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1. Introduction. As is well-known, the local geodesic symmetries
on a locally Riemannian symmetric space are isometries and hence they
are volume-preserving local diffeomorphisms. However, there are many
Riemannian manifolds all of whose geodesic symmetries are volume-
preserving but which are not locally symmetric. To our knowledge it is
not even known if such spaces are locally homogeneous. This last problem
was considered in [12], [18], [14] and extended to a more general class of
symmetries in [2], [10]. In particular, in [12] Sekigawa and the second
author showed that an almost Hermitian manifold with symplectic geodesic
symmetries is a locally symmetric Kahler manifold.

The main purpose of this paper is to study similar problems on almost
contact metric manifolds. On such manifolds one has a preferred vector
field ¢ and an almost Hermitian structure on the orthogonal complement
of ¢&. For a general almost contact metric manifold, the behavior in the
direction & can be quite arbitrary and hence one cannot expect a result
exactly similar to that in [12]. In this paper we shall therefore consider
the case where ¢ generates a one-parameter group of isometries. We
study a class of symmetries on these spaces, the so-called ¢-geodesic
symmetries [15], and then obtain results when the dual form % is closed
or when the structure is a contact metric structure. This leads to a
characterization of the so-called ¢@-symmetric spaces [15], a class of
manifolds which seems to be the analogue in the almost contact metric
case of the class of locally Hermitian symmetric spaces.

The paper is organized as follows. In Section 2 we give some pre-
liminaries and in Section 3 we treat @-symmetric spaces and ¢-geodesic
symmetries. In Section 4 we derive the main result giving the analogue
of the already mentioned result in [12]. Finally, in Section 5 we give a
complete classification of three-dimensional Sasakian spaces with volume-
preserving local ¢-geodesic symmetries.

2. Preliminaries. A C* manifold M** is said to be an almost con-
tact manifold if the structural group of its tangent bundle is reducible
to U(n)x1. It is well-known that such a manifold admits a tensor field
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@ of type (1,1), a vector field £ and a 1-form 7 satisfying
(1) 8 =1, ¢=-I+7Q¢.

These conditions imply that @& = 0 and 7op = 0. Moreover, M admits
a Riemannian metric g satisfying

(2) 9(@X, pY) = 9(X,Y) — n(X)n(Y)

for any tangent vector fields X, Y. Note that this implies 7(X) = g(X, &).
M together with these structure tensors is said to be an almost contact
metric manifold and we refer to (o, & 7, g) as an almost contact metric
structure. For a general reference to these ideas see [1].

As we remarked in the introduction, on a general almost contact
metric manifold, the behavior in the direction & can be quite general;
in particular the integral curves of & need not be geodesics, nor does a
geodesic which is initially orthogonal to &, necessarily remain orthogonal
to &.

LemMMA 1. If ¢ is a Killing vector field on an almost contact metric
manifold, then the integral curves of & are geodesics, and geodesics which
are initially orthogonal to & remain orthogonal to &.

PrROOF. To see the first statement simply note that, since £ is a unit
Killing vector field, g(V.& X) = —g(V& &) = 0. For the second statement
note that for a geodesic v, ¥Y'g(v’, & = g(7’, V..£) = 0 and hence the angle
between ¢ and 7’ is constant.

LEMMA 2. If on an almost contact metric manifold M, & is a Killing
vector field and dy =0, then M 1is locally the product of anmn almost
Hermitian manifold and the real line.

ProoF. Since 7(X) = g(X, &), the two conditions dy = 0 and £ being
a Killing vector field imply that & is parallel on M. Therefore the dis-
tribution (subbundle) orthogonal to ¢ is also parallel and M is locally the
product of an even-dimensional manifold N and R. Now from (1) and
(2) we see that ¢ and g restricted to N form an almost complex structure
and a Hermitian metriec.

