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1. Introduction. Let M be an ^-dimensional Riemannian manifold
with the Riemannian connection V and the curvature tensor R. We denote
by VkR the k-th covariant differential of the curvature tensor field. A
linear isomorphism Φ of the tangent space TPM onto the tangent space
TqM is naturally extended to a linear isomorphism of the tensor algebra
T(TPM) onto T(TqM).

If M is locally homogeneous, i.e., for each p,qeM there exists a
local isometry φ of a neighborhood of p onto a neighborhood of q which
maps p to q, then for any integer k ^ 0, the following condition R(k)
is satisfied:

R(k): For each p,qeM, there exists a linear isometry Φ of TPM
onto TqM such that Φ(ΨR)P = (V'12), i = 0, 1, , k.

In fact Φ is given by Φ = dφp, where φ is a local isometry with maps
p to <?. Singer [11] dealt with the converse problem and he proved that
if a complete and simply connected Riemannian manifold M satisfied the
condition R{k) for a certain k, then M is homogeneous. Following his
proof, we see that if a connected Riemannian manifold M satisfies the
condition R{k) for a certain k, then M is locally homogeneous. In his
theorem, the minimum of such integers k depends on M, but it is not
greater than n(n — l)/2 + 1. Among others, he also posed the following
question: Do there exist curvature homogeneous spaces which are not
homogeneous? Here a curvature homogeneous space is, by definition, a
Riemannian manifold satisfying the condition 12(0).

Many such manifolds seem to exist. The following are explicit known
examples:

EXAMPLE 1 (cf. Sekigawa [10] and Takagi [13]). Sekigawa constructed
3-dimensional complete and simply connected curvature homogeneous spaces
which are not homogeneous.

EXAMPLE 2. Isoparametric hyper surf aces in a unit sphere. If an
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immersed hypersurface in a real space form has constant principal curva-
tures, then it is curvature homogeneous. It is known that there exist
hypersurfaces with constant principal curvatures in a unit sphere which
are not homogeneous (cf. Ozeki and Takeuchi [8], Ferus, Karcher and
Mϋnzner [3]).

On the other hand, homogeneous hypersurfaces immersed in a real
space form were studied by several authors and are completely classified
(cf. Nagano and Takahashi [6], Ryan [9] and Takahashi [14], [15]). Here
in connection with Singer's previous question, the following questions are
naturally posed. In their proof, what level of homogeneity is essentially
used? Is it possible to relax the condition of homogeneity to the con-
dition of curvature homogeneity? So we consider the following problem
in this paper:

Determine curvature homogeneous hypersurfaces immersed in a real
space form.

Complete and simply connected Riemannian manifolds of constant cur-
vature c are called real space forms. They are as follows:

( i ) c = 0: The Euclidean space En (Rn with the usual inner product).
(ii) c > 0: The sphere Sn(c) of radius c~1/2 in the Euclidean space

En+1 with the metric induced from En+1.
(iii) c < 0: The hyperbolic space Hn(c). Let Ln+1 be an (n + ^-di-

mensional Minkowsky space with the inner product {x, y) — Σ3U #V —
xn+1yn+1. The hyperbolic space is defined by Hn(c) = {x e Ln+1; <a, x) =
1/c, xn+1 > 0} with the metric induced from Ln+1.

For the Euclidean space, putting known results together, we have:

THEOREM A. Let Mn be an ni>Zydimensional connected curvature
homogeneous space and let f be an isometric immersion of Mn into En+1.
Then one of the following may occur:

(1) Mn is a flat manifold.
(2 ) Mn is locally isometric to Sr(c)xEn~r, 3^r^n, for some c>0 and

f is locally congruent to the isometric imbedding f of Sr(c)xEn~r into En+1.
(3) Mn is locally isometric to M\κ) x En~2, K Φ 0, and f is locally

congruent to the product immersion /iX/2, where M\κ) denotes a surf ace
of constant curvature ic (Φθ) and f is an isometric immersion of M\κ)
into E3 while f2 is the identity map of En~2 onto En~2.

For a sphere and a hyperbolic space, we obtain the following:

THEOREM B. Let Mn be an n(^&)-dimensional connected curvature
homogeneous space and let f be an isometric immersion of Mn into Sn+1(l).
Then one of the following may occur:
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(1) Mn is a Rίemannian manifold of constant curvature 1.
(2) The immersion f has constant principal curvatures.

