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1. Introduction. We are continuing the study of positive divisors
on variable Riemann surfaces that we began in [4], Let Tp be the
Teichmϋller space of closed Riemann surfaces of genus p ^ 2. For any
integer n ^ 1 there is a fiber space πn: S?( Vp) —> Tp whose fiber over
teTp is the space of all positive divisors of degree n on the Riemann
surface Xt represented by t. (See [4] for details.) Our goal is to find
holomorphic sections of πn. Such sections, if they exist, define on each
Xt a positive divisor Dt of degree n that depends holomorphically. on ί.

Holomorphic sections of πn are obtained from certain line bundles in
the following standard way. Let π:Vp-+ Tp be the Teichmϋller curve of
genus p. For each t e Tp the fiber π~\t) — Xt is the Riemann surface
represented by t. By definition a relative section of the holomorphic line
bundle L —>VP is a holomorphic section σ: VP—>L such that if σ vanishes
identically on some fiber Xt, then σ is trivial (vanishes identically on Vp).
If the relative section a is nontrivial, then either σ has no zeros (and L
is the trivial bundle over Vp) or the zeros of σ define a positive divisor
Dt on Xt for each te Tp. In that case the degree n of Dt is independent
of ί, and the map t\-*Dt is a holomorphic section of πn. See [4] for
details.

In this paper we shall use Poincare series to produce relative sections
of many line bundles over Vp. With their help we shall obtain holomorphic
sections of πn for every n ^ 2p — 2. In fact we shall prove that every
point of Sτ(Vp) lies in the range of some holomorphic section of πn if
n ^ 2p — 2. For smaller values of n very little is known. Hubbard [8]
showed that πt has no holomorphic sections unless p = 2. We showed
in [4] that if p = 2, 3, or 4 then ττJ,_1 has holomorphic sections such that
each divisor Dt is half-canonical but that πp^ has no holomorphic sections
with that property if p ^ 5. Bers [1] showed that 7Γ23,_2 has holomorphic
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sections such that each Dt is canonical, but he did not consider non-
canonical divisors. Our methods are essentially the same as those of
Bers, who also used Poincare series. We obtain greater generality by
using more general factors of automorphy (see §3).

2. Statement of results. To state our first theorem we must in-
troduce some line bundles over Vp. We shall describe them briefly here,
with more details in §3. Let Γ be the fundamental group of F r A
normalized character of Γ is a homomorphism X: Γ -+S1 of Γ into the
multiplicative group

Each such character determines a line bundle L{X)-^VP. The canonical
line bundle K->VP is the determinant of the holomorphic cotangent
bundle of Vp.

Our main result is

THEOREM 1. Let L-^VP be any line bundle whose tensor power
L2p~2—>VP is the canonical line bundle. Choose any normalized character
X: Γ —> S1 and integer n ^ 2p — 2. Put

(n - (p - 1) if n ^ 2p - 1 or n = 2p - 2 and X =£ 1 ,

[p if n = 2p — 2 and X =

The line bundle Ln®L(X)^>Vp has d relative sections whose restrictions
to each fiber Xt are linearly independent.

THEOREM 2. If n^2p — 2, the map πn: Sτ(Vp) —• Tp has holomorphic
sections passing through any given point of S%(VP).

We shall prove Theorem 1 in §§ 4 and 5. Theorem 2 will be derived
from Theorem 1 in §6.

REMARKS. ( 1 ) If n is a multiple of 2p — 2 and X = 1, then
Ln 0 L{X) is a power of the canonical bundle K->VP and Theorem 1
reduces to Bers's results ([1], [2]) about holomorphic differentials on varia-
ble Riemann surfaces.

( 2 ) Andrew Sommese has communicated to us the following short
proof of Theorem 1. The bundle ω: Ln0L(X)-^Vp has the property that
for each t e Tp, the dimension of the space of holomorphic sections of the
restricted line bundle ω~\Xt)->Xt is the number d in (2.1). Since that
number is independent of t and the space Tp is contractible and Stein,
Grauert's semicontinuity theorem (see [7]) implies that Ln (g) L(X) -» Vp

has d relative sections that restrict to a basis for the sections over each
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Xt. Our proof, using Poincare series, is both more elementary and more
concrete.