Given an almost contact metric structure (g, & 7, g9) on a manifold
M, one may define a natural almost complex structure J on Mx R by

I(x7L) = (X~ fo 9 X0-L)

where X is tangent to M, f a function on MXR and ¢ the coordinate
on R. If this almost complex structure is integrable, we say that the
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almost contact structure is normal; the integrability condition for this
is the vanishing of the tensor field

N® =[p, @]l + 27 ® &,

where [p, ¢] denotes the Nijenhuis torsion of o.
Also for an almost contact metric structure we define its fundamental
2-form ¢ by

#(X,Y) = 9(X, 9Y) .

If ¢ = dn, we say that (@, & 7, g9) is a contact metric structure. In par-
ticular, we have 7 A (dp)" # 0. A normal contact metric structure is
called a Sasakian structure. The two conditions of being normal and
contact metric may be written as one, namely

(3) (Vxp)Y = g(X, Y)e — n(Y)X .
Note that this last condition implies that
(4) VXE = _¢X ’

from which it follows that ¢ is a Killing vector field. The curvature
tensor

RyyZ = VyVyZ — VyVxZ — Vix iZ
of a Sasakian manifold satisfies
(5) Ryt = (V)X —9(X)Y,
(6) By Y =9(Y)X — g(X,Y)t .
Again, for a general reference to the above ideas, see [1].
Finally, considering a tensor field S of type (1, 1) as a field of endo-

morphisms of tangent spaces, a tensor field P of type (p, q) is said to be
S-invariant if for all 1-forms w, ---, w, and all vector fields X,---, X,

P(G)IOS, Ct Yy wposi Xv ) Xq) = P(wu crry Wy, SXU M) SXq) .

Also, as a notational matter, we write R(X,Y, Z, W) for g(Ry,Z,W)
and (VoR)(X,Y, Z,W) for g(VyR)xrZ,W).

3. o¢-geodesic symmetries and @-symmetric spaces. Let M be an
almost contact metric manifold with a Killing vector field &. Also we
always suppose M to be connected in the rest of the paper.

A geodesic 7 is said to be a ¢@-geodesic if p(7') = 0. A local diffeo-
morphism s,, of M, me M, is said to be a ¢-geodesic symmetry if its
domain % is such that, for every @-geodesic 7(s), where ¥(0) lies in the
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intersection of 77 with the integral curve of ¢ through m,
(8wo)(8) = 7(—s),

for all s with v(+s)e %/, s being the arc length [15]. Since the points
of the integral curve of & through m are fixed, we see that setting

S=—-I+29Q¢,
we have, since £ is a Killing vector field,
Sy = €XDP,° S, °expn’ .
Now let M be a Sasakian manifold. Then M is said to be a locally
@-symmetric space if
P (VyR)xyrZ = 0
for all vector fields V, X,Y, Z orthogonal to & These spaces were in-

troduced by Takahashi in [15]. We also refer to [15] for examples and
some important results. In particular, the author proved:

PropPOSITION 3. A Sasakian manifold is a locally p-symmetric space
iof and only if it admits at every point a ¢p-geodesic symmetry, which
18 a local automorphism i.e., a local diffeomorphism leaving all structure
tensor fields invariant.

Also we note the following useful result proved by Tanno in [16]:

PROPOSITION 4. Let M be a contact metric manifold with structure
tensors (@, & n, 9). If a diffeomorphism f of M leaves the structure
tensor @ invariant, then there exists a positive constant a such that

f*5=045, f*77=a77,
(f*NX,Y) = ag(X,Y) + ala — Ln(X)n(Y) .

We also give another characterization of locally @-symmetric spaces.
This result shows how the ¢-geodesic symmetries play a similar role for
this class of manifolds as the geodesic symmetries do for locally symmetric
spaces.

THEOREM 5. A mecessary and sufficient condition for a Sasakian
mansifold to be a locally @-symmetric space is that for each m e M the
local @p-geodesic symmetries are isometries.

Proor. The necessity follows at once from Proposition 8. To prove
that the condition is sufficient just note that the hypothesis implies

(VoRXX,Y, Z,W) =0
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for U, X,Y, Z,W orthogonal to &.

Next, following Okumura [11] we define on a Sasakian manifold M
with structure tensors (@, &, 7, g) a linear connection V by

§XY= VXY_I" TXY!
where

TxY = dn(X,Y): — n(X)pY + n(Y)pX .

