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1. Introduction. Let M be an n-dimensional Riemannian manifold
with the Riemannian connection V and the curvature tensor R. We denote
by V*R the k-th covariant differential of the curvature tensor field. A
linear isomorphism @ of the tangent space T,M onto the tangent space
T,M is naturally extended to a linear isomorphism of the tensor algebra
T(T,M) onto T(T,M).

If M is locally homogeneous, i.e., for each p, g€ M there exists a
local isometry ¢ of a neighborhood of p onto a neighborhood of ¢ which
maps p to ¢, then for any integer k£ = 0, the following condition R(k)
is satisfied:

R(k): For each p, ge M, there exists a linear isometry @ of T,M
onto T,M such that &(V'R), = (V'R), ©=0,1, :--, k.

In fact @ is given by @ = dg,, where ¢ is a local isometry with maps
p to q. Singer [11] dealt with the converse problem and he proved that
if a complete and simply connected Riemannian manifold M satisfied the
condition R(k) for a certain k, then M is homogeneous. Following his
proof, we see that if a connected Riemannian manifold M satisfies the
condition R(k) for a certain k, then M is locally homogeneous. In his
theorem, the minimum of such integers k& depends on M, but it is not
greater than n(n — 1)/2 + 1. Among others, he also posed the following
question: Do there exist curvature homogeneous spaces which are not
homogeneous? Here a curvature homogeneous space is, by definition, a
Riemannian manifold satisfying the condition R(0).

Many such manifolds seem to exist. The following are explicit known
examples:

EXAMPLE 1 (cf. Sekigawa [10] and Takagi [13]). Sekigawa constructed
8-dimensional complete and simply connected curvature homogeneous spaces
which are not homogeneous.

ExXAMPLE 2. Isoparametric hypersurfaces in a unit sphere. If an
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immersed hypersurface in a real space form has constant principal curva-
tures, then it is curvature homogeneous. It is known that there exist
hypersurfaces with constant principal curvatures in a unit sphere which
are not homogeneous (cf. Ozeki and Takeuchi [8], Ferus, Karcher and
Miinzner [3]).

On the other hand, homogeneous hypersurfaces immersed in a real
space form were studied by several authors and are completely classified
(cf. Nagano and Takahashi [6], Ryan [9] and Takahashi [14], [15]). Here
in connection with Singer’s previous question, the following questions are
naturally posed. In their proof, what level of homogeneity is essentially
used? Is it possible to relax the condition of homogeneity to the con-
dition of curvature homogeneity? So we consider the following problem
in this paper:

Determine curvature homogeneous hypersurfaces immersed in a real
space form.

Complete and simply connected Riemannian manifolds of constant cur-
vature ¢ are called real space forms. They are as follows:

(i) ¢ =0: The Euclidean space E" (R" with the usual inner product).

(ii) € > 0: The sphere S*(€) of radius ¢ ** in the Euclidean space
E™*' with the metric induced from E"*,

(iii) ¢ < 0: The hyperbolic space H"(¢). Let L™ be an (n + 1)-di-
mensional Minkowsky space with the inner product {z, y) = >,%, x'y* —
artiyntt, The hyperbolic space is defined by H"(¢) = {x € L"™; {x, x) =
1/¢, z~** > 0} with the metric induced from L*.

For the Euclidean space, putting known results together, we have:

THEOREM A. Let M™ be an n(=3)-dimensional conmected curvature
homogeneous space and let f be an isometric vmmersion of M" into E™*,
Then one of the following may occur:

(1) M is a flat manifold.

(2) M= s locally isometric to ST(¢) X E» ", 3<r=<mn, for some ¢>0 and
f 1s locally congruent to the isometric imbedding f of S7(c) x E™" into E**,

(8) M 4s locally isometric to M*k)x E*%, k£ + 0, and f s locally
congruent to the product immersion f,Xf,, where M*k) denotes a surface
of constant curvature £ (#0) and f, is an isometric immersion of M k)
into E* while f, is the identity map of E** onto E" 2,

For a sphere and a hyperbolic space, we obtain the following:

THEOREM B. Let M" be an m(=4)-dimensional connected curvature
homogeneous space and let f be an isometric immersion of M™ into S**(1).
Then one of the following may occur:
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(1) M" is a Riemannian manifold of comstant curvature 1.
(2) The immersion f has constant principal curvatures.

THEOREM C. Let M™ be an n(=4)-dimensional conmected curvature
homogeneous space and let f be an isometric immersion of M™ into H**'(—1).
Then one of the following may occur:

(1) M is a Riemannian manifold of constant curvature —1.

(2) M" is a Riemannian manifold of comstant curvature ¢ > —1
and f is totally umbilical.

(8) M" s locally isometric to S7(¢c) X H "(¢,), 1<r=<mn—1, 1/ec, +
l/e,= —1, ¢, >0, ¢, < 0 and f s locally congruent to the isometric im-
bedding f of S(c,)x H* "(¢c,) imto H™'(—1).

(4) n=4 and M* is locally isometric to the example comstructed
in Section 4 and f is locally congruent to the isometric imbedding given
wn Section 4.

The imbedding f: S"(c)x E*" — E**' in Theorem A (2) is given by
A, - em )X @l -,y ™) = @ -+, 2™, 9% -+, ¥""), where 30 (z) =
1/c. The imbedding f: S7(¢,) x H* "(¢,) — H"*'(—1) in Theorem C (3) is given
by f~((x‘, e, x'r—H)X (yl’ cen, yn—r+1)) — (xl, e, xr+1, y‘, ‘e, yn-—'r-i-l)’ where
i (@) = 1/e, and 3330 (%9 — (") = 1/e,.

In Section 2, we review basic facts about type numbers for hyper-
surfaces in a real space form and show that it is essential to study the
case of type number 2. In Section 3, we consider the case of type number
2 and introduce a useful operator—the conullity operator. We prove that
in S1) (»n = 5) and in H*(—1) (n = 6) there exists no curvature homo-
geneous hypersurface whose type number is equal to 2 (Corollary 3.4).

In Section 4, we construct a 4-dimensional complete curvature homo-
geneous space which is not homogeneous and construct an isometric im-
bedding of the manifold into H*(—1) whose type number is equal to 2.
In Section 5, we determine curvature homogeneous hypersurfaces in H*(—1)
whose type number are equal to 2 (Theorem 5.1).

The author wishes to express his gratitude to Professor K. Sekigawa
who gave him useful information on curvature homogeneous spaces.

2. Preliminaries. Let M"*'(Z) be an (n + 1)-dimensional real space
form of constant curvature €. An n-dimensional connected Riemannian
manifold M" together with an isometric immersion f of M into M"+(¢)
is called a hypersurface of M (¢). We assume that M is orientable.
We denote by & a field of unit normal vectors. Let A and A be the
second fundamental form and the shape operator of f corresponding to &,

respectively. At each point p» of M, the type number of fat p, denoted
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by t(p), is defined to be the rank of the linear endomorphism A of T,M.
We summarize basic facts about type numbers. For details, see
Kobayashi and Nomizu [4].

