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Introduction. We consider a pseudodifferential equation:
(1) a(x, Dyu = f

with data f having Gevrey index s =1. Here a(x, D) is a pseudodifferen-
tial operator of type S, of Hormander (cf. [4]). We are interested in
the Gevrey regularity of solutions, more precisely, in which way the
Gevrey index of solutions depends on p, § and s.

In [3], we have given the definition of a class of hypoelliptic pseudo-
differential operators of symbol class S}, ,(2%xR"), 2CR*, 056 < p =1,
o = 1, which consists of symbols a(zx, &) € S,(2 x R™) satisfying

(2) Ia(x95)lgclfim,’ |EI£B; —-oo<'m,'<oo,

(3) la@ (@, &) = CCI*Plal B17]alx, &)1 + [g])~rlel*adl,
re®, |¢| = Blal’, 6 =0c/(0 —9) .

Under these conditions, we have constructed a parametrix b of a(x, D)
with symbol b(z, &) € S;F.(2xR"). Here b is expressed by an infinite
series of symbols, and the remainder » = ba — I is an integral operator
with a kernel of Gevrey function of index 6 = /(0 —d) (cf. Theorem 3.1
and Corollary 3.1 of [3]). Thus we have max(c/(p — ), s) as the Gevrey
index for solutions of the equation (1). This gives the best possible
index when p=1, 0 <6 <1 as was shown by several examples in [3],
but not necessarily the best possible when 0 < p < 1.

It seems impossible to apply directly the method of [3] to obtain
sharper results if 0 < 0 <1. We use a finite approximation of parametrix
instead of infinite approximation used in [3]. The remainder term is not
necessarily smooth, so we are forced to estimate all derivatives of
solutions inductively. This method seems unusual in the study of
hypoellipticity because it looks tedious. However, surprisingly this
method provides a sharper result for Gevrey hypoellipticity. For the
nonlinear problem such a method was used by Friedman [2] to get
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analyticity of solutions of elliptic and parabolic systems and by Volevié
[16] for a class of pseudodifferential equations.

Now we would like to summarize the basic idea of this paper partly
motivated by [14] without going into technical details. We consider the
equation (1) with a(z, &) satisfying

(2) la(z, &l 2 cle|™, [¢]= B,
(3)  laf@, &) = CGCI**al Bl*|a(x, OI(1 + [h7 1+, zeQ, |g|=B.

The condition (8’) is slightly stronger than (8) but enough for applications.
We first construct a left parametrix ”(x, D) of a(x, D) consisting of a finite
number of pseudodifferential operators. Then we reduce the equation (1)
into an integral equation.

U =b"—r"u, (bYau =b"f=u+ r'u).

By induction on k= |a|, k= 0,1, ---, we obtain successive estimates of
type
(4) sup |D*u| £ CC/Mal™>*? . § = max(l/p, o/(1 —9)),

(cf. Theorem 3.1) .

Since we have o/(p — §) > max(1/p, o/(1 — 5)) for 0 <d<p<lando =1,
this improves our previous result of [3].

The plan of the paper is as follows. In §1, we start with the precise
definition of pseudodifferential operators considered in this paper. The
regularity properties of their kernels and the pseudolocal property will
be studied. In §2, we shall consider the symbolic calculus of a composed
operator. In §3, we shall prove the main result (Theorem 3.1) on Gevrey
hypoellipticity of pseudodifferential equations. In §4, we shall give some
examples of differential operators.

Finally we remark that the same problem has been investigated in
[7] and [14] recently. In [7], similar results have been obtained by con-
structing parametrices for a class of degenerate parabolic pseudodifferential
operators, and in [14] by applying the theory of multiple products of
pseudodifferential operators. Compared with these results our proof given
here would be significantly elementary.

The author would like to express his gratitude to Y. Morimoto for
useful discussion and also to the referee who has given many valuable
suggestions.

1. A class of pseudodifferential operators. Let 2 be an open subset
of R™ whose point is denoted by == (2, -, #,). We use general notation
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such as |a|=a, + +++ + a, for a multi-index a = (a,, +*+, @,) and D* =
Dy D,‘,'", Dj = 1/%6/3%’,, _7 =1, .-, n, ete.