The torsion tensor of V is 27 and by direct computation using (3) and
(4), we have

Vp=0, Ve=0, Vyp=0,
VS=0, V¢=0, VI=0.

Also, an easy computation using the most elementary properties (e.g.,
(1) and (2)) of a contact metric structure shows that 7, g, ¢ and T are
all S-invariant. In turn, for M Sasakian, (3) yields that Vg, Vs and Vg
are S-invariant.

Let R denote the curvature tensor of V. Then one of the main
results of [15] is the following:

THEOREM 6. A mnecessary and sufficient condition for a Sasakian
manifold to be locally p-symmetric is that VR = 0, or equivalently,

(7) (VyR)xyZ = —TyRyyZ + RTVXYZ + RXTVYZ + Rey T2,
for all X,Y, Z,V.

In particular, from these conditions we see that a locally p-symmetrie
space is locally homogeneous (see, e.g., [7], [19]). Moreover, since T, X =0,
it follows also that in this case, all local geodesic symmetries are volume-
preserving (cf. [19]). Finally, the same condition T,X = 0 implies that
a simply connected complete locally @-symmetric space is a naturally
reductive homogeneous space (cf. [17]).

4. The main result. We now turn to our study of the ¢-geodesic
symmetries s,; in particular, we study the effect of the s,’s preserving
the fundamental 2-form ¢, i.e., si¢ = ¢.

THEOREM 7. Let M be an almost contact metric manifold such that
¢ 18 a Killing vector field and that the p-geodesic symmetries s, are ¢-
preserving for each m € M. Then we have the following:

(1) If dnp = 0, M is locally the product of a locally symmetric Kihler
manifold and the real line.
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(2) If ¢ =dn, M is a locally p-symmetric space and is locally
homogeneous. If, moreover, M is complete and simply connected, it is
a naturally reductive homogeneous space.

ProoF. By Lemma 2, if dn = 0, M is locally the product of an almost
Hermitian manifold N and R with ¢ tangent to the factor R. Thus the
@-geodesic symmetries s,, become geodesic symmetries on N and sk¢ = ¢
implies that all the s, preserve the fundamental 2-form of the almost
Hermitian structure, i.e., are symplectic. The result of [12] is then that
N is a locally symmetric Kahler manifold.

To prove (2) consider the fundamental 2-form ¢. Let B, be a geodesic
ball about m e M and r+ exp,ru, ||#|| =1, a geodesic emanating from
m in a direction u. Then the series expansion of ¢,; = ¢(3/ox", 0/ox?),

{2 =1, .-+, 2n + 1} being a system of normal coordinates, is (see, e.g.,
(3], [4], [6D)
(8) $:(€XPp TU) = $;5(m) + (Vug)is(m)r

: 1 41 : r
+ <(Vuu¢)ij + ?Et:‘ Ruiut¢tl + 3 zt:l Rwut¢it)(m) 2
+ ((Viuu¢)ii + g Ruiuz(vu¢)ti =+ ; Ruiut(vu¢)it
1 1 r? .
+ "é" ; (VuR)uiut¢ti + _2—2tl (VuR)ujut¢it)(m)-6_' + 0("‘ ) .

If now s, is ¢-preserving, we must have
(8) ::(€XPy ) = SP(m)S}(m)gos(€XPp rSp) -

Now we compare the coefficients of both series expansions in (8). We
see from the second term that V¢ is S-invariant and we will show first
that the contact metric structure is Sasakian. Since V.6 = 0 for any
contact metric structure,
(VX¢)(Yy Z) = (st¢)(SY; SZ)
= —(Vxo)(Y, Z) + 29(Y )(Vx8)(& Z) + 29(Z)(Vxp)(Y, &) .

Hence,
(9) (Vxo)(Y, Z) = (Y )(Vxp)(& Z) + N(Z) (Vo) Y, &) .