ProOPOSITION 2.1 (cf. [4, Theorem 6.1, p. 42]). For a hypersurface
(M*, ) immersed in M"\(¢),
(1) t(p) is 0 or 1 if and only if

R(z, )z = ¢{{y, 2)x — {x, )y} = CR(x, W)z, =, y,z€T,M.

(2) If t(p)=2, then ker A coincides with T5 and t(p) =n —dim T},
where

TS ={xeT,M; (R —¢R,)x,y) =0 for any yec T,M}.

PROPOSITION 2.2 (cf. [4, the proof of Theorem 6.2, p. 43]). For a
hypersurface (M", f) immersed im M (¢), suppose that t(p) =3 for a
peM. Let A be a symmetric linear endomorphism of T,M which satisfies
R(z, ¥)z — €R.(x, ¥)z = (Ay, 2> Ax — (Ax, 2)Ay. Then we have A = +A,
where A denotes the shape operator of f at p.

We will apply the above results to curvature homogeneous hyper-
surfaces in a real space form. Let M" be an n-dimensional connected
curvature homogeneous space and let f be an isometric immersion of M~
into M**&). We call (M, f) a curvature homogeneous hypersurface of
M~ &). If t(p) =2 at some point p of M, then by Proposition 2.1 (2),
the type number is constant on M. Therefore the following three cases
may occur:

(1) The type number is equal to 0 or 1 on M.

(2) The type number is equal to 2 at each point of M.

(8) The type number is constant on M and is not less than 3.

In the first case, by Proposition 2.1 (1), M is a Riemannian manifold of
constant curvature ¢. In the third case, by Proposition 2.2 and curva-
ture homogeneity, the principal curvatures of f are constant on M. Hence
we have:

THEOREM 2.3. For a curvature homogeneous hypersurface (M", f)
immersed in M (), one of the following three cases may occur:

(1) M is a Riemannian manifold of constant curvature €.

(2) The immersion f has constant principal curvatures.

(8) The type number is equal to 2 at each point of M.

We note that hypersurfaces with constant principal curvatures in
M(¢), ¢ =0, were completely classified by E. Cartan. Either they
are totally geodesic or they are the ones in Theorem A (2) if @ = 0 while
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they are the ones in Theorem C (2), (8) if ¢ < 0.

In order to show Theorems A, B and C, we are left to studying
curvature homogeneous hypersurfaces of the type number 2. We will
discuss them in the rest of this paper.

3. The case of the type number 2—Part 1. In this section, we
denote by M™ an m-dimensional connected curvature homogeneous space
and by f an isometric immersion of M into M"*(&) of the type number
2. By Proposition 2.1 (2), we have the orthogonal decomposition of the
tangent bundle:

TM=T"+T1",

where TS = {x e T,M; (R — ¢R,)(x, y) = 0 for any y € T, M} and dim T} = 2.
The shape operator A is reduced to the symmetric linear isomorphism of
T:. By the assumption of curvature homogeneity, for each p, g € M, there
exists a linear isometry @ of T,M onto T,M such that ®R, = R,. The
above decomposition of T,M is preserved under @, that is, @(T;) = T, and
O(T3) = T:. In particular, the sectional curvature of the plane T} coincides
with that of T3, and is denoted by k. We remark that £ = ¢. It is
known that the subbundle 7° is completely integrable and that their in-
tegral submanifolds are totally geodesic in M, that is, the subbundle T°
is the so-called totally geodesic foliation.

We will define the conullity operator C as a smooth section of
Hom(T"°, End(T")) (cf. Ferus [2]). We denote by V the Riemannian con-
nection of M and by P: TM — T* the orthogonal projection. Define a
linear operator C of T} into End(T}) by

Ca = —P(V,5) for xeT) ceTs,

where = is a local vector field of 7° on M around p with &, =¢&. Let
V' denote the connection of the subbundle T* induced from V.

We review basic formulas about the conullity operator. For details,
see Ferus [2] and Szabo [12].

PROPOSITION 8.1. Under the assumption of this section, the conullity
operator C satisfies the following formulas:

(1) Let {&, -, &} be a local orthonormal frame field of the bundle
T around peM and we denote by Ai, a, 3 =3, -+, n, the connection
forms of Riemannian connection V with respect to {&, ---, &)}, i.e.,
Al(x) = (V &, &y for x€ T,M. Then we have

(ViCIW) — (VL) + ﬁZ:ls {A5W)C(w) — AL@)C(y)} = 0
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Sfor x, y e T, where we simply write C, = C,.
(2) In the same notation as in (1), we have

(Ve,Co@) = TE:; AEICi(m) + CoC(x) + €<w Epu for xe T, .

(8) Let v be a unit speed geodesic in one of the integral submanifolds
of T° and let n be a parallel vector field along ¥ which is tangent to T°.
Then we have '

v;C, = C,C; + ¢{n, "id,
where id denotes the identity map of T'.

PrROOF. (1) We extend x,y€ T, to local vector fields X, Y of T
around p. By assumption, R(X, Y)&, = 0. Calculating the Tj;-component
of the identity, we obtain (1).

(2) We extend z€ T: to a local vector field X of 7" around p. By
assumption, R(X, &)& = €<&un & X and hence P(R(X, £,)&5) = C{u &s)X.
Calculating the left hand side of the identity, we obtain (2).

(3) follows directly from (2).

PrOPOSITION 3.2. Under the assumption of this sectiom, the second
fundamental form h of f satisfies

h(Ce, y) = h(x, Cy) for ce Ty x,yecT;.

PrOOF. We define the covariant differential of the second fundamental
form h by h(x, y,2) =2h(X, Y) — (V,X,y) — h(z, V,Y), where X and Y
are local vector fields with X, =« and Y, = y. The equation of Codazzi
implies that h(x, v, 2) = h(y, 2, ) = h(z, x, y). For a vector field ¢ of T°
and vector fields X, Y of T" we have h(¢,Y, X) = Xh(&, Y) — h(Vy& Y) —
he, VYY) = h(C.X, Y). Similarly we get h(¢, X, Y) = h(X, C.Y) and hence
hCX, Y)=hnX, CY).

PropoSITION 3.3. For a unit vector & of Th, we have tr C, = 0 and
det Ce = 5-

Proor. Let {e, ¢} be a local orthonormal frame field of 7" around
p and let ¢; be a unit vector field of 7° around p such that (e,), = &.
We define a tensor field S of type (1, 3) by S(x, ¥)z = R(x, ¥)z — ¢R,(x, ¥)z.
The second Bianchi identity implies that (V,.S)(e, e,)e, + (Ve,S)(e, e5)e, +
(Ve,S)(es, €)e, = 0. Calculating the left hand side, we have —(k — &)(4 +
A3)e, = 0, where Af; = (V,e;, e,>. Since £ = &, we have 4}, + A% = 0, which
means that tr C, = 0.

Let 7:(—¢, ¢) > M be a unit speed geodesic such that v(0) = p and
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7(0) = ¢ and let {e, e,} be a parallel orthonormal frame field of 7" along .
We denote by a = (a;;(t)) the 2x2-matrix which represents the conullity
operator C; with respect to {e, ¢,}. Then by Proposition 3.1 (3), we have

%—?—=a2+c7E on (—¢g ¢,
where E denotes the identity matrix. Since tra = 0 on (—¢, ¢), we have
tr(da/dt) = (d/dt) tr « = 0 and tr(a’) = —2 det . By the above equation,
we obtain det « = ¢ and, consequently, det C, = @.