DEFINITION 1.1. Let we€C>(®2). Then we say that w is in G° in 2
(s=1) if for any compact set K of 2 there are positive constants C,
and C, such that

1.1) sup | D*u(x)] £ CC | al', acZ?.
DEFINITION 1.2, Let —co <m< ; 026<pPp=1l o=1. We
denote by S, (2xR") the set of all a(zx, &) e C~(2x R") such that for

every compact set K of 2 there are positive constants C,, C, and B such
that

(1.2) sup |a(®, &) < CCl+Palg1e|g|meli+afl | |g| = B,
zeK

where a(§(x, &) = dtDia(w, &), 0, = (9/0&,, -+, 0[0&,).
We associate with such a symbol a(z, &) a pseudodifferential operator
as usual:

(s, Dyu@) = @) | 0a(s, duw)dyds , ueCr@) .

Let K(x, y) € 2'(2x2) be the distribution kernel of a(x, D) expressed
by the oscillatory integral:

K, y) = @) |e e+ 0as, o)z .

The following theorems strengthen Theorem 1.1 in [3].
THEOREM 1.1. Let a(x, &) €Sy, (2 X R*). Then we have
K(x, y) € Gl x Q\4) , 4= {(x,2);xe€Q}, 6,=max(1/p, o+ 6/p).

THEOREM 1.2. If ue&'(2) which is in G° (s = 1) in a neighborhood
of 2,€R2, then we have a(x, D)u € G in the same neighborhood of x,€ 2,
where 6, = max(s, ¢ + s0, 1/p, o + 8/0). More precisely, we have

(1) 6, = max(l/p, o + 6/p) if 1=s=min(l/p,a/(1 —3));
(2) 0, =0 + s6 if l/p<s=o/1—9);

(3) 6, = 1/p tf o/l—0)<s=1lo;

(4) 6, =s if s = max(l/p, o/(1 — 9)) .

PrROOF OF THEOREM 1.1. Let U be any compact set of 2X2\ 4.
For each (x,¥)e U and a, 3€Z}, we have in the sense of oscillatory
integral:
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D:D{KG, ) = @m) " 3, 2L [exevoer(—gra,a, de

rte=a YIT!
We have the estimate

a9 Hlelss e IO (— &) (a, E)d&i < C,Cj=+fiz)e

with constants C, and C, independent of a, 8 and 7 <. Next, by setting
N=[(v+Bl+dlc| +my+n+2)/p], m,=max(m,O0),

we have for a fixed ¢, 171 m,

(o= 90| e m0g(—gra @, s

1¢1=zB

- g e 1O DM —&)a (x, £)}de
1¢1=B

N-—1
=S @— | oD (—era @, )dS;

|&l=B
=G, y) — G,y .

By the hypothesis (1.2) the integrand of G, is estimated by

oy NI(v, + B)! sr+Ba—k YN —k
S P e TR Ay TR

< CCl+Y(z1)° N Tg’ (% ‘f]; B:
Taking another couple of constants C, and C, we can estimate this by
C.Cl**er 1 N1 (1 + [e)™.
By the definition of the number N, we have
TIGN! é Cla+ﬂl[6](lﬂl/p)l7[(lrl/p)lfl(a—f—&/p)lrl

with a constant C independent of «, 8@ and 7 < a. Hence we have an
estimate of type

(1.5) |Gz, Y)| < CCl* || g|1#Ve" 6, = max(1/p, o + d/P) .

>]E |Ir+ﬁ|—k| E |m+—p(N—k)+6[r| .

Similar estimate holds for G,(x, ¥). Since U is a compact set of 2x02\ 4,
one can find a direction 4, 1 <% < n, such that |z, — v,/ =d > 0 for any
(x, ¥y) € U and finally we have the estimate

(1.6)  sup [DID{KG, vl < CCIHlaleg|W® , a, ge 2t ,

where the constants C, and C, are independent of « and gB.
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PrOOF OF THEOREM 1.2. We first remark that for fe C(R2'), 2' is a
relatively compact open subset of 2, and we have

( i )C l+i(z 1)’ Vol{supp f}
X sup |Di(1 — H¥f(w)| ,

A7) |Dfe D)f@) = 3

T=a

where the constant C depends only on 2" and N = N(z) = [(0|z]| + my +
n + 2)/2]. Indeed, we have

Dsa(w, D)f @) = (20" % (‘;)ﬁe“’-"'”sfa(,,(x, OF W)dyde

+r=a

= @™ 3 (‘W’)Sgem-ma + 181 a (@, &)1 — 4,7 Dif (y)dyde
which gives the estimate (1.7).

