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1. Introduction and the statement of results. The purpose of this
paper is to study the relationship between the Stiefel-Whitney homology
classes of mutually transverse Euler spaces and their intersection in an
ambient PL-manifold. Besides manifolds, real analytic spaces are typical
examples of mod 2 Euler spaces (cf. Sullivan [11]).

Let (A, B) be a pair of a polyhedron A and a subspace B of A such
that rank H*(A, B; Z) < °o. Denote by e(A, B) the mod 2 Euler number
of the pair (A, B). If B Φ 0 , we write e{A) = e(A, 0 ) .

Let X be a locally compact ^-dimensional polyhedron. The polyhedron
X is said to be a mod 2 Eulder space (cf. [1], [5]), if the following hold
for the subpolyhedron dX:

(1) dX is (n — l)-dimensional or empty.

(2) β f X X - ^ -

( 3 ) if dX Φ 0 , then e(dX, 3X - x) = 1 (xe dX).
Let if be a triangulation of a polyhedron X. Denote by Kf the

barycentric subdivision of K. If X is an %-dimensional mod 2 Euler
space, the sum of all fc-simplexes in Kf is a mod 2 cycle and defines an
element sk(X) in Hk(Xf dX; Z2), which is called the A -th Stiefel-Whitney
homology class of X (cf. [1], [5]). We put s*(X)=so(X)+s1(X)+ +sn(X).
We define the mod 2 fundamental class in Hn(X, dX; Z2) to be [X] = sn(X).
If X is a Z2-homology manifold, then we know that s*(X) = [X\Γ\w*(X)9

where w*(X) is the Stiefel-Whitney cohomology class of X.
Let X be an ^-dimensional polyhedron and let K be a triangulation

of X. If the union of all w-simplexes are dense in X, the polyhedron
is said to be pure ^-dimensional. If X is a mod 2 Euler space of pure
dimension PL-embedded in a PL-manifold M with dXadM and X — dXc
M — dM, then X is called a proper PL-subspace in M. Let a and b be
homology classes in H*(M, dM; Z2). We define the homological intersec-
tion b y α 6 = [MlΓKαMlΠΓαUαAΓlΠΓft).

The main result of this paper is the following:

THEOREM. Let X and Y be mod 2 Euler spaces of pure dimension
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which are proper PL-subspaces in a PL-manifold M. Let f: X-> M,
g:Y-^ M and h: Xf) Y-+ M be the inclusions. If X is transverse to Y,
then Xf\ Y is a mod 2 Euler space and the following holds:

2. Transversality. Let X be a polyhedron and let K be a collection
of PL-balls in X. We write \K\ = Uffβ*tf. The collection K is called a
ball complex structure on X if the following hold:

(1) X is the disjoint union of the interiors Int σ of all PL-balls σ
in K.

(2) If a is a PL-ball in K, then the boundary dσ of <τ is the union
of PL-balls in K.

Now we recall the definition of transversality according to Buoncristi-
ano, Rourke and Sanderson [3]. Let K be a ball complex structure on a
PL-manifold M and let X be a subpolyhedron of Λf. We say that X is
collarable in M, if there exists a collar c: (3Λf, XΓ)3Λf)x/^ (M, X). The
polyhedron X is transverse to K if Xf)σ is collarable in # for each PL-
ball σ in K. Let X and Y be subpolyhedra in Λf. The polyhedron X is
transverse (or mock-transverse) to Y in M, if there is a ball complex
structure K on ]M with a subcomplex L such that \L\ —Y and that X
is transverse to if (cf. [3]). By McCrory [9], we know that for col-
larable polyhedra X and Y in an ambient PL-manifold, the polyhedron X
is transverse to Y if and only if Y is transverse to X. Other definitions
of transversality were given by Armstrong and Zeeman [2], Stone [12]
and McCrory [9]. These definitions are equivalent if subpolyhedra are
collarable in an ambient PL-manifold (McCrory [9]).