COROLLARY 3.4. Let M™ be an n (=3)-dimensional connected curva-
ture homogeneous space. Suppose that M" admits an isometric immersion
into M"*(&) of the type uumber 2. If € > 0, then the dimension of M
18 equal to 3. If € <0, the dimension of M is equal to 3 or 4.

PrROOF. We assume that ¢ # 0. By Proposition 3.3, the conullity
operator C: T, — End(T})isinjective. Therefore we have dim T = dim Im C.
We define the subspaces 3l(T;), Sym°(T};) and Alt(T}) of End(T:) by

8|(T:) = {L € End(T%); tr L = 0}
Sym*(T};) = {L e 8(T}); {Lw, y) = <=, Ly) for x, ye T}}
Alt(T;) = {Le3(T}); Lz, y) + <=, Lyy =0 for =, ye Ti}.

Then we have dim 8l(T}) = 3, dim Sym*(T}) = 2, and dim Alt(T%) = 1. The
image Im C is contained in 8l(T}) by Proposition 3.3. We consider the
case ¢ > 0. Suppose that dim Im C = 2. Then since Im CNSym*(T}) =+ {0},
there exists a unit vector € TS such that C,eSym’(T%:). On the other
hand by Proposition 3.3, C, has no real eigenvalue, a contradiction.
Therefore we have dim T3 = dimIm C < 1. Next consider the case ¢ < 0.
Suppose that dimImC =3. Then we have Im CNAIt(T:) # {0}, which
similarly gives rise to a contradiction. Therefore we obtain dim T3 =
dimImC < 2.

By Theorem 2.3 and Corollary 3.4, Theorem B is proved. To prove
Theorem C, we are left to studying 4-dimensional curvature homogeneous
hypersurfaces of the type number 2 immersed in H*(—1). We will dis-
cuss them in Sections 4 and 5.

We devote the rest of this section to determining the curvature homo-
geneous hypersurfaces of the type number 2 immersed in the Euclidean
space. It is known that hypersurfaces of the type number 2 in the
Euclidean space are semi-symmetric, i.e., Riemannian manifolds satisfying
R(z, ¥)-R = 0. The local structure of such manifolds was classified by
Szabd [12]. We now prove the following theorem essentially due to Szabb.
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We remark that Dajezer and Gromoll [1, Theorem 3.4] prove the same
result by different method.

THEOREM 3.5. Let M" be an n (=3)-dimenstonal connected curvature
homogeneous space and let f be an isometric immersion of M" into E™
of the type number 2. Then for each point p of M there exists an open
neighborhood V of p which is isometric to the Riemannian product mani-
fold Vix V,, where V, is an open submanifold of E** and V, is a 2-
dimensional Riemannian manifold of constant curvature £+0. Moreover,
the immersion f restricted to V 1s congruent to the product immersion
foXf,, where f, is an inclusion map of V, into E™* while f, is an isometric
immersion of V, into E°.

PrOOF. Our aim is to show that the conullity operator vanishes.
Suppose that there exists a point of M at which the conullity operator
does not vanish. Evidently the conullity operator C is not zero on some
neighborhood U of such point.

We first see that dimIm C =1 at each point p of U. Indeed, if
dim Im C = 2, then we have Im CNSym°(T}) # {0}. Hence there exists a
unit vector & of T3 such that C. is contained in Sym°T};) and C, is not
zero, a contradiction by Proposition 3.3. We denote by I the one di-
mensional subbundle of 7° defined over U which is an orthogonal comple-
ment of Ker C in T°. Let ¢, be a local unit vector field of I and let
{e,, e} be a local orthonormal frame field of T such that C.e, = 0 and
C..e, = be,, where b is a non-zero local smooth function. Then we easily
see that C.e, = 0 for any £ T° and that C.C, = 0 for any & <€ T°. More-
over, we see that the orthonormal frame field {e, ¢,} is parallel along an
integral submanifold of 7°. Indeed, putting & = ¢; and x = e,, we apply Propo-
sition 3.1 (2). Then we have 0 = (V. C,)(e,) = —C, (V. e,) = —{V,e, €, be,
for « =3, .-+, n and hence (V. ¢, ¢, = 0.

Next we investigate the form of the connection V' of the subbundle
T'. We denote by 4%, 4, 7, k = 1, 2, the components of V' with respect to
the orthonormal frame field {e, .}, i.e., 4 = (V.e; e,) = {(V,.e; e,>. Then
they satisfy 4% = 0, e,b = bAZ, and e, 4% = (42,)* + k£, where £ denotes the
sectional curvature of the plane T'. The first two identities are obtained
by Proposition 3.1 (1) while the last identity follows from {R(e,, e,)e,, ¢,> = k.

Finally, we consider the condition that M" is isometrically immersed
in E**., We use local vector fields {e, e, e;} defined as above. By the
equation of Gauss, we have h(e, ¢,)h(e,, e,) — h(e, e,)* = k. From Proposition
3.2, it follows that A(C.e, e,) = h(e, C.e,) and hence bh(e, ¢,) = 0. Con-
sequently, we have h(e, ¢,) = 0. Therefore £ is negative and h(e, e, =
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+(—k)"%. Calculating h(e, e, e,) = h(e,, e, ¢,), we have 24%h(e, e,) = 0 and
hence A} = 0. £ vanishes by the identity e, 4%, = (43,)* + &, a contradiction.

By the above arguments, we see that the conullity operator vanishes
on M. Therefore T° and T' are both parallel distributions and by de
Rham’s decomposition theorem, we obtain the former part of Theorem
3.5. The reduction of the immersion f is due to Moore [5, Theorem 1].

By Theorems 2.8 and 8.5, Theorem A has been proved.

4, Construction of an example. In this section we will construct a
4-dimensional complete curvature homogeneous space and its isometric
imbedding into H° —1) of the type number 2. It is a hypersurface of
cohomogeneity 1.