Now we take u € ¥’'(2) which is in G* in a bounded neighborhood V'
of z,e€2. Let U be a neighborhood of z, such that U< V. There is a
positive number d such that 0 < d < dis(U, R*\V). Let {g}iz, be a
series of functions in Cg°(V) such that g¢,(x) =1 on {x;dis(z, U) < d} and
|D&gy(x)] < C'a) if || <1, where the constant C is independent of I (cf.
[5]). Then we have for x € U

(1.8)  Df{a(x, D)u(x)} = DH{a(x, D)gu(x)} + D:‘SK(w, N1 — g iu(y)dy .

By using (1.7) we have

| Dza(z, D)gu(x)| = TZ (f;)C el (z 1) §16133|DI(1 — H¥{g(@)u@)}| ,

+r=a
where N = [6|z] + my + n + 2)/2]. Taking I = 2|a| we have

|D:a(x’ D)gzu(x)l é Clia|+1 Z ’Z.I(o-f-aa)lrllp),]alrl é C2la|+1[almax(a,a+aa)la[ .
T+r=a

By Theorem 1.1, the last term of (1.8) is in G% in U, 6, = max(1/p, o + 8/0).
Thus a(x, D)u is in G% in U, where 6, = max(s, ¢ + s, 1/0, 6 + §/p).

We only verify the case (4), the other cases being treated similarly.
Namely, we assume s = max(1/p, /(1 — §)). Then we have s = o + s
and s = ¢ + /0, which proves the assertion (4).

2. Symbolic calculus. Let a(x, &) € Sy (2 X R™) and b(x, &) € S/ ,(2 X
R™). Let 2" be a relatively compact open subset of 2 and take & e Cy(RQ)
so that % =1 on a neighborhood U of 2’. Then the symbol of the operator
r(x, D) = a(x, D)hb(x, D) is given by
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2.1) (@, §) = a(@, D + Hh(@)b(, £)
= o] | erraw, ¢ + Dhwbi, Havan .

7

We set

alsN

,"N(x’ 5) :]2 'C%a'(a)(w’ E)b(a)(w, S) ’ N = 0, 1’ ctt .

Then we easily see r"(z, £) e Sy, (2XR"), m =m' + m", N=0,1, ---.
THEOREM 2.1. We have
r(x, D) = r¥(, D) + F*(@x, D) in Q,
where F¥(x, D) can be written as a sum of two operators, F¥(x, D) =
FY + FY. FY is an integral operator from C=(2') into G°(Q') with

kernel FY(x, ), (x, ¥) € (2.%X2,), 0§ = max(1/p, 6/(1 — ). F¥ is a pseudo-
differential operator with symbol FY(x, &) satisfying the condition

F) | DLFN(w, O £ CONTFTNIYI 17| g|ms+r=te-nv=oir

X E ( B)IT |aa|r|l E 'J]ﬂ—rl-l-ﬂz]rl
=SB\ T
m, = max(m, 0), t€ 2, || = B (cf. (1.3)).
More precisely, we can write

DiF(x, &) = 3, <B>u'(x, &),

tSA\T

where each u'(x, &) satisfies an estimate of type
(F') ]azur(x’ E)] é COCINHT'WIN! 07!B!dz.!aélE]m++n—(p—8)N—ply[+d|ﬂ—rl+621r| ,
xeQ, |g|=B.