THEOREM C. Let Mn be an n(^i)-dimensional connected curvature
homogeneous space and let f be an isometric immersion ofMn into Hn+1( — 1).
Then one of the following may occur:

(1) Mn is a Riemannian manifold of constant curvature — 1.
(2) Mn is a Riemannian manifold of constant curvature c > — 1

and f is totally umbilical.
(3) Mn is locally isometric to S'fo) x Hn~r(c2), 1 ^ r ^ n — 1, l/c1 +

l/c2 = —1, Ci > 0, c2 < 0 and f is locally congruent to the isometric im-
bedding f of S'fo)x ifn-r(c2) into Hn+1(-1).

(4) n = 4 and M* is locally isometric to the example constructed
in Section 4 and f is locally congruent to the isometric imbedding given
in Section 4.

The imbedding /: Sr(c)xEn~r -> En+1 in Theorem A (2) is given by
f((x\ ,xr+1) x (y\ , yn~r)) = (x1, , xr+\ y\ , yn~r), where Σffi (^)2 =
1/c. The imbedding /: S'fa) x Hn~r(c2) -> iJ r a + 1(-l) in Theorem C (3) is given
by /((a?1, , xr+1) x OΛ , r~ r + 1)) = (x\ , ^r+1, 2/1, , r " r + 1 ) , where
ΣΓίί (ccO2 = 1M and Σ5=Γ (̂ /02 - (r~ r + 1) 2 = l/c2.

In Section 2, we review basic facts about type numbers for hyper-
surfaces in a real space form and show that it is essential to study the
case of type number 2. In Section 3, we consider the case of type number
2 and introduce a useful operator—the conullity operator. We prove that
in Sn(l) (n ^ 5) and in Hn{ — 1) (n ^ 6) there exists no curvature homo-
geneous hyper surf ace whose type number is equal to 2 (Corollary 3.4).

In Section 4, we construct a 4-dimensional complete curvature homo-
geneous space which is not homogeneous and construct an isometric im-
bedding of the manifold into H5( — 1) whose type number is equal to 2.
In Section 5, we determine curvature homogeneous hypersurfaces in H\~ 1)
whose type number are equal to 2 (Theorem 5.1).

The author wishes to express his gratitude to Professor K. Sekigawa
who gave him useful information on curvature homogeneous spaces.

2. Preliminaries. Let Mn+\c) be an (n + l)-dimensional real space
form of constant curvature c. An %-dimensional connected Riemannian
manifold Mn together with an isometric immersion / of M into Mn+1(c)
is called a hyper surface of Mn+1(c). We assume that M is orientable.
We denote by ζ a field of unit normal vectors. Let h and A be the
second fundamental form and the shape operator of / corresponding to ς,
respectively. At each point p of M, the type number of / a t p, denoted
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by t(p), is defined to be the rank of the linear endomorphism A of TPM.
We summarize basic facts about type numbers. For details, see

Kobayashi and Nomizu [4].

PROPOSITION 2.1 (cf. [4, Theorem 6.1, p. 42]). For a hypersurface
(Mn, f) immersed in Mn+1(c),

(1) ί(p) is 0 or 1 if and only if

R(x, v)z = c{(Vf z)% ~ <», z)v) = cR0(x, y)z , x,y,ze TVM .

( 2 ) / / t{p) ^ 2, then ker A coincides with T°p and t(p) = n — dim T°p,

where

T°p = {xe TPM; (R - cR0)(x, y) = 0 for any y e TPM) .

PROPOSITION 2.2 (cf. [4, the proof of Theorem 6.2, p. 43]). For a
hypersurface (Mn, f) immersed in Mn+\c), suppose that ,ί(p) ^ 3 for a
peM. Let A be a symmetric linear endomorphism of TPM which satisfies
R(x, y)z — cR0(xf y)z = (Ay, z)Άx — (Ax, z)Ay. Then we have A = ±A,
where A denotes the shape operator of f at p.

We will apply the above results to curvature homogeneous hyper-
surfaces in a real space form. Let Mn be an ^-dimensional connected
curvature homogeneous space and let / be an isometric immersion of Mn

into Mn+\c). We call (M, /) a curvature homogeneous hypersurface of
Mn+\c). If t{p) ^ 2 at some point p of M, then by Proposition 2.1 (2),
the type number is constant on M. Therefore the following three cases
may occur:

(1) The type number is equal to 0 or 1 on M.
(2) The type number is equal to 2 at each point of M.
(3) The type number is constant on M and is not less than 3.