We first recall the action of SO(3) on the 4-dimensional sphere S* in
R’ and describe its orbit space. Let G = SO8) and p = {Ae€ M,(R);’'A = A,
tr A = 0}, where M,(R) denotes the space of 3x3-real matrices. Then p
is a 5-dimensional vector space. We define the action of G on p by a(4) =
aAa* for a € SO8), Aep. Let (,) be the G-invariant inner product on
p given by (4, B) = (1/2)tr AB. Put S*={Aep; (4, A) = 1/3}. Then S*
has constant sectional curvature 3 with respect to the metric induced
from p. The group G naturally acts on S* as a group of isometries.
Define a 2-dimensional subspace a of p by

a = {diagOu, he 1) 3 = 0}

where diag(n;, Ay N\s) denotes the diagonal 3 x8-matrix whose entries are
A Aoy @nd N, Put H, = diag(—2/8, 1/3, 1/3) and H, = diag(0, 372, —8~V%),
which are elements of anS: Let H(s) = cos(8V*s)H, + sin(8V%s)H, =
diag(—2(cos(828))/3, (cos(8%s) + 82 sin(8%s))/8, (cos(3*%s) — 82 sin(3%s))/3).
Then H(s) is a unit speed geodesic of S* and is perpendicular to the G-
orbit at each point. Moreover, H(s) restricted to a closed interval I =
[0, 37*27] represents all G-orbits. Therefore the space S*/G of orbits is
given by the closed interval I = [0, 8*2z]. The isotropy subgroup of G
at H(s) for sel= (0, 3 %) is a finite subgroup of SO(8) consisting of
diag(1, 1, 1), diag(1, —1, —1), diag(—1, 1, —1), diag(—1, —1, 1), and the
orbit of H(s) under G is just SO(8)/(Z,x Z,). They are codimension one
principal orbits. The isotropy subgroup of G at H(0) is

1 0 0 -1 0 0
(0 cosf® —sind]), ( 0 cosé sin 0)
0 sing cos 0 sinfd —cosé
and the orbit of H(0) is the projective plane P,(R) = SO(8)/0(2) with con-
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stant sectional curvature 1, the so-called Veronese surface. The orbit of
H(3%’z) is also the Veronese surface. These two orbits are singular
orbits.

. Let M* be the union of orbits of H(s) with s running through
I=(0,3%z) i.e., the union of all principal orbits. Then M* is a con-
nected, open and dense subset of S‘t. We will describe the Riemannian
metric on M*. We define a smooth map F: (G/K)xf — M* by F(aK, s) =
a(H(s)), where G = SO@8), K = Z,x Z,, and I= (0, 33*7). Then F is a
G-equivariant djﬂ’eomorphism of (G/K)><I° onto M*. The Riemannian met-
ric on (G/K)x I induced by F has the form g, + ds?, where g, denote the
G-invariant Riemannian metrics on G/K parametrized by s in I. We will
write the metrics g, explicitly. Let g = 80(8) be the Lie algebra of G =
SO(8). The tangent space T,.(G/K) of the homogeneous space G/K =
SOB)/(Z,x Z,) at eK is naturally identified with g. We denote by {, ),
the inner product on g induced by this identification. Then we have
(X, Y),= (X, H@s)), [Y, H(s)]) for X, Yeg. Put

o -1 0 00 -1 0 0 0
X =1 0 0], X;=1(0 0 0], X;=10 0 -1
0 0 0 10 0 01 0

Then {X,, X,, X;} is a basis for g and satisfies [X,, X,] = X,, [X,, X;] = X,
and [X,, X,] = X,. We see that X,, X,, and X; are mutually orthogonal
with respect to (, ), and that (X, X,>, = (4/3)sin*(%/3 + 38'%s), (X,, X,), =
(4/3)sin*(z/3 — 3%), (X, X, = (4/3)sin’(8"%s). Consequently, the inner
product {, >, on g is given by

(0, = (4/8)sin’(n/3 + 3"%s)w, @ @, + (4/3)sin*(xn/3 — 3 *8)w, Q w,
+ (4/3)sin*(3"’s)ws @ W, ,

where {®,, w,, @;} is the basis dual to {X,, X,, Xi}.

We are now ready to construct a ecurvature homogeneous space.
Removing the orbit of H(8™*’z) from S* we obtain a connected open sub-
manifold of S¢ whiech is denoted by M. Then M is G-invariant sub-
manifold of S* and its orbit space is a semi-open interval [0, 37%27). We
define a new Riemannian metric g on M as follows:

g = a(s)g, + a(s)’ds* on M*,

where a(s) = 3(1 + 2 cos(322s))™!, while at each point on the orbit of H(0),
g coincides with the former metric. Here when we define a metric on
M*, we use the parametrization F: (G/K)xI— M*,
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The new Riemannian metric g is a smooth one on M and is G-invariant.
Indeed it is clear that the metric g is smooth and G-invariant on M*.
We will show that the metric g is smooth in a neighborhood of the orbit
of H(0). We denote by N and T'N the orbit of H(0) and the normal
bundle of N in S* respectively. Let expy be the exponential mapping
of TN onto S*. Then the action of G on TN is naturally defined and
exp, is a G-equivariant mapping. The function » on T*N is defined by
r(&) = (g &)V for £¢e€ T*N, where {, ) denotes the metric on T*N. De-
fine the subsets U and U, of T*N by

U={eeT'N;r <3 r}
U, = U — (the zero section) .

We recall that H(s) is a unit speed geodesic of S* and H’(0) is a normal
vector of N at H(0). Therefore we have expy(sH'(0)) = H(s). We define
a smooth mapping @: (G/K)xf —U, by @K, s) = da(sH'(0)), where da
denotes the differential of the diffeomorphism a of S* for a€G. Then @
is a G-equivariant diffeomorphism and the following diagram commutes:

G/K)x I-2-T,

N/
F\ / exXPx
M*

1})/Iore0ver, the function ro@® coincides with the projection of (G/K) x I onto
I. We denote by g, the Riemannian metric on U induced from the
Riemannian metric on S* by exp,. Clearly, we have @*g, = g, + ds. It
follows that exp} g = a(r)g, + (a(r)* — a(r))dr* on U, Since a(s) is an
even function of s, a(r) is a smooth function on U and since a(s)® — a(s)
is an even function of s and a(0)* — a(0) = 0, (a(r)® — a(r))dr® is a smooth
tensor field on U. Consequently, we see that exp} g is a smooth Riemannian
metric on U and hence g is smooth in a neighborhood of the orbit of H(0).

ProprOSITION 4.1. The Riemannian mantifold (M, g) is complete and
curvature homogeneous but is not locally homogeneous.

PrROOF. To show the completeness and curvature homogeneity, we
change the parametrization of M*. Define a diffeomorphism ¢: (G/K)x I —
(G/K)x R* by ¢(z, s) = (x, t(s)), where

t(s) = [log sin(z/3 + 8%s) — log sin(x/3 — 3'%s)]/2 .
Then we have (¢ )*F*g = a(s())g,s + dt*. Moreover, on the Lie algebra g,
a(8@)< s Day = €0, Q @, + 0, ® @, + (¢ — e V' ® s .
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LEMMA 4.2. The Riemannian manifold (G/K)x R™, g) is curvature
homogeneous, where g is defined by

ew, Qw, + e ?w,® w, + (e — e Nw, ® w, + dit*.

Moreover, we have ||Vp|* = 32(¢* + ¢%)* and hence ((G/K)xR*, g) is mot
locally homogeneous. Here Vo denotes the covariant differential of the
Ricci tensor field p.

ProorF or LEMMA 4.2. We calculate curvature properties on the
Riemannian covering space SO3)x R* of (G/K)x R*. Let X,, X, and X, be
left invariant vector fields on SO(3) which correspond to X,, X, and X, on
g, respectively. We naturally extend them to vector fields on SO(3)x R*
and use the same notation. We define vector fields e, ¢, ¢; and ¢, on
SOB)XR* by e, =e¢'X, e, =¢eX, e =(—e")'X, e =d/dt. Then
{e, e, e, e,} is an orthonormal frame field on SO(8) x R and satisfies

[e, ] = (¢! — e e, [e, e] = —e
(4.1) e, 6] = €¥(e' —e)7e, e, 6] = 6
[e, €] = e7¥(e* —e*)7"e, [e, €] = —(68 + e ") —e "), .

