_1, \gamma_2 \in \Gamma$ and $\zeta = ([w], z) \in F_p$. The holomorphic sections of the line bundle determined by ξ are given by the ξ -automorphic functions on F_p . These are the holomorphic functions $f: F_p \to C$ such that

(3.2)
$$f(\gamma(\zeta)) = \xi(\gamma, \zeta) f(\zeta)$$
 for all $\gamma \in \Gamma$ and $\zeta = ([w], z) \in F_p$.

The ξ -automorphic function f determines a nontrivial relative section if the function $f([w], \cdot)$ never vanishes identically on $w(\Delta)$.

The canonical line bundle $K \to V_p$ is determined by the factor of automorphy

$$\xi(\gamma, ([w], z)) = \frac{\partial \gamma}{\partial z} ([w], z)^{-1} = (\gamma^w)'(z)^{-1}.$$

Since there are line bundles $L \to V_p$ such that $L^{2p-2} = K$ (see Sipe [11] and the remark at the end of this section), there are factors of automorphy ξ_1 such that

(3.3)
$$\xi_1(\gamma, ([w], z))^{2p-2} = (\gamma^w)'(z)^{-1}$$
 for all $\gamma \in \Gamma$ and $([w], z) \in F_p$.

We choose once and for all such a ξ_1 and the line bundle $L \to V_p$ it determines.

The normalized character $\chi \colon \Gamma \to S^1$ determines the "flat" factor of automorphy

$$\xi(\gamma, ([w], z)) = \chi(\gamma)$$

and corresponding line bundle $L(\chi) \to V_p$. The line bundles $L^n \otimes L(\chi)$ in Theorem 1 are determined by the factors of automorphy

$$(3.4) \quad \xi(\gamma, ([w], z)) = \chi(\gamma)\xi_1(\gamma, ([w], z))^n \quad \text{for all} \quad \gamma \in \Gamma \text{ and } ([w], z) \in F_p.$$

By (3.1), (3.2) and (3.3), the ξ -automorphic functions $f: F_p \to \mathbb{C}$ for these factors of automorphy satisfy

$$f([w], z) = f([w], \gamma^w(z))(\gamma^w)'(z)^{n/(2p-2)}\chi(\gamma)^{-1}$$
.

We shall put $q=n(2p-2)^{-1}$ and write that equation in the more familiar form

 $(3.5) \quad f([w],z)=f([w],\gamma^w(z))(\gamma^w)'(z)^q\chi(\gamma)^{-1} \quad \text{for all} \quad \gamma\in \Gamma \ \text{and} \ ([w],z)\in F_p \ .$ In (3.5) we must remember that q(2p-2) is an integer and that by definition

$$(\gamma^w)'(z)^q = \xi_1(\gamma, ([w], z))^{q(2p-2)}$$
.

REMARK. For the reader's convenience we outline a proof that there is a factor of automorphy ξ_1 satisfying (3.3). Without loss of generality we assume that the Riemann surface Δ/Γ is hyperelliptic. Thus Δ/Γ has

an abelian differential of the first kind with a single zero, of order 2p-2. Let f be a (2p-2)-th root of its lift to Δ . It can be verified that there is a unique factor of automorphy ξ_1 that satisfies (3.3) and has the property

$$\xi_1(\gamma, ([I], z)) = \frac{f(\gamma z)}{f(z)}$$
 for all $\gamma \in \Gamma$ and $z \in \Delta$.

(Here I denotes the identity map on Δ .)

4. Proof of Theorem 1 for $q \ge 2$. For any $q = n(2p-2)^{-1}$, $n \ge 2p-2$, the holomorphic sections of the line bundle ω : $L^n \otimes L(\mathfrak{X}) \to V_p$ in Theorem 1 are defined by the holomorphic functions f on F_p that satisfy (3.5). If $[w] = t \in T_p$, the sections of the restricted bundle $\omega^{-1}(X_t) \to X_t$ over $X_t = \pi^{-1}(t)$ are defined by the holomorphic functions f on $w(\Delta)$ such that

$$f(z)=f(\gamma^w(z))(\gamma^w)'(z)^q\chi(\gamma)^{-1} \quad {
m for \ all} \quad \gamma\in \Gamma \ {
m and} \ z\in w(\varDelta)$$
 .