In the first case, by Proposition 2.1 (1), M is a Riemannian manifold of
constant curvature c. In the third case, by Proposition 2.2 and curva-
ture homogeneity, the principal curvatures of /are constant on M. Hence
we have:

THEOREM 2.3. For a curvature homogeneous hypersurface (Mn, f)
immersed in Mn+1(c), one of the following three cases may occur:

(1) M is a Riemannian manifold of constant curvature c.
(2 ) The immersion f has constant principal curvatures.
(3) The type number is equal to 2 at each point of M.

We note that hypersurfaces with constant principal curvatures in
Mn+1(c), c ^ 0, were completely classified by E. Cartan. Either they
are totally geodesic or they are the ones in Theorem A (2) if c = 0 while
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they are the ones in Theorem C (2), (3) if c < 0.
In order to show Theorems A, B and C, we are left to studying

curvature homogeneous hyper surf aces of the type number 2. We will
discuss them in the rest of this paper.

3. The case of the type number 2—Part 1. In this section, we
denote by Mn an ^-dimensional connected curvature homogeneous space
and by / an isometric immersion of Mn into Mn+1(c) of the type number
2. By Proposition 2.1 (2), we have the orthogonal decomposition of the
tangent bundle:

TM = T° + T1 ,

where T°p = {x e TPM; (R - cR0)(x, y) = 0 for any y e TPM) and dim T\ = 2.
The shape operator A is reduced to the symmetric linear isomorphism of
Tp. By the assumption of curvature homogeneity, for each p, qeM, there
exists a linear isometry Φ of TPM onto TqM such that ΦRP — Rq. The
above decomposition of TPM is preserved under Φ, that is, Φ(T°P) = T°q and
Φ(TP) = T\. In particular, the sectional curvature of the plane T\ coincides
with that of T\, and is denoted by ΛΓ. We remark that K Φ c. It is
known that the subbundle T° is completely integrable and that their in-
tegral submanifolds are totally geodesic in M, that is, the subbundle T°
is the so-called totally geodesic foliation.

We will define the conullity operator C as a smooth section of
Hom(Γ°, EndCT1)) (cf. Ferus [2]). We denote by V the Riemannian con-
nection of M and by P: TM^> T1 the orthogonal projection. Define a
linear operator C of T°p into End(TJ) by

Cζx = -P(VXΞ) for x e TJ, ξ e T°p ,

where Ξ is a local vector field of T° on M around p with Ξp = ζ. Let
V denote the connection of the subbundle T1 induced from V.

We review basic formulas about the conullity operator. For details,
see Ferus [2] and Szabό [12].

PROPOSITION 3.1. Under the assumption of this section, the conullity
operator C satisfies the following formulas:

( 1 ) Let {ζ3, •••,£«} be a local orthonormal frame field of the bundle
T° around peM and we denote by A{, a, β = 3, •••,%, the connection

forms of Riemannian connection V with respect to {<f3, •••,£„}, i.e.,
Aβ

a(χ) = (Vxξa, ξβy for x 6 TPM. Then we have

- Σ {Λβ(y)Cβ(x) - Λβ

a{x)Cβ{y)} = 0
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for x, y e Tp1 where we simply write Ca = Cξa.
( 2 ) In the same notation as in (1), we have

* β , βζ + CβCa(x) + c(ξa, ζβ)x for g 6 Tp .

(3 ) Lei 7 δe α w u ί speed geodesic in one of the integral submanifolds
of T° and let η be a parallel vector field along 7 which is tangent to T°.
Then we have

V-rCη = CηC r + c(η9 7>id ,

where id denotes the identity map of T1.

PROOF. ( 1 ) We extend x,yeTp to local vector fields X, Y of T1

around p. By assumption, R(X, Y)ζa = 0. Calculating the T^-component
of the identity, we obtain (1).

(2 ) We extend x e Ύ\ to a local vector field X of T1 around p. By
assumption, R(X, ξa)ξβ = c (ξa, ξβ)X and hence P(R(X, ξa)ζβ) = c(ξa, ξβ)X.
Calculating the left hand side of the identity, we obtain (2).