Let X be a subpolyhedron and N be a PL-submanifold in a PL-
manifold. The polyhedron X is block transverse to N if there exists a
normal block bundle v = {E, i, N) of N such that the restriction (XflE,
i\(XΠN), XΠN) of v to XίlΛΓ is a block bundle over Xf]N (cf. [10]).
Then by [3] we have the following:

PROPOSITION 2.1. The polyhedron X is block transverse to N if and
only if N is transverse to X.

We need the following to prove our theorem.

LEMMA 2.2. Let X and Y be collarable subpolyhedra in a PL-manifold
M and V a proper PL-submanifold in M. Suppose that X is transverse
to Y and V is transverse to X\JY in M. Then XΓ\V is transverse to

V in V.
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LEMMA 2.3. Let X and Y be collar able subpolyhedra in a FL-manifold
M and V be a proper FL-submanifold in M with a normal block bundle
v = (E, i, V). Let Xbe transverse to Y and let X\J Y be block transverse
to v. Then XΓ\V and YΓ)V are transverse to Yf]E and XΠE in E,
respectively.

PROOF OF LEMMA 2.2. By assumption, there exists a ball complex
structure K which contains a ball complex structure of Y and there
exists a subdivision K' of K which contains a ball complex structure of
X\J Y such that X and V are transverse to if and K', respectively. Then
for each Δ in K, we see that Vf]Δ is transverse to XΓϊΔ in Δ. By the
symmetry of transversality, we see that X[]Δ is transverse to Vf)Δ in
Δ. Then there exists a subdivision L of K such that X is transverse to
L and that L contains the ball complex structures of Y and V. Conse-
quently we see that J n F is transverse to L\V and contains a ball
complex structure of YΓ\V. Hence XΠ V is transverse to 7Π ^ in F.

q.e.d.

PROOF OF LEMMA 2.3. By Proposition 2.1, the PL-manifold V is
transverse to XU Y in M. Then, by Lemma 2.2, the intersection XΠ V
is transverse to Yf] V in V. In view of the definition of trans versality,
there exist a ball complex structure K on V and a subcomplex L such
that \L\ = YΠV and that Xf]Vr\σ is collarable in σ, for each PL-ball
σ in K. Let E(σ) be the block over σ of the block bundle v. Let K(E)
be a ball complex structure on E which consists of blocks E{σ) and their
faces for σ in V. Define a subcomplex L(E) of K(E) by L(E) = {Δ e
K(E)\ΔdY}. Then \L(E)\ =YnE and XnFflΛ is collarable in J for
each PL-ball Δ in K(E). Hence Z n V is transverse to YpiE in #. We
see that Yf] V is transverse to XnE in E in the same manner, q.e.d.

TRANSVERSALITY THEOREM 2.4 ([3], [9]). Let X and Y be collarable
subpolyhedra of a FL-manifold M and let Xf]dM be transverse to YΓidM
in dM. Then there exists an arbitrarily small ambient isotopy ht of M
such that ht \ dM is the identity for all t and that ht(X) is transverse to
Y in M.

The first half of our theorem is the following proposition:

PROPOSITION 2.5. Let X and Y be mod 2 Euler spaces which are
proper FL-subspaces in a FL-manifold M. If X is transverse to Y, then
Xf]Y is a mod 2 Euler space with the boundary 3Xf]dY.

To prove this proposition, we rewrite the definition of mod 2 Euler
spaces in the following form:
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LEMMA 2.6. Let X be a polyhedron and let dX be a subpolyhedron
of X. Let K be a ball complex structure on X and let L be a subcomplex
of K such that \L\ — 3X. The polyhedron X is a mod2 Euler space
with the boundary dX if and only if the following holds:

(1) *{τ e K\τ ^ σ] is even for σ in K — L.
( 2 ) *{r 6 K\τ ^ σ) is odd for σ in L.
(3) #{τ e K\τ Ξ> σ) is even for σ in L.

PROOF OF PROPOSITION 2.5. Let K be a ball complex structure on
M and let L be a subcomplex such that \L\=Y and that XΠσ is
collarable in σ for each PL-ball σ in K. By induction on the codimension
of σ, we easily see that Xf]σ is a mod 2 Euler space with the boundary
Xpidσ. This means that XΓ\σ = Xf]Yf]σ is a mod2 Euler space for
each PL-ball σ in L. By Lemma 2.6, we see that XίΊ Y is a mod 2
Euler space with the boundary X n 3 Γ = : d X n d Γ if Y is a mod2 Euler
space. q.e.d.