These functions on $w(\Delta)$ form a vector space $A_q(\Gamma, \chi^{-1}, t)$ whose dimension, by the Riemann-Roch theorem, is the number d defined by (2.1).

Let ρ be the natural projection from

$$A_q(T_p, \chi^{-1}) = \bigcup_{t \in T_p} A_q(\Gamma, \chi^{-1}, t)$$

to T_p , which maps $A_q(\Gamma, \chi^{-1}, t)$ to t for each $t \in T_p$. We shall prove Theorem 1 by defining an appropriate vector bundle structure on $\rho: A_q(T_p, \chi^{-1}) \to T_p$.

First we assume $q \ge 2$. In that case, if P(z) is any polynomial, the Poincaré series

$$(\Theta P)([w], z) = \sum_{\gamma \in \Gamma} P(\gamma^w(z))(\gamma^w)'(z)^q \chi(\gamma)^{-1}$$

converges uniformly on compact sets in F_p to a holomorphic function that satisfies (3.5). Now fix any point $[w_0] = t_0 \in T_p$. By Theorem 3 of Knopp [9] there are polynomials $P_1(z), \dots, P_d(z)$ such that the functions $(\Theta P_j)(t_0, \cdot)$, $1 \leq j \leq d$, are a basis for $A_q(\Gamma, \chi^{-1}, t_0)$. For each $[w] = t \in T_p$, let $W(t, \cdot)$ be the Wronskian of the d functions $(\Theta P_j)(t, \cdot)$ on $w(\Delta)$. Then W(t, z) is a holomorphic function on F_p . By construction $W(t_0, \cdot)$ does not vanish identically in $w_0(\Delta)$. It follows that t_0 has an open neighborhood $D \subset T_p$ such that $W(t, \cdot)$ does not vanish identically in $w(\Delta)$ if $[w] = t \in D$. Therefore the functions $(\Theta P_j)(t, \cdot)$, $1 \leq j \leq d$, are a basis for $A_q(\Gamma, \chi^{-1}, [w])$ whenever $[w] = t \in D$. The bijective map

$$(t, c) \mapsto \sum_{j=1}^{d} c_{j}(\Theta P_{j})(t, \cdot)$$

from $D \times C^d$ to $\rho^{-1}(D)$ defines a local trivialization of $A_q(T_p, \chi^{-1})$ over D.

We must show that two such trivializations over the same set $D \subset T_p$ are compatible. Suppose the polynomials P_1, \dots, P_d and Q_1, \dots, Q_d define trivializations over D as above. For each $t \in D$, there is a matrix $A(t) \in GL(d, \mathbb{C})$ such that

$$egin{bmatrix} \Theta P_{\scriptscriptstyle 1}(t,\ z) \ dots \ \Theta P_{\scriptscriptstyle d}(t,\ z) \end{bmatrix} = A(t) egin{bmatrix} \Theta Q_{\scriptscriptstyle 1}(t,\ z) \ dots \ \Theta Q_{\scriptscriptstyle d}(t,\ z) \end{bmatrix}$$

for all $z \in w(\Delta)$, [w] = t. We must show that A(t) depends holomorphically on t. This is a local problem. Fix $t_0 = [w_0] \in D$ and choose points $z_1, \dots, z_d \in w_0(\Delta)$ so that the linear functionals $f \mapsto f(z_j)$, $1 \le j \le d$, on $A_q(\Gamma, \chi^{-1}, t_0)$ are linearly independent. Then the matrices

$$B(t) = (\Theta P_i(t, z_j))$$
, $C(t) = (\Theta Q_i(t, z_j))$, $1 \le i, j \le d$,

are nonsingular when $t = t_0$, hence for t in a neighborhood of t_0 . In that neighborhood $A(t) = B(t)C(t)^{-1}$ is a holomorphic function of t, as required.