Proor. First we choose cut-off functions #,(x)eCy(R), =1 on the
neighborhood U of 2', with support in a fixed compact set. Moreover,
we assume
(2.2) |D*hy(z)] < C'a)y, |a| =l +mi+n+2, 1=01,---,
where the constant C is independent of I. We express F(x, &) = r(x, &) —
rY(x, &) by
(2.3) F"(z, &) = r(x, & — n(x, &) + rix, & — ri'(x, &) + ri(w, &) — r¥(x, &)

= T%(xi 5) + ’r%(xy S) + r?(x, 5) ’
where 7r,(z, &) = a(x, D + &h,(x)b(x, &) and
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ri(w, § = 3 —a(@, OD: ()b, &)

We note that 7i(X, &) =0 in 2'x R". Let K,(z, ¥) and K,(z, ¥) € 2'(2 X Q)
be the distribution kernels of a(x, D) and b(x, D), respectively. Then for

u € C(R2) we have

rita, Dyu(w) = | K@@, ) — @) [ K, vut)dy}dz
= |([Kute, 202) — WM, w12 Juwrdy -
Hence the kernel of rj(x, D) is given by

(2.4) Ki(z, y) = SaKa(x! 2){h(z) — M(2)}Ky(2, y)dz .

This is in G/ in Q' X Q' uniformly with respect to &, 1 =0,1, .-+, (cf.
Theorem 1.1), and so we shall use this as if it is not depending on I.
Next we observe ri(x, £. We have for z, £e 2" X R"

riw, ) = @) Jee o, ¢ + 1) — 3 Loa®a o jutw, oavdy

where we have written u(y, ¢) = h,(y)b(y, £). We shall need the following
cut-off functions X;(¢) e C3(R"), § =0,1, -+, such that X;(¢) =1 for |&| <
1/4, X;&) = 0 for |£| = 1/2 and [X{(¢)| < Cla! for |a| < j + 1, where the
constant C is independent of j, 7 =0,1, ---. By using X;¢) we divide
ri(z, &) into four parts:

i@ 9=y |[o e o e4m - 3 Lo, on o Loutw, v

B3

+em™ 5 2, €>§§e“”"”’””?"["f (%) —1]u<y, Sdydy

alsN ¢!

@ ferra, e+ 1= ) [1-4($EL) futw vy

+(27r)“"§8 K, E+77)[1— ( )J <5+77)u(y, £)dydy

=I1,(w, &)+ L(w, &)+ Ly(w, &)+ I(x, &) .

Concerning I,(x, &), we have

Dﬁaﬂl(x, 5) = (272')"”% (f)(;)x& iz—y,n) 2

N+1 S (1—t)
al

xals (z, s+tv>dw:+ﬂ-faz-ﬂ[x,- <F771>“(y’ ) Jdvde .
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We have |£]/2 2 |¢ +t7] =3]¢|/2 and |7]| = |¢]/2 when X;(7/|¢]) # 0 and
0 <t<1. By using this and taking j= N+ |v|+1and Il =N + |B8],
we have an estimate of type

(2.5) | Do (e, )| <CLCIHTINLvIgLofg[min—lemdvelrsslfl | pe ', |¢=B.

Next we consider I(x, £). We have

B\[7\1
8 — _—_qlats) — X
DxagIz Z Z < ></4‘> a! a(r)‘H‘ (33, E)I:Su&+fg)—r)(x ]$| ’ S)x:(y)d?/

lalSN ;‘é# T
—_ u(g+p—r)(x! 8)1
7
+ Z<B>< )1 & 8 3 ( #)Se%’"” Ui, &)
L) al

§
27£0

awy (7
X aex,(_| ‘] )dydn ,
where
Xi(x) = (27:)“"Se“”’7>7(,-(77)d77 .

Noting that ij(x)dx = X;(0) = 1 and that the other moment of X; is equal
to zero, we see that the first sum on the right hand side is equal to

Y —
5 5(8)0 ) heere o, 5 A= e
lalsN Zé? T ¢ al lkl=NF1—|a| K!

X UG ern (@ — ty/|€], A — OV dEX(y)dy .
We have by the definition of X;, 7 = N + |7v]| + 1,

[lvtwidy < crmoar, JalsN+1.

We recall that we have taken /= N+ |g8|. Then we have |a+8—7+k|=
N +|B]+1 and noting that suppaiX,(7/|¢)c{l¢l/4=InI=1£l/2}, v#0, we
have finally

(2.6) |Dioil| = CCNI«tBINLoy 1 B1°|g|mle-aW=plritaltl = peQ', |£|= B,

where the constants C, and C, are independent of N, B and 7.
Now we consider I,(x, £). We have

7
DI, §) = (21" 3, (f ) #)Sgem "Pail@, & + 1)
BT

xor|[1= ()] [1 = (5L Juo-otw, ) dudy
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o BY[T\[7— & N'1 _
<68 (OB Pt 00

u
1s7-0
X (=) Do (y, )y,

where

Hopesiy @ = 9, 8) = | oo soore {1 1, (5 %))

X [1 - Xj(ﬁlz—l”)]aﬁfi(w, £+ 17>}77“1771‘”"2“"””d77 .