By direct calculation, we have

V.= —e, Ve = —e'e
Ve, = —e'e Vet = €
V.6 = e’e, Ve = €'e
(4.2) V,164 =e; Veze4 = —€
Ve = (e —e )7, Ve, =0
Ve, = —(ef —e")7le Ve, =0
Vo, = —(e +e ) —e )¢, V,es=0
Ve, = (e +e7")(e' — e™") e, V.= 0
and

R(eu ez)ei = 3{3i261 - 5:‘132}
(4.3) R(e,, e))e; = —{0;:e; — 0i585)
R(e, e)e; = —{0e; — dye}, 1, 5=1,+--,4,
where V and R denote the Riemannian connection and the curvature

tensor field of (SO(3)x R*, g). Similarly we obtain ||[Vp|* = 32(e* + e™%)%
By (4.3), the Riemannian manifold (SO(8) x R*, g) is curvature homogeneous.

Now we prove Proposition 4.1. Since (M, g) is curvature homogeneous
on its dense subset M* by Lemma 4.2, (M, g) is curvature homogeneous
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on the whole M. The projection of ((G/K)x R™*, g) onto R* is a Riemannian
submersion onto R* with the standard metric. Thus (M, g) is complete.

Now we construct an isometric imbedding of the above Riemannian
manifold (M, g) into H°(—1). We first define a G-equivariant injective
map j: M —p by j(a(H(s))) = a(8V*r(s)H(s)) for a € G = SO(8), s [0, 37 x),
where

7(s) = sinh™((1 + 2 cos(3"%2s))™%) .

We denote by sinh™ x the inverse function of sinh¢ = (¢! — ¢7%)/2. Since
r(s) is an even function of s, we see that j is a smooth map. Fix a
point o of H®—1). The exponential map exp, at o is a diffeomorphism
of T,H® onto H®. We identify p with T,H® by a linear isometry. With
this identification, G = SO(3) acts on T,H® as a group of linear isometries.
Since any linear isometry of T,H® is extended to an isometry of H(—1),
G naturally acts on H% —1) as a group of isometries and the exponential
map exp, at o is a G-equivariant map. We define a map f: M — H(—1)
by f = exp,oj. Then f is a G-equivariant injective smooth map. More-
over, we have:

PrOPOSITION 4.3. The map f is an isometric imbedding of (M, g)
wnto H¥(—1) and its type number s equal to 2.

PrROOF. We denote by § the Riemannian metric on H*(—1). We will
show that f*§ = g. It suffices to prove this on the dense subset M* of
M. We define a diffeomorphism @: S*x R* — T,H*\ {0} by @((z, 7)) = 8"*rzx,
where S* denotes the sphere with radius 372 in T,H°. Then we have
g = 0*exp} § = 3(sinh )2, > + dr*, where {, ) denotes the Riemannian
metric on S* Since (@70 5)(a(H(s))) = (a(H(s)), r(s)) for seI = (0, 837*x),
we have
(@710 g)s X, (@710 5), Y) = 3(sinh 7(s))(X, Y¥) = 3(1 + 2 cos(3"°28))" (X, Y

= a(s)X, ¥) =9(X, Y)
for vectors X and Y tangent to the orbit of H(s). Since (@7'0j),(H'(s)) =
(H'(s), (dr/ds)(d/dr)), we have
(@7 0 g) X, (@710 5)H'(s)) =0
for a vector X tangent to the orbit of H(s) and

g(@7 0 g), H'(8), (@70 5), H'(s)) = 8(sinh r(s))* + (dr/ds)*
= 9(1 + 2 cos(3"28))* = a(s)* = g(H'(s), H'(s)) .

Consequently, 7 is an isometric imbedding of (M*, g) into (b, exp, *§) and
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f is an isometric imbedding of (M, g) into H*(—1).
By Proposition 2.1 and (4.3), the type number of f is equal to 2.

5. The case of the type number 2—Part 2. In this section we will
prove the following theorem and complete the proof of Theorem C.

THEOREM 5.1. Let (M, g) be a 4-dimensional conmnected curvature
homogeneous space and let f be an isometric immersion of (M, g) into
H%—1) of the type number 2. Then (M, g) is locally isometric to the
example constructed im Section 4 and f is locally congruent to the iso-
metric imbedding given in Section 4.

In this section we assume that the assumption of Theorem 5.1 is
satisfied and use the same notation as in Section 8.

LEMMA 5.2. Let ||C|| be the norm of the conullity operator C at
peM. Then we have ||C||* = 4 and the equality holds if and only if
Im C = Sym*(T}).

ProOF. By Proposition 8.3, we see that dimImC =2 and hence
dim Im CNSym’(T3) = 1. Therefore there exists a unit vector ¢ of T7}
such that C,eSym®(T:). Let {e, ¢,} be an orthonormal basis of T} such
that C.e, = —e, and C.e, = ¢,. Let 7 be the unit vector of 7§ orthogonal
to & Then C, is represented as

C,,::(a b), a*+bc=1
c —a
with respect to {e, ¢,}. By Proposition 3.8, det(C cost)et sinny) = —1 for any
0. This implies that a = 0. Thus ||[C|? =2 + b* + ¢* = 2 + 2(b%»)"* = 4.
The equality holds if and only if b =¢ = *1.

By Lemma 5.2, at a point of M, ||C|?* is either greater than 4 or
equal to 4. Let us consider the first case. We fix a point p € M at which
IIC||? > 4. By Lemma 5.2, we have dim Im CNSym°(T") = 1 on some neigh-
borhood of p. Therefore there exists an orthonormal frame field {e,, e,, e;, €.}
defined on a neighborhood U of p which satisfies the following: {e, e}
is an orthonormal frame field of T° on U such that C, eSym’(T") and
{e, e;} is an orthonormal frame field of T such that C,e, = —e, and
C.e.= e, By the argument in the proof of Lemma 5.2, C,, is represented
with respect to {e, e,} as

C,3=(0 b) be=1,b+*c.
¢c 0

We will determine the form of the Riemannian connection V with respect
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to this orthonormal frame field {e, e, e;, ¢,}. We denote by 4% for ¢, j, k =
1, ---, 4 the components of the connection, i.e., V,.e; = i, 4fe,.

Applying Proposition 3.1 (2), we calculate (V,,C,)(e,) and (V..C,)(e,).
We obtain 24% = —ecd, and 24, = b4i, and hence A% = A% = 0. This
means that V, e, = V, e, = V¢, = V, e, = 0. Similarly calculating (V.,C,,)(e,)
and (V,.C,,)(e,), we obtain e¢,b = b and ec = —c. Thus

eflClP=ef2+ b+ c}=20>—¢c)+#0.

Changing the signs of e, e, and the indices of e,, e, if necessary, we
may assume that

Ce.= —e,, C.e. = e
C.e. = ce,, Ce.e. =be, with b,¢<0,bc=1
e)|C|P>0, ie., b*>¢

for the orthonormal frame field {e, e, e, ¢,}.