(3) The motivation for this investigation was the study of Prym
differentials. We wanted to construct a basis for the Prym differentials
that varied holomorphically with moduli. Theorem 1 with n = 2p — 2
yields such a basis.

(4) Theorem 1 for n > 2p — 2 can also be obtained by studying the
mapping of Sτ(V9) into the universal Jacobian variety J(VP). In this
context see Gunning [5] and Earle [3].

3. Some factors of automorphy on the Bers fiber space. Let Γ be
a Fuchsian group acting on the open unit disk Δ so that the quotient
map Δ —> Δ/Γ is a universal covering of a closed surface of genus p ^ 2.
Consider the set of all quasiconformal maps w of the plane onto itself
such that

(i) wojow'1 = Ίw is a Mobius transformation for all T G Γ , and
(ii) w is conformal in the exterior of Δ with behavior

w{z) = Z + O{Z~1) , Z —> oo .

Call two such mappings equivalent if they agree on dΔ. The set of all
equivalence classes [w] is the Teichmuller space Tp. It is a complex
manifold of dimension Sp — 3 and can be embedded in C3p"3 as a bounded
contractible domain of holomorphy. We choose such an embedding.

The Bers fiber space Fp over Tp is the subregion

Fp = {([w], z); [w] e Tp and z e w(Δ)}

of TpxCaC3p~2. It is a bounded contractible domain of holomorphy in
C3p"2. The group Γ acts properly discontinuously and freely on Fp as a
group of biholomorphic maps

(3.1) 7([w], 2) = ([w], 7w(z)) for all 7 e Γ and ([w], 2 ) 6 ^ .

(Note that the Mobius transformation 7W depends only on the equivalence
class of w.) The projection ([w], z) h^ [w] of Fp onto Tp induces a holo-
morphic map π from the quotient manifold Vp = Fp/Γ onto Tp, and
π: Vp —> Tp is the Teichmuller curve of genus p.

Since Fp is contractible and Stein, Γ is the fundamental group of Vp

and all line bundles over Vp are determined by factors of automorphy on
ΓxFp (see Gunning [6], pp. 14-16). By definition, a factor of automorphy
is a map ξ: ΓxFp->C such that £(7, •) is a nowhere vanishing holomorphic
function on Fp for each 7 e Γ , and

e t a , 0 - ecru τt(C))e(τw o
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for all 7χ, 7 2 e Γ and ζ = ([w], z) eFp. The holomorphic sections of the
line bundle determined by ξ are given by the f-automorphic functions on
Fp. These are the holomorphic functions f: FP-*C such that

(3.2) /(τ(O) = ζ(7, O/(ζ) for all 7 e Γ and ζ - ([w], s) e Fp .

The f-automorphic function / determines a nontrivial relative section if
the function /([w], •) never vanishes identically on w{Δ).

The canonical line bundle K -> Vp is determined by the factor of
automorphy

ί(7, ([W], z)) = ^-{[Wl Z)-1 = (7W)'(^)-1 .

Since there are line bundles L-*VP such that L22>""2 = K (see Sipe [11]
and the remark at the end of this section), there are factors of auto-
morphy fi such that

(3.3) &(7, ([w], z))2p~2 = (7W)'(^)-1 for all 7 e Γ and ([w], β) e F, .

We choose once and for all such a & and the line bundle L ^ F P it de-
termines.

The normalized character X: Γ —> S1 determines the "flat" factor of
automorphy

and corresponding line bundle L(Z)->FP. The line bundles Ln(g)L(%) in
Theorem 1 are determined by the factors of automorphy

(3.4) ς(7, (M, 2)) = %(7)ί,(7, ([w], z))n for all 7 e Γ and ([w], β) e Fp .

By (3.1), (3.2) and (3.3), the f-automorphic functions f:Fp->C for these
factors of automorphy satisfy

We shall put q = n(2p — 2)"1 and write that equation in the more familiar
form

(3.5) f([w], z) = f([w], 7w(z))(7w)'(z)?X(7)-1 for all 7 e Γ and ([w], 2 ) e F f .