3. Characterization of Stiefel-Whitney homology classes. Let ζ =
(E, i, A) be a block bundle over a polyhedron A. Denote by E the total
space of the sphere bundle associated with ζ. Let S8*(E, E) be the
bordism group of compact mod 2 Euler spaces. We can define a homomor-
phism eξ: 58*(E, E) —> Z2 by using the transversality theorem. (See [6]
for details.) Let Uς be the Thorn class of ξ and let w(ξ) be the dual
Stiefel-Whitney cohomology class of ξ.

We have the following proposition ([6; Lemmas 3.2 and 3.3]):

PROPOSITION 3.1. For every map φ\X-*E in 9$*(E, E), we have
(UξUί*"1^), φ*s*(X))=eξ(φ, X). Furthermore, the dual Stiefel-Whitney
cohomology class w(ξ) is completely characterized by this identity.

Let M be a PL-manifold and let M and M be codimension zero sub-
manifolds of 3M such that dM = MUM and Mf]M = dM = dM. Let X
be a mod 2 Euler space PL-embedded in M such that dXaM and X — dXc:
M - 3M. We denote by /: (X, dX) -> (AT, M) the inclusion. Let ifl^M, M)
be the differentiable unoriented bordism group and let 93*(Λf, Λf) be the
bordism group of compact mod 2 Euler spaces. We have a natural
homomorphism b: 5ft*(ikf, Λf)->S3*(ilf, iίί). Now we define homomorphisms
e>:33*(Λf, M)-+Z2 and e7 = β><>&. Let 9:F->iki be a map in SB̂ CJIf, M).
Then there exists a PL-embedding f: (V, dV) -> ( I x ΰ f c , MxDk) for fc
sufficiently large, such that ψ ~ φx{0}. By using the transversality
theorem, we may assume that ψ(V) is transverse to XxDk in MxDk.
Define e> by ef(φ, V) = e(ψ(V)f)XxDk), where e takes the mod2 Euler
number. The homomorphism ef is well-defined by the transversality
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theorem and Proposition 2.5.

PROPOSITION 3.2. Let f:X->M be as above. For every map φ:
V^M in 31ΛM, M), we have (([M]n)-\f*s*(X)nw(M))f φ*s*(V)) =
ef(φ, V). Furthermore the homology class f*s*(X) is completely charac-
terized by this identity.

PROPOSITION 3.3. In the same situation as in Proposition 3.2, for
every map φ:V-^M in S3*(M, M), we have

PROOF OF PROPOSITION 3.2. Let ψ:-+MxDk be a map such that
ψ ^ φ x {0}. Then <([M] Π )'\f^{X) Π w(M)), t***(V)) = ( ( [ I x Z>*] n Γ1

((fxid)*s*(XxDk)f)w(MxDk), ψ*s*(V)}. Therefore we have only to give
the proof for the case where φ: V —> M is a PL-embedding and ?>( V) is
transverse to X in M.

Let y = (E, φE, V) be a normal block bundle of φ: V—> M" and let Z/̂
be the Thorn class of v. Then [£]n ϋl = φE*[V]. Since 8^(7) = [F]n
w*(V), we have

n Γ(/*

If we define fE: Xf] E-+E by fE(x) =f(x), then [E] n 9>ΓV
fE*s*(Xf)E). On the other hand, we know that φ*w(M)Πw*(V) =
Hence <([M]nr(/*^(X)ni(;(M)), φ*s,(F)> = ( ^ U ^ Γ
which is equal to e(XΠφ(V)) by Proposition 3.1. In view of the defini-
tion of ef, we have ef(φ, V) = e{XV\φ{V)). Thus we obtain the formula.
The uniqueness of f*8*{V) is clear (cf. [6, Lemma 5.3]). q.e.d.