We have shown that $\rho: A_q(T_p, \chi^{-1}) \to T_p$ is a holomorphic vector bundle. Since T_p is a contractible domain of holomorphy, a theorem of Grauert implies that this vector bundle is trivial. It therefore has holomorphic sections s_1, \dots, s_d such that the functions $s_j(t)$, $1 \le j \le d$, are linearly independent in $A_q(\Gamma, \chi^{-1}, t)$ for every $t \in T_p$. The functions

$$f_i(t, z) = s_i(t)(z)$$
 for all $(t, z) \in F_n$

are the relative sections required in Theorem 1.

REMARK. If $q \ge 2$ is an integer and $X \equiv 1$, the main theorem of Kra [10] shows that Γ may be chosen so that $A_q(T_p, X^{-1})$ is the set of functions $(\Theta P)(t, \cdot)$, $t \in T_p$ and P a polynomial of degree $\le d-1$. These functions obviously form a trivial vector bundle over T_p .

5. Proof of Theorem 1 for $1 \leq q < 2$. It remains to define the vector bundle structure on ρ : $A_q(T_p, \chi^{-1}) \to T_p$ when $1 \leq q < 2$. Let q be given; if q=1, assume $\chi \not\equiv 1$. Fix $t_0=[w_0] \in T_p$. The functions whose zeros are all simple form a dense open set in $A_2(\Gamma, 1, t_0)$. Applying Theorem 1 with q=2 and $\chi \equiv 1$, we obtain a holomorphic function f(t,z) on F_p such that $f(t,\cdot) \in A_2(\Gamma,1,t)$ for all t and the zeros of $f(t_0,\cdot)$ are all simple. Let $z_1, \cdots, z_{4p-4} \in w_0(\Delta)$ be Γ -inequivalent zeros of $f(t_0,\cdot)$. There are holomorphic functions $z_j(t)$, $1 \leq j \leq 4p-4$, defined in a neighborhood D of t_0 , such that $t_j(t_0) = t_j$ and $t_j(t_0) = t_j$ and all zeros of $t_j(t,\cdot)$ are simple.

Since the vector bundle $A_{q+2}(T_p, \chi^{-1}) \to T_p$ is trivial, there are holo-

morphic functions h_i on F_p , $1 \le i \le (2q+3)(p-1) = l$, such that for each $t \in T_p$ the functions $h_i(t, \cdot)$ are a basis for $A_{q+2}(\Gamma, \chi^{-1}, t)$. For $t \in D$ consider

$$h = \sum_{i=1}^{l} c_i h_i$$

and g=h/f. Then $g(t,\cdot)\in A_q(\Gamma,\,\chi^{-1},\,t)$ if and only if $c=(c_1,\,\cdots,\,c_l)$ is chosen so that

(5.1)
$$h(t, z_i(t)) = 0$$
, $1 \le j \le 4p - 4$.

Therefore, for each given t the space of solutions c of (5.1) has dimension $d = \dim A_q(\Gamma, \chi^{-1}, t)$. Since l - d = 4p - 4, we can apply the implicit function theorem to obtain holomorphic functions $h_i^*(t, z)$, $1 \le i \le d$, defined for t = [w] in a neighborhood D_0 of t_0 and $z \in w(\Delta)$, such that

$$h_i^*(t, z_i(t)) = 0$$
, $1 \le i \le d$ and $1 \le j \le 4p - 4$,

and the functions $h_i^*(t,\,\cdot)\in A_{q+2}(\Gamma,\,\chi^{-1},\,t)$ are linearly independent for each $t\in D_0$. The functions $g_i=h_i^*/f$ are holomorphic and give a basis $g_i(t,\,\cdot)$, $1\leq i\leq d$, of $A_q(\Gamma,\,\chi^{-1},\,t)$ for each $t\in D_0$. The bijective map