Using Proposition 3.1 (2), we calculate (V,,C,)(e,) and (V,.C, )(e,). Then
we obtain —24% = ¢(1 + 4%) and 24% = b(4}, — 1). Hence we have A3 =
—1/(b — ¢) and 45 = (b + ¢)/(b — ¢). Similarly, calculating (v,,C,,)(e,) and
(V,,C.,)(e.), we obtain ep = e,c = 0. By Proposition 8.1 (1), we have 4, =
(b/2)43, Ay = —(c[2)43, €b = —(c(b — ¢)/2)43, and ec = —(b(b — ¢)/2)Ai,.
The plane spanned by {e, e,} has constant sectional curvature x. There-
fore we have

el — e Ay, — (A1) — (4) = £ — 3.

Consequently, we have

Ve = Adie, — e, Ve = Aye, + be,
V.6 = Aie + ce,, Ve = Ane, + e,
Vees = —ce, + Aie,, Ve, = —be, + Ae,
Ve =e + Aes Vs = —e, + Aye,
Vo3e1 = A§162 ’ V.‘el =0
Ve, = Aye, , Ve, =0

(5.1) Ve = Ase, , Vees =0
Vs = Ase; Ve = 0

eb=0, eb =0, eb= —(cb— c)2)4},

ec=—c, ec=0, ec= —(bbd—c)2)4,
n=—-10b-c¢), = (b/2)4%
u=0+0/b—c), A= —(c/2)4

e i, — e, — (A1) — (M%) =k — 3.
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Now we consider the condition for M to be isometrically immersed
in H(—1). Since ker A = T°, we have h(e, ¢;) = h(e,, ¢;) = 0for1 < j < 4.
By the equation of Gauss, we obtain h(e, e,)h(e,, ¢,) — h(e, ¢, = £ + 1.
By Proposition 3.2, we have m(C,e, ¢,) = e, C,e,) and hence h(e, e,) = 0.
Similarly, we have h(C,e, e,) = h(e, C,e,) and hence bh(e, e,) = ch(e, e,).
Hence £ + 1 = b*h(e,, e, is positive, h(e, e,) = +ec(k + 1)Y2 and h(e, e,) =
+b(k + 1)*2. Changing the sign of the normal vector field, if necessary,
we may assume that h(e, ¢,) = ¢(k + 1)V% and h(e,, e,) = bk + 1)*2. Calecu-
lating ke, e,, ¢,) = h(e,, e, ¢,), we have eb = (¢ — b)4%. In view of eb =
—(e(d — ¢)/2)43, and A% = —(¢/2)4% in (5.1), we have A% = A% = 0. Simi-
larly, by the equation h(e, e, ¢,) = h(e, ¢, ¢;) and (5.1), we obtain A, =
A%, = 0. From these results and the last equation of (5.1) follows £ = 3.
Put ¢ = (1/2)cosh™((]|C||* — 2)/2), where cosh™' x denotes the inverse func-
tion of coshd = (¢ + ¢7%/2. Then t is a positive smooth function on a
neighborhood of p. Solving equations b + ¢® = €* + ¢* and bc = 1 under
the condition b < 0, ¢ < 0 and b* > ¢?, we obtain b = —e* and ¢ = —e™t.
Since eb =¢b =e¢b =0 and eb = b, we see that et = et = et =0 and
et = 1. Namely, ¢, is the gradient vector field of the function t.

Consequently, we have:

LemMMA 5.3. (1) Putting t = (1/2)cosh™((||C||* — 2)/2), we have et =
et =et =0 and et =1 so that the vector field e, is the gradient vector
field of the fumction t.

(2) The Riemannian connection V 1is givem with respect to the
orthonormal frame field {e, e, e, e,} as follows:

Voo, = —¢€, Ve = —eé'e
Ve = —e ‘e, Vo0, = €
Ve = €', Ve85 = €'e,
Vs =€, Ve = —e,
Veer = (6" —e )7, Ve, =0
Veer = —(e —e)7e,, V.= 0
Ve = —(e' +e7")(e' —e )7, V,e=0
Ve = (6" + e7)(e' — e e, Ve =0

[e,, €] = (¢! — e Ve, , [e, e.] = —e,
[32; ea] = e“(et - e——t)_le1 ’ [34, ez] = 6
[es €] = e7%(e' — e7") ", , [e, €] = — (" + e7*)(e* — e7") 7",

(8) The second fundamental form h is given by
h(eu 61) = +2¢7 ’ h(ez, 62) = 42¢' ’
(e, €,) = h(es, €;) = h(e,, e;) = 0
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for the orthonormal frame field {e, e, e, e,}.

Now we prove Theorem 5.1 on a neighborhood of a point pe M at
which ||C||* is greater than 4. By Lemma 5.8 (1), the level sets of the
function ¢ are hypersurfaces of M and the vector fields e,, e,, and e, are
tangent to these hypersurfaces. Put ¢(p) =t,. We take a sufficiently
small connected neighborhood V of p in the hypersurface given by ¢ = ¢,
and take a sufficiently small ¢ > 0. Then there exists a diffeomorphism

F of Vx1I into U defined by
Fla, t) = g, (@) for weV and tel=(t,—e¢ t +¢),

where {¢,} denotes the local one-parameter group of local transformations
generated by the vector field €. By the definition of F', we have t(F(z, s)) = s.
Put X, = ¢'e, X, = ¢ ‘¢, and X, = (¢! — ¢ *)¢,. Then by Lemma 5.3 (2), we
have

[le Xz] = XS ’ [94, Xl] - 0
[Xb Xa] = Xl ’ [34, Xg] = 0
[XS’ XI] = XZ 9 [64, X:-;] = 0 .

The restrictions of X,, X, and X, to V are denoted by X,, X, and X, respec-
tively. Then there exists a diffeomorphism of V into SO(8) which sends
X, X, and X, to left invariant vector fields on SO(8). Let w,, ®, and w,
be the 1-forms defined on V and dual to X,, X, and X,. By using the

diffeomorphism F', the Riemannian metric g on F(V x I ) is represented as
g=ew, RQw, + e *w,® w, + (" — e )’w, ® w, + dt*.

Thus F(V><I° ) in U is locally isometric to the example in Section 4. By
Lemma 5.3 (8), the immersion f is rigid. Therefore Theorem 5.1 has been
proved in our case.

Next we consider Theorem 5.1 on a neighborhood of a point of M at
which ||C|]? is equal to 4. We note that ||C||* is equal to 4 at points on
the orbit of H(0) for the example in Section 4. We fix a point pe M at
which ||C|? is equal to 4. Let 7:[0, 6] - M be a unit speed geodesic such
that v(0) = p and ¥(0) € T5. By Lemma 5.2, we have C;, € Sym’(T;). Let
{f,, fz} be an orthonormal basis of T} such that C;,f, = —f; and C;,f, = fo
and let {fi(¢), fu(t)} be a parallel orthonormal frame field of 7" along ¥
such that £,(0) =f, ¢t =1,2. We represent C;, as a 2X2-matrix with
respect to {fi(t), fu(t)}. Then by Proposition 3.1 (3), we obtain the following
ordinary differential equation:
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d

—C:=0
dt '
-1 0
Cio = ( 0 1) .
We immediately have
-1 0
Cw = ( 0 1) .