Observing that the support of the integrand is in the domain |7| = |¢|/4
and |& + 7| = |£|/4, we have the estimate

| He e, @ — 9, §)] = CVFITAHITH gy — N1 - o g Vmelrd

where the constant C is independent of N, ¢ and z. On the other hand,
since we have takenl = N + |B|and z £ B3, |a| = N’, we have an estimate
of type

(=400, (1, &) < CCIFHHAINIAL(8 — T)1°
X [3 ‘T I]!o|§ }m"*plll—i—ﬁ(N—f-Iﬁ'"t)+6|'r|) .

From these estimates we have
(2.7) | DioLL;| = CCMH TN oy 1 glo| g~ a-ov=elrl

x>, (6)[3 [z (]1e|glotesi+atian
AN
Finally we shall consider I(x, £&). We rewrite
L(w,8) = (27r)*"“e"<""’”>a(w, & + Plh(y) — h(y)]b(y, Edydy

- e {ervat, & + @) — L@, 9L )dvdy

H
— @n | [eerrat, £ + D) — MW@ @

<[ 1= () [1 - m(EE) Jawan
st v )]

x[l - x,-(f—l‘;_’/ﬂdydn

= IA,x - I4,2 - I4,3 + I4,4 .
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We can easily see that I, ,(x, D) is an integral operator with kernel in
G2 in Q'x 2" uniformly with respect to I, ke Z, (cf. (2.4)).
Next we have

DL, = @ 5, (7)) [ermn + ey
LEY

Xalfe, & + (1 = 40 (7L )hw) — @bty ) dydy

By taking ¢ = q(z) = [(|@ — 7| + N)/2], we have an estimate of type

(2.8) | DLGLL o, &) £ CCIHIFHTIN oy Blo]g|metnlomdNelrioldl
reQ, |¢gl=zB.

We can handle I, (x, &) similarly as in I(x, £). It remains to consider
I,,. We have

DL o, &) = 2 5, £ ([ + iy ate e+ )

xt(EELN 1 - (L) Ja = a)r @by, O)duds

Taking r=[(|B— 7|+ dlc| +s+ n + 2)/21 — )] depending on 7 and
s=0,1, ---, and taking k& = 2r, we have the estimate

(2.9) [ Luo(®, I < CCrHi(s + |10 g7,
xe?, |lg|l=B, seZ,.

By virtue of (2.9), the kernel of I, (x, D) given by
L@, 9 = @) {e 1, (a, £)d

is in GYQ.x 2)), 6 = max(1/p, o/(1 — §)). Indeed, we have
DD (0 ) = @ 5, () [er e oL o, s

and we have the estimate (taking s =|a— 8 + 7))
| D:DIL (%, 2)] = G + 717972, (2, 2)e2'X 2",

where the constants C, and C, are independent of a,veZ!. Summing
up, we can split the operator as F'¥(x, D) = F{¥ 4+ FY, where FY is an
integral operator from GYQ’) into G?(2’) and FY is a pseudodifferential
operator with symbol satisfying the condition (F). By the above argument
the property (F') is obviously verified.
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3. Gevrey hypoellipticity.

THEOREM 3.1. (cf. [3, Theorem 3.1].) Let a(z, &) €Sy, (2% R") (see
Definition 1.2), and assume that there are positive constants ¢ and B
and — oo < m'<co such that
(H) la(x, &)l =z cl&™, zeR, |£]zB.

Assume also that for any compact set KC R, there are positive constants
C, and C, such that

H)  leg@, o = CCI*PalB!’|alx, &I |&|~'**1?, zeK, [¢|=B.
Then the operator a(x, D) is Gevrey hypoelliptic of order 6, 6 = max(1/p,
o/(1 — 9)), that 1s, if e &' (2) and a(x, D)u is in G* in Q', 2'CQ, then
u 18 also in G* in Q' for s = 6.