On the other hand, it is well-known that if £ is a Killing vector field on
a contact metric manifold, we have Vy¢ = —pX. Therefore

(Vzp)(Y, &) = 9(Y, (Vx9)8) = 9(Y, ’X) = —g(¥, X) + n(X)(Y) ,

and hence, (9) becomes
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(Vxo)(Y, Z) = 9(Y)9(X, Z) — 9(Z)9(X,Y) .

Thus, from (3), we see that M is Sasakian.
Now, we have already noted that if M is Sasakian, V’s and Vs are
S-invariant. Thus from the coefficient of 7* in (8) we have that

is S-invariant. We will now show that R is S-invariant. Since Vo = 0
and VT = 0, we have

11) 0=RyyP=Ryxy @+ Bxy 9,
where
Byy = [TY! TX] - TTyX—TXY
(ef. [17, p. 15]) and R,y -9 and Byy:¢ indicate that R;, and By, are
acting as derivations. Clearly B(X,Y, Z,W) = g(ByyZ,W) is S-invariant,
since g and T are. Thus from (11) one easily has
12) R(X,)Y, pZ, W) + R(X,Y, Z, pW)
= R(SX, SY, SpZ, SW) + R(SX, SY, SZ, SpW) .
Now, let
DX,Y, Z,W)= R(X,Y, Z,W) — R(SX, SY, SZ, SW) .
Then D satisfies the symmetry properties of the curvature tensor. More-
over, from (12), straightforward computatign using (5) gives
13) D(X,Y, ¢Z, pW) = DX,Y, Z,W) .
Furthermore, the S-invariance of (10) gives
DX, pX, X, pX)=0.

Now, in particular for X,Y, Z,W orthogonal to & we have as in the Kahler
case (see, e.g., [8, p. 166]) that D(X,Y, Z,W) = 0. This, together with
D(X,Y, &,W) =0 from (13) for any X,Y,W, gives D = 0 and hence that
R is S-invariant.

Turning now to the coefficient of #* in (8), we see that

(VoR)(U, X,U, oY) — (V4R)(U,Y,U, ¢X)
is S-invariant. Therefore
(VyR)X(U, oU,U, oU) — (VszR)SU, SeU, SU, SpU) = 0

and moreover, the same is true for V, since 7 and R are S-invariant.
Thus setting
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P(U, X,Y, Z,W) = (V,R)(X,Y, Z,W) — (V&wR)(SX, SY, SZ, SW)
we have
(14) P(U,U, pU,U, eU) = 0.
Also, since VI'= 0, VR = VR (see, e.g., [17, p. 15].) This implies, since
Vo = 0 and V¢ = 0, that
(15) PU, XY, 9Z, W) = P(U, X,Y, Z,W) .
Note that P also satisfies the second Bianchi identity. Now, in (14) write

U as aY + B8Z, «, B arbitrary and Y, Z orthogonal to & Taking the
coefficient of a@*, the curvature identities and (15) yield

(16) P(Y, Z, 9Z, Z, pZ) + AP(Z,Y, pZ, Z, pZ) = 0 .
Using the second Bianchi identity on the second term we have

5P(Y, Z, pZ, Z, pZ) — AP(9pZ, Z,Y, Z, pZ) = 0 .
Replacing Z by @Z in this and comparing with (16), we have
a7 P(Y, Z, pZ, Z, pZ) = 0

for Y, Z orthogonal to &. Next, in (17) replace Z by aV + BZ, with V
and Z orthogonal to &, and consider the coefficient of aB’. Proceeding
as before, we have

P(Y,V,pZ, Z, ¢Z) + 3P(Y, Z, oV, Z, pZ) = 0 .
Replacing Z by ¢Z and V by @V and comparing, we obtain
(18) P(Y,V,pZ, Z, pZ) = 0 .
In (18) replace Z by aW+BZ, with W and Z orthogonal to &, and consider

the coefficient of 3. Setting ¥V = W and using the first Bianchi identity,
we have

3P(Y,W, 9Z, W, pZ) + P(Y,W, Z,W,Z) =0,
from which by replacing Z by ¢Z we have
PY,U, Z,U, Z)=0.
This now implies that P restricted to vectors orthogonal to & vanishes
(cf. [3], [5], [18]). However, if any of the vectors in (7) is equal to ¢,
(7) is automatically satisfied on a Sasakian manifold as can be easily

checked using (5) and (6). Thus P =0 and hence VR = VR = 0, giving
the result.