In (3.5) we must remember that q(2p — 2) is an integer and that by
definition

REMARK. For the reader's convenience we outline a proof that there
is a factor of automorphy & satisfying (3.3). Without loss of generality
we assume that the Riemann surface Δ\Γ is hyperelliptic. Thus Δ\Γ has
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an abelian differential of the first kind with a single zero, of order
2p — 2. Let / be a (2p — 2)-th root of its lift to Δ. It can be verified
that there is a unique factor of automorphy ξ± that satisfies (3.3) and
has the property

f or a11 Ύ e Γ a n d z e Δ

(Here I denotes the identity map on J.)

4. Proof of Theorem 1 for q ^ 2. For any q = w(2p - 2)"1, n ^ 2p - 2,
the holomorphic sections of the line bundle ω: Ln ® L(Z) —> Vp in Theorem
1 are defined by the holomorphic functions / on Fp that satisfy (3.5).
If [w] = te Tp, the sections of the restricted bundle ω~\Xt) —> X t over
χt = ^ - 1 (ί) are defined by the holomorphic functions / on w{Δ) such that

f(z) = f(r§(z))(rΛ)\z)qTL(Ί)-1 for all 7 6 Γ and 2 e w(zf) .

These functions on w(Δ) form a vector space Ag(Γ, X~\ t) whose dimension,
by the Riemann-Roch theorem, is the number d defined by (2.1).

Let p be the natural projection from

Aq(Tp, Z-1) = U Aq(Γ, X-\ t)

to Tpi which maps Aq(Γ, X \ t) to t for each t e Tp. We shall prove Theorem
1 by defining an appropriate vector bundle structure on p: Aq(Tp, X'1) —> Tp.

First we assume q ^ 2. In that case, if P(z) is any polynomial, the
Poincare series

(ΘP)([wl 2) =

converges uniformly on compact sets in Fp to a holomorphic function that
satisfies (3.5). Now fix any point [w0] = toe Tp. By Theorem 3 of Knopp
[9] there are polynomials Px{z)9 , Pd(z) such that the functions (ΘP5)(ί0, •)>
1 ^ 3 ^ d, are a basis for Aq(Γ, X~\ t0). For each [w] = t e Tp, let W(t, •)
be the Wronskian of the d functions {ΘPά)(t, •) on w(Δ). Then W(t, z) is
a holomorphic function on Fp. By construction W(t0, •) does not vanish
identically in wo(Δ). I t follows that t0 has an open neighborhood DaTp

such that TF(ί, ) does not vanish identically in w(Δ) if [w] = teD.
Therefore the functions (ΘPό)(t, •), l^j^d, are a basis for Aq(Γ, X~\ [w])
whenever [w] = teD. The bijective map

•)

from DxCd to ^>"1(D) defines a local trivialization of Aq(Tp, X"1) over D.
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We must show that two such trivializations over the same set DaTp

are compatible. Suppose the polynomials Pίf , Pd and Qίf , Qd define
trivializations over D as above. For each teD, there is a matrix A(t) e
GL(d, C) such that

ΘPx{t, z)

: \
_ΘPd{t,z)] [_ΘQd{t,z)\

for all zew(A), [w] = t. We must show that A(t) depends holomorphically
on t. This is a local problem. Fix t0 = [w0] e D and choose points
%u ' > %de ̂ o(^) s o that the linear functionals f\-+f(,Zj), 1 ^ i ^ ώ, on
-AgCΓ, Z~\ ί0) are linearly independent. Then the matrices

B(t) = {ΘPlt, z5)) , C(t) = (ΘQ^ί, *,)) , 1 ^ i, j £ d ,

are nonsingular when t — t09 hence for t in a neighborhood of t0. In that
neighborhood A(ί) = B(t)C(t)~ι is a holomorphic function of ί, as required.

We have shown that p: Aq{Tv, Z""1)—> T^ is a holomorphic vector bundle.
Since Tp is a contractible domain of holomorphy, a theorem of Grauert
implies that this vector bundle is trivial. It therefore has holomorphic
sections s19

 β , s d such that the functions Sj(t), 1 ^ j ^ d, are linearly
independent in Ag(Γ, Z"1, ί) for every ί 6 Γp. The functions

Λ(ί, z) = β/t)^) for all (ί, 2) e F p

are the relative sections required in Theorem 1.