For the proof we need two lemmas. We first define the symbol of
a left parametrix of a(x, D) as usual by:

(3.1) b, &) = l/a(x, &), xe2, |£/=B,

(32) bi(xy f) = _bo(wr E)1s|a2[:s:i b;'a—)lala(a)(w: 5) y X eR ’ 15{ ZB ’ .7 = 1: 2’ ttt e

Take a function X(¢) € C*(R") such that X(&) = 0 for || < B and X(¢) =1
for |¢| = B + 1, and set

b"(x, &) = 1(E) 3 b, &) -

Then we have b¥(z, &) € S7; (2 X R™).
LEMMA 3.1. Let Q' be a relatively compact open subset of 2, and take
a function heCy(Q) such that h =1 in a neighborhood of 2'. Then we
have
b (x, D)ha(x, D) = I + R¥(x, D) in 2,
RN(W, D) = R{v + Rév ’
where RY s an integral operator from C=(2') into G°(Q') with kernel

Y(x, y) and RY is a pseudodifferential operator with symbol RY(x, &)
satisfying the conditions (F) and (F') in Theorem 2.1.

Proor. By Theorem 2.1 we have
b¥(x, D)ha(x, D) = r"(x, D) + F¥ in Q'
where the symbol of »¥(x, D) is given by

N

@ &) = 3 31 (3 b O)Jaw(®, 9, we@, (g2 B.

k=0 |a|=k
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By the definition of b;(z, &), 7=0,1, --+, we have
¥, &) =1+ r"(x, 8, €2, |£|= B,
X(@)r¥(w, &) € Spts (2 x R™) .

All the symbols of the class Sr;*~?7(Q"x R") satisfy the conditions (F)
and (F'). Hence we have the assertion of Lemma 3.1.

LEMMA 3.2. Let RY(x, y) be the kernel of the operator RY(x, D) given
wn Lemma 3.1. Then

2, Y) €GP X QN , 4={x x);rec},
where 6 = max(1/p, /(1 — §)).

PrROOF. For simplicity we assume N is so large that N= (m, + n + 2)/
(0 — 8). Let U be a relatively compact open subset of 2'x02'\4. We
shall estimate

sup | D;D}RY (x, y)| .
U
By virtue of the construction of RY and by the fact 6 = 6,, as in the

proof of Theorem 1.1 the problem is reduced to estimating each term of
the form

I = (e roget(—gyus(e, £)de

— (xt — yi)—[(la—ﬁl+lrl+ﬂlﬂ—fl+r’2|Tl)/P]Sei<z—v,€>

X Df{lapi+iri+olp=cl+atisDolf ea=p( — eYry (g, £)}dg ,

for a fixed 7, 1<t <n and 7 £ B = a.
By using the property (F’), we have an estimate of the form

(3.3) || < CCMH“HIN1v1Ye(a — B)1VPR1°T1 (B — T)1er 1P .
For the right hand side of (3.3) we have an estimate of type
(@ — BRI TI(B — T)1Pr 7P < C*l(a — 7)1 i otorta¥le)
Observing that we have
6 = max(1/p, o/(1 — 8)) = 1/p, ¢ + d/p, ¢ + ad + &*/p .

The last term is estimated by C'*'a!’. Thus we obtain an estimate of
the form

(3.4) sup | D;D}R} (x, y)| < CCI*al®v1e .
U

We remark that we must take ! = |a| + N in the construction of R.
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However RY¥(x, y) is in G° in 2'x£2' uniformly with respect to I, I =
0,1, ---, and so we may use the operator RY as if it is not depending
on [.