REMARK. First note that, since ¢ = d» on a Sasakian manifold, when
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the s, preserve 7, they also preserve ¢. Secondly, suppose that the s,
preserve . Then, it follows from Proposition 4 and the orthogonality
of S that @« = 1. Hence, the s, preserve 7. From this and Theorem 5
we obtain:

THEOREM 8. Let M be a Sasakian manifold. Then M is a locally
@-symmetric space if and only if all the local p-geodesic symmetries are

(a) g¢-preserving, or

(b) @-preserving, or

(e) mn-preserving, or

(d) g-preserving.

5. Three-dimensional manifolds. In this final section we consider
three-dimensional Sasakian manifolds such that all the local @p-geodesic
symmetries are assumed only to be volume-preserving. Therefore, let
meM and let 4, denote the volume density function of the exponential
map at m. (We always work in a geodesic ball B, with center m and
sufficiently small radius ».) Then the local ¢-geodesic symmetry s, is
volume-preserving if and only if for any unit vector w e T, M we have

(19) 0.,.(exp,, rS,u) = 0,(exp,, ru) .
Next, we state a result of [19].

PROPOSITION 9. Let M be a three-dimensional connected Sasakian
space with constant scalar curvature. Then M is a locally @-symmetric
space.

Note that the converse is also true since a locally @-symmetric space is
locally homogeneous.
Now we prove:

THEOREM 10. Let M be a three-dimensional connected Sasakian
mamnifold such that all local p-geodesic symmetries are volume-preserving.
Then M 1is locally @-symmetric.

PROOF. According to Proposition 9 we have only to prove that the
scalar curvature is constant on M. To do so we use the expansion for
0. (see, e.g., [3], [4], [6]):

20)  Oulexparu) = 1 — o(u, w)m) — E(T,0), u)m) + 0(r)

where o denotes the Ricci tensor.
Using (20), the criterion (19) implies

(VMO)(’M,, ’U/) = (VSu(o)(Sur Su)
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for any we T, M and all me M. This is equivalent to
(21) @X,Y,z{(VXp)(Y’ Z) - (VSXP)(SYv SZ)} =0

where & denotes the cyclic sum. Further, put Y= Z = ¢, at m, where
{e;; =1, ---, 2n + 1} is an arbitrary orthonormal basis of 7, M. Summing
up with respect to ¢, we get for the scalar curvature ¢

Vi-szt =0
for any tangent vector field X. Using the expression for S, we obtain
Vit = P(X)V,T .
Now, since ¢ is a Killing vector field, V.z = 0 and hence Vyzz = 0. So,

we see that even for general », ¢ is constant. For » =1 the result
follows at once.

Finally, the result of Theorem 10 shows that M is in fact a Sasakian
space form (see [1], [20]). Note that, for arbitrary dimension, a Sasakian
space form is always locally g-symmetric. For a globally @-symmetric
space M (that is, a simply connected complete locally g-symmetric space)
we noted already that M is a naturally reductive homogeneous space.
Using the explicit classification of naturally reductive homogeneous spaces
in dimension 3 (cf. [9], [17]), we obtain finally:

THEOREM 11. Let M be a three-dimensional connected simply con-
nected complete Sasakian manifold. Then all the @-geodesic symmetries
are volume-preserving if and only if M is isometric to one of the follow-
g spaces:

(a) the unit sphere S® in RY;

(b) SU(2), the universal covering space SL(2, R)~ of SL(2, R) or the
Heisenberg group H, each with a special left invariant metric.

The case (a) corresponds to the symmetric Sasakian manifold. SU(2)
corresponds to the case ¢ +3 >0, SL(2,R)” to ¢+3<0 and H to
¢ + 3 =0, where ¢ denotes the ¢-sectional curvature. See again [1],
[20].
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