( 3 ) follows directly from (2).

PROPOSITION 3.2. Under the assumption of this section, the second
fundamental form h of f satisfies

h(Cζx, y) = h(x, Cξy) for ξeT°p, x, y e ΓJ .

PROOF. We define the covariant differential of the second fundamental
form h by h(x, y, z) = zh(X, Y) - h(VzX, y) - h(x, V.Y), where X and Y
are local vector fields with Xp = x and Yp = y. The equation of Codazzi
implies that h(x, y, z) = h(y, z, x) = h(z, x, y). For a vector field ξ of T°
and vector fields X, Y of T1 we have h(ξ, Y, X) = Xh(ξ, Y) - h(Vzξ, Y) -
h(ξ, VXF) = h(CξX, Y). Similarly we get h(ξ, X, Y) = h(X, CξY) and hence
h(CζX, Y) = h(X,CξY).

PROPOSITION 3.3. For a unit vector ς of T°p, we have tr Cξ = 0 and
det Cξ = c.

PROOF. Let {elf e2} be a local orthonormal frame field of T1 around
p and let e3 be a unit vector field of T° around p such that (e8)p = ξ*
We define a tensor field S of type (1, 3) by S(x, y)z = R(x, y)z - cR0{x, y)z.
The second Bianchi identity implies that (Vβ3S)(e1, e2)e1 + (VβlS)(e2, ez)e^ +
(Vβ2S)(e3, ejβi = 0. Calculating the left hand side, we have — (Λ: — c)(A\9 +
Λ2

23)e2 = 0, where yl?y = (Ve.ejf ek). Since /c ̂  c, we have A\3 + ^ 3 = 0, which
means that tr Cξ — 0.

Let 7: ( — ε, έ)->M be a unit speed geodesic such that 7(0) = p and
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7(0) = ξ and let {elf e2} be a parallel orthonormal frame field of T1 along 7.
We denote by a = («</(*)) the 2 x 2-matrix which represents the conullity
operator Cr with respect to {elf e2}. Then by Proposition 3.1 (3), we have

a + cE on (-ε, ε) ,
at

where E denotes the identity matrix. Since tr a = 0 on (—ε, e), we have
tr(da/dt) = (d/dt) tr a = 0 and tr(α2) = — 2 detα. By the above equation,
we obtain det a — c and, consequently, det Cξ = c.

COROLLARY 3.4. Let Mn be an n (}^3)-dimensional connected curva-
ture homogeneous space. Suppose that Mn admits an isometric immersion
into Mn+1(c) of the type uumber 2. If c > 0, then the dimension of M
is equal to 3. If c < 0, the dimension of M is equal to 3 or 4.

PROOF. We assume that c Φ 0. By Proposition 3.3, the conullity
operator C: T°p -> End( ΓJ) is injective. Therefore we have dim Tl = dim Im C.
We define the subspaces δΙ(ΓJ), Sym°(ΓJ) and Alt(ΓJ) of End(ΓJ) by

βΙ(ΓJ) = {Le End(Γi); tr L = 0}

Sym°(ΓJ) = {LGδΙ(Γϊ); <LOJ, y) = (x, Ly) for x, y e ΓJ}

Alt(Γi) - {L G δΙ(Γi); (Lx, y) + (x, Ly) = 0 for x, y e Tβ .

Then we have dim gl(Ti) = 3, dim Sym°(ΓJ) = 2, and dim Alt(ΓJ) = 1. The
image Im C is contained in δΙ(ΓJ) by Proposition 3.3. We consider the
case c > 0. Suppose that dim Im C ^ 2. Then since Im Cn Sym°(Γί) ^ {0},
there exists a unit vector feTJ such that CfeSym°(ΓJ). On the other
hand by Proposition 3.3, Cξ has no real eigenvalue, a contradiction.
Therefore we have dim T°p = dim Im C ^ 1. Next consider the case c < 0.
Suppose that dimImC = 3. Then we have Im CnAlt(5PJ) Φ {0}, which
similarly gives rise to a contradiction. Therefore we obtain dim T% —
dim Im C ^ 2.

By Theorem 2.3 and Corollary 3.4, Theorem B is proved. To prove
Theorem C, we are left to studying 4-dimensional curvature homogeneous
hypersurfaces of the type number 2 immersed in H\ — 1). We will dis-
cuss them in Sections 4 and 5.