PrOOF OF THEOREM 3.1. We are considering the equation
alx, Du = f, uwe&'Q), fez2'Q),

where f is assumed to be G°* in 2’cc®, s = ¢. For simplicity we shall
prove the case where s = 0 = max(1/p, /1 — p). It is well known (cf.
[4]) that  is in C<(2’) under the hypotheses of Theorem 3.1. Now take
an arbitrary point xz,€ 2’ and a small neighborhood U, = {x: |x—x,|<d}C L',
d>0. Let peCy(U,) be such that ¢(x) =1 on U,,. Then we have by
Theorem 1.1

a(x, D)pu = f — a(®, D)1 — @)u = f,€ C*(Q)NG(Uyp) -
Next take N sufficiently large so that N = (m, + n + 2)/(p — 8), and take
heCy(R2) so that h =1 on 2'. Then by Lemma 3.1, we have

b"(x, D)ha(x, D)pu = @u + RY(x, D)pu = b"(x, D)hf, ;

namely, we have an integral equation with respect to @u:

(3.5) pu = b"(x, D)hf, — SR?(x, NeWu(y)dy — S 2 (@, V)pW)u(y)dy

= g(x) — SRéV(x, NPYu(y)dy ,

where g(x) is a function in G°(U,,). We set R(x, y) = RY(x, ¥) and denote
its symbol by R(x, £). Let w =U,, and assume 0 < d < 1. We denote by
w, the open set of points in @ at distance > ¢ from the complement of
w denoted by ®w°. Then w,= @ if ¢ > 1/4. We want to prove that there
exists a constant B such that for every ¢ > 0 and every integer 57 > 0

we have

(3.6) " sup |Du(x)l £ B'"'** if |a|=7,
Olale

and

(3.6) e sup |(1 — A)*Ay(x)] < B if k<7j.

O)ks
It follows from (3.6) or (8.6)' that « is in G in w. Indeed, let K be a
compact subset of ® and choose ¢ > 0 so that KCw, Setting j = |a|
and ¢ = ¢/|a| in (8.6), we obtain

sup |D*u| < sup | D*u| < (B/c?)! ||,

which proves that u e G%(w).
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We shall prove (3.6) by induction on j. This is obviously true when
7 = 1if B is sufficiently large. Assuming that (8.6) is proved for j —1,
j = 2, we shall show that (3.6) follows for j if B is sufficiently large
and independent of 5. To do so we only have to estimate the derivatives
D=y with |a| = 7 (§ = 2). Differentiation of (3.5) gives

D‘;SR(% NeWu(y)dy | ,

where A is a positive constant independent of j. By observing the
construction of R = RY we have

¢ sup | D*u(x)] < A7 + &% sup

®je TEW e

@1 Di|R@ wewnwiy = ( 5 |{Kite, w052y

+ (R, v)Dspudy -

By virtue of the property (F') we have

Kito, 1) = 5 7 ) Joemouta, e

T<p

First we shall treat the last term in (3.7). From the proof of Lemma
3.2, we may assume that there is a constant C > 0 such that
(3.8) | Dz, )| = C'"'*y1% g — y| e o (2, y) e Usx U\ 4 .

For |a| = j, rewrite a = a’ + a” with |a'| =37 — 1, || =1. We have

e sup | D5 Rz, D5 (pwyuwiy |

sz

< ¢ sup |D7u| + &sup [ Dy'R@, DY (pwuw)d|

@(j-1)e rveeg 1 Joigye

|R@, »Dse@u@)ay| = & sup

(Uje

=1+ 1.
By assumption we have
I, £ £C'C*B7 ,
where C’ is a small constant depending on w. Denoting symbolically by
D} the differentiation of order £ = 0, we have

i1
I, <% 3, sup

k=1 zewge

J—1
+ %> sup

k=1 zewje

S D'R(z, y)Di}"“ludS,.
0 (j—k)e

D" R(x, y)Dj™*u(y)dy

S‘"(j—k—l)s\‘"(i-—k)e
+ &% sup S D;R(x, y)w(y)u(y)dy|
TEWj e w®

= 2,1 + I2,2 + I2,3 .
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By the induction assumption and by using (3.8), we have
I,=Cé kz_‘, 1k 26H0(Jog) ~H+/0 Bik < e"’CECB”if__‘tl (C/B): .
Similarly we have
L, < £C'C°BY g (C/B)y

and

L, < C°C .
Hence if we take B greater than 2C we have an estimate of the form
(8.9) I + I, £ C(C*BY + C*Y), |al =17 .

We want to apply the same method to estimate the first sum on the
right hand side of (3.7). By virtue of the property (F') we have

Ky, y) = 3, (ﬁ )Se“"‘”’”u’(w, &)ds .
TS\ T
Setting
K;(x, y) — Sei@—y,E)ur(x’ E)(l + IE'2)—(5|ﬂ~r]+a2|rl)/2d§ ,
we have the following estimate as in (3.8):

(8.10) |DjKj(w, )l = C™HHRLy 1z 1% — y |7 (@, y) e Uy X Ug\4 .