REMARK. If q ^ 2 is an integer and 1 = 1, the main theorem of Kra
[10] shows that Γ may be chosen so that Aq(Tp, Z"1) is the set of functions
(ΘP)(t, •)> teTp and P a polynomial of degree ^ d — 1. These functions
obviously form a trivial vector bundle over Tp.

5. Proof of Theorem 1 for l^q<2. It remains to define the vector
bundle structure on p: Aq(Tp, Z"1) —• Tp when 1 ^ q < 2. Let g be given; if
g = l , assume Z ̂  1. Fix ί0 = [w0] e Tp. The functions whose zeros are
all simple form a dense open set in A2(Γ, 1, ίo) Applying Theorem 1 with
q = 2 and Z = 1, we obtain a holomorphic function /(£, 2) on Fp such that
f{t, -)eA2(Γ, 1, ί) for all ί and the zeros of βfOf •) are all simple. Let
zlf , Zip-* e wo(4) be Γ-inequivalent zeros of /(ί0, •)• There are holo-
morphic functions zά(t), l ^ i ^ 4 p —4, defined in a neighborhood D oί t0,
such that .̂(to) = zy and /(ί, zs(t)) = 0 for all ί e JD. If ί e A ^(t), , «4P-4(ί)
are a complete set of Γ-inequivalent zeros of /(£, •)» a n ( i all zeros of
/(ί, •) are simple.

Since the vector bundle Aq+2(Tpf Z " 1 ) ^ Tp is trivial, there are holo-
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morphic functions hi on Fp, 1 ^ i 5 s ( 2 g + 3)(p — 1) = I, such t h a t for each

te Tp the functionsΛ,(ί, •) are a basis for A 9 + 2 (Γ, Z"1, t ) . For teD consider

I

h = Σ c A

and g = λ//. Then flr(ί, ) e i g ( Γ , Z"\ ί) if and only if c = (c19 , cz) is
chosen so that

(5.1) fc(ί, *,(«)) = 0 , 1 ^ i ^ 4p - 4 .

Therefore, for each given t the space of solutions c of (5.1) has dimension
d = dim Aq(Γ, X~\ t). Since I — d = 4p — £, we can apply the implicit
function theorem to obtain holomorphic functions h*(t, z), 1 ^ i ^ df

defined for t = [w] in a neighborhood DQ of t0 and zew(J), such that

V(ί, 2y(ί)) = 0 , 1 ^ i ^ d and 1 ^ i ^ 4p - 4 ,

and the functions h*(t, •) 6 Ag+2(Γ, Z"1, t) are linearly independent for each
teD0. The functions gi = hf/f are holomorphic and give a basis gt(t, •)>
1 ^ i ^ cZ, of Λff(Γ, Z"1, ί) for each teD0. The bijective map

d

(ί, c) h-> Σ c^Cί, •)

from Do x Cd to p~\DQ) is the required local trivialization of Ag( Tp, X"1)
near ί0.

The proof is completed exactly as before by showing that all such
trivializations are compatible and by choosing sections of p: Aq(Tp, X~ι)^>Tv.
The details are unchanged.

The case q — 1 and X = 1 must be treated slightly differently because
I — d < Ap — 4. We omit the details because this case of Theorem 1 was
already proved by Bers [1].

6. Proof of Theorem 2. Fix any point teTp and any positive divisor
Dt on Xt = π~\t). There is a holomorphic line bundle Lt^Xt with a
holomorphic section st: Xt->Lt whose divisor is Dt. Let άeg(Dt) = n^
2p — 2. There is a unique normalized character X: Γ —> S1 such that
Lt—>Xί is (isomorphic to) the restriction ω~\Xt)-*Xt of the line bundle
ω: Ln (x)L(X)—>VP. By Theorem 1, there is a nontrivial relative section
s: Vp —> Ln 0 L(Z) whose restriction to Xέ is st. The divisor of s provides
a holomorphic section σ: Tp-*Sr(Vp) such that σ(t) = Dt.
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