We devote the rest of this section to determining the curvature homo-
geneous hypersurfaces of the type number 2 immersed in the Euclidean
space. It is known that hypersurfaces of the type number 2 in the
Euclidean space are semi-symmetric, i.e., Riemannian manifolds satisfying
R(x, y)-R = 0. The local structure of such manifolds was classified by
Szabό [12]. We now prove the following theorem essentially due to Szabό.
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We remark that Dajczer and Gromoll [1, Theorem 3.4] prove the same
result by different method.

THEOREM 3.5. Let Mn be an n {^^-dimensional connected curvature
homogeneous space and let f be an isometric immersion of Mn into En+1

of the type number 2. Then for each point p of M there exists an open
neighborhood V of p which is isometric to the Riemannian product mani-
fold Vo x Vlf where Vo is an open submanifold of En~2 and V1 is a 2-
dimensional Riemannian manifold of constant curvature icΦO. Moreover,
the immersion f restricted to V is congruent to the product immersion
fo'xfu where f0 is an inclusion map of Vo into En~2 while f is an isometric
immersion of V1 into E\

PROOF. Our aim is to show that the conullity operator vanishes.
Suppose that there exists a point of M at which the conullity operator
does not vanish. Evidently the conullity operator C is not zero on some
neighborhood U of such point.

We first see that dim Im C = 1 at each point p of U. Indeed, if
d i m l m C ^ 2, then we have ImCnSymo(T£) Φ {0}. Hence there exists a
unit vector ξ of T°p such that Cζ is contained in Symo(TJ) and Cξ is not
zero, a contradiction by Proposition 3.3. We denote by 30Ϊ the one di-
mensional subbundle of T° defined over U which is an orthogonal comple-
ment of Ker C in T\ Let ez be a local unit vector field of 2)ΐ and let
{ely e2} be a local orthonormal frame field of T1 such that Ce3e2 = 0 and
Cedeλ = be2, where 6 is a non-zero local smooth function. Then we easily
see that Cζe2 = 0 for any ξ e T° and that CξCη = 0 for any ξ,ηe T°. More-
over, we see that the orthonormal frame field {elf e2} is parallel along an
integral submanifold of T°. Indeed, putting ξ3 = e3 and x = e2, we apply Propo-
sition 3.1 (2). Then we have 0 = (VfαCβ3)(e2) = -C e 3(V f/2) = -(Vξ(xe2, e,)be2

for a = 3, , n and hence <Vίαe2, ex> = 0.

Next we investigate the form of the connection V of the subbundle
T\ We denote by Λϊif i, j , k = 1, 2, the components of V with respect to
the orthonormal frame field {e19 e2}, i.e., A% — (Vf

e.ejy ek) = (Ve.ejf ek). Then
they satisfy Λ\2 = 0, e2b = bΛ\x and e2Λ

2

n = (Λ2

ny + tc, where K denotes the
sectional curvature of the plane T1. The first two identities are obtained
by Proposition 3.1 (1) while the last identity follows from (R(elf e2)e2y ex) = /c.

Finally, we consider the condition that Mn is isometrically immersed
in En+1. We use local vector fields {elf e2, es) defined as above. By the
equation of Gauss, we have h(elf ey)h(e2, e2) — h(elf e2)

2 = ιc. From Proposition
3.2, it follows that h(Cβ^e19 e2) = h(e19 CHe2) and hence bh{e2, e2) = 0. Con-
sequently, we have h(eZ9 e2) = 0. Therefore tz is negative and h(e19 e2) =
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± ( —Λ:)1/2. Calculating h(e2, e2, ej = h(e2, elf e2), we have 2Λ2

nh(e19 e2) — 0 and

hence Λ2

n = 0. K vanishes by the identity e2Λ
2

n = (Λ2

n)
2 + it, a contradiction.

By the above arguments, we see that the conullity operator vanishes
on M. Therefore T° and T1 are both parallel distributions and by de
Rham's decomposition theorem, we obtain the former part of Theorem
3.5. The reduction of the immersion / is due to Moore [5, Theorem 1].

By Theorems 2.3 and 3.5, Theorem A has been proved.