Let 7(t) be a parallel vector field along v such that 7(0) is a unit vector
of T9 and orthogonal to ¥(0). By the argument in the proof of Lemma

5.2, we have
0 +1
C’](O) = <il 0>

with respect to {f, f;}. We may assume that

01
Cr}(o) = (1 0) .
Solving the equation
d -1 0
@ Cv( 0 1)
01
C’](O) = (1 0> ’

given by Proposition 3.1 (3), we have

0 ¢
C7/(t) = <e“ 0) .

Thus ||C||* =2 + ¢* + ¢ at ¥(t). In particular, ||C|* is greater than 4
at v(t), ¢t > 0.

We fix ¢, 0 <t,<éd. Put v(@&,) = p,. Since ||C||* > 4 at p,, a neigh-
borhood of p, is locally isometric to the example in Section 4. In par-
ticular, the sectional curvature of the T'-plane is equal to 8 and there
exists an orthonormal frame field {e, e, e;, ¢,} on some neighborhood U of
P, such that Lemma 5.3 holds. We note that 7(¢) = e, on Y(¢)NU. The
subset K in U consisting of points at which ||C]|* =2 + e*0 + ¢7* is a
hypersurface of U and the vector fields e¢,, ¢,, and e, are tangent to K.
Evidently K contains p,, We define a smooth map ¢: K— M by ¢(q) =
exp,(—te,l,) for ge K, which is well-defined on a suitable neighborhood
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of p, in K. Put ¢(K) = N. Then we have

LEMMA 5.4. N is a 2-dimensional submanifold of M containing p.
Moreover, N is an integral submanifold of the distribution T'.

Proor or LEMMA 5.4. p is contained in N, since ¢(p,) = p. We
compute the differential d¢ of ¢ at g K. Let o: [0, t,] — M be a geodesic
such that ¢(0) = ¢ and 6(0) = —e,],. Let X be a Jacobi field along ¢ such
that X(0) = 2e T,K and X'(0) = A,x, where A denotes the shape operator
of the submanifold K in M. Then we have dg¢(x) = X(¢,). Let fi(t) be
a parallel vector field along ¢ such that f,(0) =e,,, © =1, 2, 38. We note
that f(¢t) and f,(t) are tangent to 7" while f,(¢) is tangent to 7°, and that
R(f, 6)0 = —f,, 1=1,2,3. By Lemma 5.3 (2), we have A,e, = —e,
A,e,=e, and A, = —(e" + e ) (e —e ™) '¢, at e K. Let E,, E, and E,
be Jacobi fields along ¢ whose initial conditions are given by E,(0) = e,
E(0) = —e), and E,0) =e), FEi0) =e)l, and Ey0) = el, E;0)=
—(e* + e ")(e" — e~") ¢y, respectively. Solving the equations of Jacobi
fields, we obtain E,(t) = e if,(t), Eyt) = e'fy(t) and E,(t) = {(e' + ¢7)/2 —
(e + e7)(e* — e7)[2(e" — e )} fy(t). Thus dg(e,|,) = e f,(L,), dg(e.l,) = efy(t,)
and dg(es),) = 0. Hence Lemma 5.4 has been proved.

We will investigate the properties of the submanifold N in more
detail. The subspace T: at ge N is just the normal space T}N of the
submanifold N in M and the conullity operator C is just the shape operator
of N in M. Therefore C;, for £€ T, g€ N, is a symmetric linear endo-
morphism of 7% = T,N. By Lemma 5.2, we have ||C||* =4atqgeN. For
an arbitrary orthonormal basis {e, e} of T3 = TiN, there exists an or-
thonormal basis {e, ¢,} of T,N with respect to which C,, and C,, are rep-

resented as
-1 0 q (0 1
o 1) * \1 o)’

respectively (see the argument in the proof of Lemma 5.2). By the equa-
tion of Gauss, we see that N is a surface with constant curvature 1 with
respect to the induced Riemannian metric.

Now we fix some notion on the symmetric tensor product. Let V be
a 2-dimensional Euclidean space with the inner product ¢, >. We denote
by S*( V') the symmetric tensor product of V. The space S*(V) is linearly
spanned by z-y = @@y + ¥y @ x)/2 with %, y running through V. We
introduce an inner product (, ) on SXV) by (z-y, u-v) = {{x, u){y, v) +
(x, v)<y, up}/2. We identify S* V) with the space of all symmetric linear
endomorphisms of V, defining the linear endomorphism z-y by (x-y)(w) =
(¢, wdy + <y, upx}/2 for x, y, w € V. Then we note that {(&(x), y) = (®-¥, &)
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for £eS¥V), z,ye V. Put e =e,-e, + ¢,-¢, for some orthonormal basis
{e, e} of V. This definition is independent of the choice of an orthonormal
basis. Then we have e(x) =2 and (x-y,e) = <z, y). With HXV) =
{e€S*(V); (& e) = 0}, we have an orthogonal decomposition:

SYV) = H(V) + Re .

We may take {27%(e,-e, — e,-e,), 2¥%,-¢,} as an orthonormal basis of H*(V)
for some orthonormal basis {e, ¢,} of V. We apply the above arguments
to the tangent space T,N at ge N. We denote by S*TN) the tensor
bundle on N consisting of the symmetric tensor products S*T,N) and by
H*TN) the subbundle of S*(TN) consisting of HT,N). The Riemannian
connection of N with respect to the induced Riemannian metric is denoted
by the same notation V as that of M. The connection V on TN is natu-
rally extended to S*TN) and the subbundle H*TN) is parallel with re-
spect to this connection.

The following holds:

LEMMA 5.5. Let a be the second fundamental form of the submanifold
N in M.

(1) «a is a linear isomorphism of H*T,N) onto TN = T;. More-
over, we have {a(¢), a(n)) = 2(&, ) for & ne H(T,N) and C,x = 2&(x),
where &(x) means the action of & on & as a symmetric linear endomorphism.

(2) The second fundamental form a is parallel and hence is a bundle
1somorphism of H¥(TN) onto T*N which preserves the connections, where
TN 13 equipped with the normal connection V*.

PrOOF OF LEMMA 5.5. (1) Let {e, ¢,} and {e, e} be the orthonormal
bases of T,N and T;N, respectively such that

-1 0 01
C,,a—< 0 1) and C,4=<1 0)

with respect to {e, ¢,}. Then we have ale, e,) = —e; ale, e,) = e, and
ale, e,) =e,. Putg=2""e e — ¢,-¢,} and 7 = 2"%¢,-¢,. Then {¢ 7} is an
orthonormal basis of H*T,N). We see that a(e) = ale,-e, + e,-¢;) =0,
a(g) = —2"%, and a(n) = 2%,.