$$(t, c) \mapsto \sum_{i=1}^d c_i g_i(t, \cdot)$$

from $D_{\scriptscriptstyle 0} \times {\pmb C}^{\scriptscriptstyle d}$ to $\rho^{\scriptscriptstyle -1}(D_{\scriptscriptstyle 0})$ is the required local trivialization of $A_{\scriptscriptstyle q}(T_{\scriptscriptstyle p},\,\chi^{\scriptscriptstyle -1})$ near $t_{\scriptscriptstyle 0}.$

The proof is completed exactly as before by showing that all such trivializations are compatible and by choosing sections of $\rho: A_q(T_p, \chi^{-1}) \to T_p$. The details are unchanged.

The case q=1 and $\chi \equiv 1$ must be treated slightly differently because l-d < 4p-4. We omit the details because this case of Theorem 1 was already proved by Bers [1].

6. Proof of Theorem 2. Fix any point $t \in T_p$ and any positive divisor D_t on $X_t = \pi^{-1}(t)$. There is a holomorphic line bundle $L_t \to X_t$ with a holomorphic section $s_t \colon X_t \to L_t$ whose divisor is D_t . Let $\deg(D_t) = n \ge 2p-2$. There is a unique normalized character $\mathcal{X} \colon \Gamma \to S^1$ such that $L_t \to X_t$ is (isomorphic to) the restriction $\omega^{-1}(X_t) \to X_t$ of the line bundle $\omega \colon L^n \otimes L(\mathcal{X}) \to V_p$. By Theorem 1, there is a nontrivial relative section $s \colon V_p \to L^n \otimes L(\mathcal{X})$ whose restriction to X_t is s_t . The divisor of s provides a holomorphic section $\sigma \colon T_p \to S_T^n(V_p)$ such that $\sigma(t) = D_t$.

REFERENCES

[1] L. Bers, Holomorphic differentials as functions of moduli, Bull. Amer. Math. Soc. 67 (1961), 206-210.

- [2] L. Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113-134.
- [3] C. J. EARLE, Families of Riemann surfaces and Jacobi varieties, Ann. of Math. 107 (1978), 255-286.
- [4] C. J. EARLE AND I. KRA, Half-canonical divisors on variable Riemann surfaces, J. Math. Kyoto Univ. 26 (1986), 39-64.
- [5] R. C. Gunning, Lectures on Riemann surfaces: Jacobi varieties, Mathematical Notes, Vol. 12, Princeton University Press, Princeton, 1972.
- [6] R. C. Gunning, Riemann surfaces and generalized theta functions, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
- [7] R. Hartshorne, Algebraic geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1977
- [8] J. H. Hubbard, Sur les sections analytique de la courbe universelle de Teichmüller, Memoirs Amer. Math. Soc. 4, No. 166, (1976), 1-137.
- [9] M.I. KNOPP, A corona theorem for automorphic forms and related results, Amer. J. Math. 91 (1969), 599-618.
- [10] I. Kra, Bases for cusp forms for quasi-Fuchsian groups, Ann. Acad. Sci. Fenn. Ser. AI Math. 10 (1985), 289-298.
- [11] P. L. Sipe, Roots of the canonical bundle of the universal Teichmüller curve and certain subgroups of the mapping class group, Math. Ann. 260 (1982), 67-92.

CORNELL UNIVERSITY AND STATE UNIVERSITY OF NEW YORK AT STONY BROOK

ITHACA, NEW YORK STONY BROOK, NEW YORK

U.S.A. U.S.A. AND AND M.S.R.I. M.S.R.I.

BERKELEY, CALIFORNIA BERKELEY, CALIFORNIA

U.S.A. U.S.A.