PROOF OF PROPOSITION 3.3. We can inductively construct a cohomolo-
gy class Φ{f) = Φ\f) + Φ\f) + + Φ\f) in H*(M, M; Z2) satisfying
(Φ(f), φ*s*(V)) = ef(φ, V) for each (φ, V) in ^ ( M , M). We_define Φ\f)
in H\M, M; Z2) by Φo(/)(9>*«o( Vr)) = e/(9>, 7) for (^, F)in Ŝ (Λf, M) and Φfc(/),
A; ^ 1, in the same way as in [6]. The uniqueness of such a cohomology
class is also obtained and we have Φ(f) = ([M]f))~Xf*s*(X)C)w(M)) by
Proposition 3.2. q.e.d.

4. Proof of the theorem. In order to prove the theorem, we need
the following Halperin type formula ([4], [7]), whose proof can be found
in [8].

PROPOSITION 4.1. Let ξ = (E, i, X) be a block bundle over a mod 2
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Euler space X. Then ί*s*(X) = (s*(E)f) UJni^wiξ).

PROOF OF THE THEOREM. The case where X and Y are collarable
implies the general case. Thus we may suppose that X and Y are
collarable in M. Let p(f, g) = (([M]nTW*s^X)-g*s*(Y)nw(M))nw(M)},

We will prove that p(f, g) = eh(φ, V) for each (φ,V) in
fit). This implies our theorem by Proposition 3.2.

Let φ\ V—> Mbe a map in 9fc#(Af, M). We can choose a PL-embedding
ψ*:F—>ikfxDα for α sufficiently large that ψ is homotopic to φx{0}:
V->MxD" and ψ(V) is transverse to ( l U Γ ) x D α in MxDa. Hence
we give the proof only when φ\ V —> M is a PL-embedding such that ςp( F)
is transverse to JΓU Y in Λf. We thus assume that φ: V-+M is a PL-
embedding with a normal bundle v — (E, <pE, V). We have the following
commutative diagram:

X^— Xf]E< Xf)φ(V)
3χ , Ψx

ill
ΐ ί v

0 Qv x

Here all maps except φE: V —> E are inclusions and v(φx) = (Xn E, φx,
XΓίφ(V)) and v{φγ) = (YΓ\E, ψγ, YC\φ(V)) are block bundles. Let UE be
the Thom class of the normal block bundle v = (E, φE, V), that is, [E] Π
UE = 'ί'ί ^tV']. Let w(v) be the dual Stiefel-Whitney cohomology class of
the normal block bundle v. Note that w{v) = <p*w(M) U w*(V) and s*(V) —
[V]Γ\w*(V). Then we have

P(f, 9) =

^ix) u dm n )-1

flr;(!s#( 30 u w(M)

-'wiv) U 9>ί "V*([Af| n )-1flrHts,( 30

By the naturality of the Stiefel-Whitney homology classes and simple
calculation, we have

and
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Let Uγ be the Thorn class of the block bundle v{φγ) = (YnE, φτ, Yn<p(V)),
that is, [YnE]nUγ = φr*[YΓiφ(V)]. Then

UE U φ%~lw{v) U φVl

•( rn #) n {uE u ^Γ1

By Proposition 4.1, we have (8*(YnE)Γ\Uγ)Γ\φ*~1w(v(φY)) = <PY*8*(YΓ\

φ(V)). Noting that φ%~ιφ*w(M) = j*w(M) = w(E), we have

g) =

Since ΓίΊ^(F) is transverse to XΓ\E in ί7 by Lemma 2.3, we have
<([E] ΓΊ Γ W * * ( Γn y( F)) n w{E\ fE*s*(XΠ E))y = ^ ( Λ , XΠ ̂ ) by Pro-
position 3.3. In view of the definitions of egγ and eh, we have egv(fE,
Xf)E) = e(XnYf]_φ(V)) = eh(φ,V). Hence p(f, g) = eh(φ, V) for each
(<P,V) in SHiCM, M). By Proposition 3.2, we have (f*8*(X)*g+8*(Y))f)
w(M) = ^ s , ( l n F). q.e.d.
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