(2) By (1), we have {a(y, 2), a(u, v)) = <y, w)<z, v) + <y, v){z, u) —
(Y, 2)<u, ). Thus (V,a)(¥, 2), alu, v)) + {a(y, 2), (V.a)(u, v)) =0. By
Proposition 3.1 (1), we have (V,a)(y, 2) = (V,a)(x, 2). Using the above
equations, we have ((V,a), 2), a(u, v)) = —{a(y, 2), (V.a)(u, v)) =
(V.)(y, 2), a, v)) = —<a(u, 2), (V,a)@, v)) = {(V.a)(, 2), a@, ¥)) =
—<a(u,),(V,a)(@,9)) = —{(V.a)(¥,2),a(u,v)) and hence {(V.a)(y,2),a(u,v)) =
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0. Consequently, we have (V,a)(y, z) = 0, that is, Vi(a(y, 2)) = a(V,y, 2) +
a(y, V.2) = a(V,(y-2)) holds. This equation means that « preserves the
connections.

We will show that there exists a local isometry of a tubular neigh-
borhood of N into the example of Section 4. For this we need a general
lemma on equivalence problem. Let M be an m-dimensional Riemannian
manifold and N an #n-dimensional submanifold imbedded in M 0 n £
m — 1). We denote by TN the normal bundle of N. The exponential
map exp, of the normal bundle maps a neighborhood U, of the zero section
of TN into M. We denote by U?% the neighborhood of the zero section
of T+*N with radius » and put U,.(N) = expy(U%). For a unit vector &
of T,M, let v be a geodesic of M such that ¥(0) = p and ¥(0) =& We
denote by zi:T,M — T, M the parallel translation along v and denote by
I%me, the tensor of type (1, 8) on T,M defined by

jé(t,f)(a% y)z = (Tf))—l(R(Tf)x, T(t)y)z-(t)z) fOI' x; y; z€E TpM .

Let M be another m-dimensional Riemannian manifold and let N be an
n-dimensional submanifold imbedded in M.

We prove a lemma on equivalence problem under the following as-
sumption: For some r > 0, the exponential maps exp,: Uy — U.(N) and
expy: Uy — U,(N) are both diffeomorphisms. There exists an isometry ¢
of N onto N and a bundle isomorphism f of TN onto T*N which satisfy
the following conditions:

(1) The following diagram is commutative;

N, N

N 2 N

(2) The isomorphism f preserves the metrics and the normal con-
nections of the normal bundles TN and T+N.

(8) The differential d¢ of ¢ and f preserve the shape operators of
the submanifolds N and N in M and M, respectively, i.e.,

dpA, = Asedp for £eTiN.

(4) We denote by F' = dg + f the bundle isomorphism of T'M|, onto
TM|5 defined by d¢ and f. Then F satisfies

FR.o=RKiren, ltI<r

for any point p € N and any unit vector ¢€ T3 N.
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LEMMA. Under the above assumption, the diffeomorphism @ of the
tubular meighborhood U, (N) onto U(N) defined by ® = expzofoexpy’ is
an isometry.

This lemma is seen by using the arguments of Jacobi fields. We
sketch the proof (for reference [7, Chapter 2]).

We first calculate the differential d(expy) of expy at a point (p, &)
of TN, where (p, £) means a normal vector £ at pe N. We denote by
S# o the horizontal subspace of the tangent space T, .T*N with respect
to the normal connection V* and by 77,. the vertical subspace, i.e., the
kernel of the differential dz of the natural projection z: T*N — N. Then
we have the direct sum decomposition:

T(p,E)TLN = e T Po -

We naturally identify 77, with T3 N. For xe 5#,,, put a curve c(s)
of N such that ¢(0) = p, é0) = dn(x) and let &(s) denote the parallel
normal vector field through ¢ along ¢(s) with respect to the normal con-
nection V. Then we have £(0)=x. Put a(t, s) = exp,, t&(s). Then
a(t, s) is a variation of the geodesic ¥(t) = exp, t& and its variational vector
field X(¢) is a Jacobi field along ¥(¢) and satisfies X(0) = dxz(x) and X'(0) =
—A;,X(0) = —Adr(x). In particular, d(expy),,(®) = X(1). On the other
hand, for y € 73,., put a(t, s) = exp, t(¢ + sy). Then a(t, s) is a variation
of v and its variational vector field Y(¢) is a Jacobi field along v(t) and
satisfies Y(0) = 0 and Y'(0) = y. Moreover, we have d(expy),.o(¥) = Y(1).
For an arbitrary vector ve T, . T*N, let y be the vertical component of
v and let V(t) be the Jacobi field along the geodesic ¥(t) = exp, t& whose
initial conditions are V(0) = dz(v) and V'(0) = y — A.dz(v). Then the above
argument implies d(expy),.(v) = V().

Given ve T, ,T*N, (p, &) € Uy, let V(t) be the Jacobi field along
Y(t) = exp, t& such that V(0) = dz(v) and V'(0) = y — Adxn(v), where y
denotes the vertical component of v under the identification of 77,
with T:N. Define a vector field V(t) along ¥(t) = exp,, tf(&) by V(t) =
TiF(zi) ' V(t), where ¢ and 7§ denote the parallel translations along 7 and
¥, respectively. Then by the assumption of Lemma, V(¢) is a Jacobi
field along 7. Moreover, we have V(0) = FV(0) = dg¢dn(v) = dTdf(v) and
V'(0) = F'V'(0) = fly) — dpAdn(v) = fly) — Asededn(v) = fy) — Are,dTAf(v).
Since f preserves the normal connections, f(y) coincides with the vertical
component of df(v) under the identification of ¥ s, With Ti,N.
Therefore we have d(exps)yu,se(@f(v)) = V(1). Since [[VQ)| = |V,
we see that [|d(expy),,o()| = |d(eXD5) 4w, ren(@f(W))l|. Consequently, @ is
an isometry.
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Now let us return to the proof of Theorem 5.1 on a neighborhood of
a point at which ||C||* is equal to 4. We fix a point 7 of the example
in section 4 at which ||C|]* is equal to 4. Then there exists an integral
submanifold N of the distribution 7" containing 7. Since both N and N
are surfaces of constant curvature 1, there exists an isometry ¢ of N
onto N. Here we take N and N sufficiently small. Let a and @ be the
second fundamental forms of N and N, respectively. Then by Lemma
5.5, a: H(TN) — TN and &: H(TN) — TN are both bundle isomorphisms.
We extend the differential d¢ of the isometry ¢ to a bundle isomorphism
of HXTN) onto H*(TN) and define a bundle isomorphism f of TN onto
TN by f=a@-dgoa. We note that the curvature tensor field R is
parallel along the geodesic tangent to 7°. Then the isometry ¢ and the
bundle isomorphism f satisfy the assumption of the above lemma. Hence
there exists an isometry of a tubular neighborhood of N onto a tubular
neighborhood of N.

By Proposition 3.2, we see that the shape operator A of the immer-
sion of M into H*(—1) has the form A = +2id on T} at a point p € M at
which ||C|* is equal to 4, where id denotes the identity map of T:. On
the other hand, Lemma 5.3 (8) holds at a point of M at which ||C|? is
greater than 4. Thus the immersion of M into H*(—1) is rigid. Hence
Theorem 5.1 has been proved.
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