Our purpose is to estimate &7x(3.7) in the form

if1\ & [k
(3.11) e’jé(Z)Z(l)sup

=0 TEW;
Je
k=]8]

SK;(:E’ y)Di“"(l - Ay)(a(k—t)+a2t)/2(¢u)dy ,
l=|z|

where 7 = |a|. As before, we have for 1 <k=<jand 01k,

(: (" su
k l a:emljas

< <.7 )(Il‘;)ck+1k!al!aa sup | DI (1 — 4,)0%-0 0y 0]

|Kite, D1 — 4)0e- w02 pu)dy

k W(j—1)¢
j k T j—k—1 (3tk—1)+0821) /2
+ {2 )0 ) sup S  D,Ki(, )Di*(1— 4,) (pw)dy
TEWje @G1)e
=g+ Iz,k,l .

By assumption we have
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80.1' Ll _S_ C'Ck+lBj( Z ) < llc >k!dl!aasﬁ((1—5)k+d(1—5)1)B—-(1—5)k—1+6(1—6)l .

Since ¢ < 1/47, we have

j!k!al!aa /_1_)0((1—-5)k+5(1—a)L)B(m_a”
(G — Bk — DI\ 45
< CCk+1BjB—(1—5)k—1Ba(1—a)t .

Thus we have

eojIl,Ic,l é Cng+IBjB—(1—‘”k—l

o0 ,io I,.. < C.CBI[C/B" ] .

Hence if B“2* < 2C, we have

(3.12) E;g L, =<CCB.
In the same way as we treated I,, we have
L
<24V E ., ey gy ssmaas

DiKi(a, 9)Di (L~ 4 () dy|

S“'(i—s—-l)s\‘”(j—a)s

GGTE
Y’ )giﬂ

i\ k
+(k>( l)i“w‘i

EIzl,k,z + I'zz.k,z + I23,k,l .

We have as before

[, DitKsta, 1)1 — a)ps-vommipuydy |
@ke

011'21]” < CC"“B’( )( )B 1—-8)k (k+1 —5k—1)+3820)6

—1

X B—all—a)lk 1 al' a3 Z (C/B)as' ﬂeaﬁ(es)f—ﬂ-l)/p

8=0

< C.C*'BiB~4~%% = C,CB[C/B(1 — §)]* .

Hence we have

(3.13) &3 S I, < OB

k=1 1=0

if B"~?* > 2C. In the same way, we have an estimate of the form

(3.14) 3 S (T2, + Ih,) < 2C.CBY .

£
1l
-
|
]
o
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Combining the estimates (3.9), (3.12), (3.13) and (3.14) we have
&% sup | D*u(x)| < A+ + C,C(C + 5)B? + CY) .

e
Hence if we can take B so large that
At 4+ CC((C + b)B? + C7) < B
the proof of (3.6) is completed. This condition is fulfilled for every j if

B = max(1, QC)V*?*, 24, A + C.C(C + 6)). q.e.d.
4. Examples. We consider the following differential operators:

(4.1) P =—2dde* +1 in —o0 <g<oo,

4.2) P, = 2*(0/oy — ¢*/ox*) +1 in R:,.

We can easily verify that the characteristic polynomial Pz, &) = a2 + 1
satisfies the conditions (H,) and (H,) in Theorem 8.1 with ¢ = p =1 and
o = 1/2. Hence we have § = 2. We have a solution

xe ™" x>0,
0 x=0

of the equation P(x) = 0 and v(x) is in G? in any neighborhood of the
origin of R'.

We can also easily verify that Pyx, y; & n) = v'(19 + &) + 1 satisfies
(H) and (H,) with ¢ =1, o =1/2 and 6 = 1/4. Hence we have § = 2 also
for P,., We have a solution of the equation P,u = 0 as a function ex-
pressed by u(zx, ¥y) = v(x), where v(x) is the function given above.

We remark that we have only 6 =1/(0p — 6) = 4 by the result of [3].

v(x) =
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