4. Construction of an example. In this section we will construct a
4-dimensional complete curvature homogeneous space and its isometric
imbedding into H\ — 1) of the type number 2. It is a hypersurface of
cohomogeneity 1.

We first recall the action of SO(S) on the 4-dimensional sphere S4 in
Rδ and describe its orbit space. Let G = SO(3) and p = {Ae MZ(R); *A = A,
tr A = 0}, where MZ(R) denotes the space of 3 x 3-real matrices. Then p
is a 5-dimensional vector space. We define the action of G on p by a(A) —
aAσr1 for αeSO(3), Aep. Let ( , ) be the G-invariant inner product on
p given by {A, B) = (l/2)tr AB. Put S4 = {Aep; {A, A) = 1/3}. Then S4

has constant sectional curvature 3 with respect to the metric induced
from p. The group G naturally acts on S4 as a group of isometries.
Define a 2-dimensional subspace α of p by

α = |diag(λi, λ2, λ3); Σ λ< = θ | ,

where diagOw, λ2, λ3) denotes the diagonal 3 x 3-matrix whose entries are
λx, λ2, and λ3. Put HQ = diag(-2/3, 1/3, 1/3) and H, = diag(0, 3"1/2, -3"1/2),
which are elements of α Π S\ Let H(s) = cos(31/2s)i?o + sinCS172^)^ =
diag(-2(cos(31/2s))/3, (cos(31/2s) + 31/2 sin(31/2s))/3, (cos(31/2s) - 31/2sin(31/2s))/3).
Then H(s) is a unit speed geodesic of S4 and is perpendicular to the G-
orbit at each point. Moreover, H(β) restricted to a closed interval 1 =
[0, 3~3/2π] represents all G-orbits. Therefore the space S4/G of orbits is
given by the closed interval / = [0, 3~3/2ττ]. The isotropy subgroup of G
at H(s) for sel = (0, 3~3/2ττ) is a finite subgroup of SO(3) consisting of
diag(l, 1, 1), diag(l, - 1 , -1), diag(-l, 1, -1), diag(-l, -1,1), and the
orbit of H(s) under G is just SO(S)/(Z2xZ2). They are codimension one
principal orbits. The isotropy subgroup of G at H(0) is

'/I 0 0 \ / - I 0 0 \

•10 cos^ - s i n ^ J , I 0 cosί sintf

Λθ sin^ eosθf \ 0 sin^ -cosθl)

and the orbit of H(0) is the projective plane P2(R) = SO(3)/O(2) with con-
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stant sectional curvature 1, the so-called Veronese surface. The orbit of
if(3~3/27τ) is also the Veronese surface. These two orbits are singular
orbits.

Let ikf* be the union of orbits of H(s) with s running through
o

/ = (0, 3~3/2π) i.e., the union of all principal orbits. Then M* is a con-
nected, open and dense subset of S\ We will describe the Riemannian
metric on ikf*. We define a smooth map F: (G/K)xϊ-+ ikf* by F{aK> s) =
a(H(s)), where G = SO(3), K= Z2xZ2, and / = (0, 3"3/27r). Then F is a

o

G-equi variant diffeomorphism of (GJK)xI onto ikf*. The Riemannian met-
o

ric on (G/K)xl induced by F has the form g8 + ds2

f where g8 denote the
G-invariant Riemannian metrics on GjK parametrized by s in 7. We will
write the metrics g8 explicitly. Let g = 3o(3) be the Lie algebra of G =
SO(3). The tangent space TeK(G/K) of the homogeneous space G/K =
SO(β)/(Z2xZ2) at eK is naturally identified with g. We denote by < , >8

the inner product on g induced by this identification. Then we have
<X, Y)8 = ([X, H(s)l [Y, H(8)]) for X, Γeg. Put

/0
- 1

0

0

°\
0 . J
0/

1°
\ l

0
0

0
o), i
0/

/°
f s = 0

\0

0
0

1

0
- 1

0

Then {Xlf X2, Xd} is a basis for g and satisfies [Xlf X2] = Xz, [X2, X3] = Xlf

and [X3, XJ = X2. We see that Xlf X2, and X3 are mutually orthogonal
with respect to < , >β and that (Xly X1)8 = (4/3)sin2(π/3 + 31/2s), <X2, X2)8 =
(4/3)sin2(ττ/3 - 31/2s), <X3, X3>8 = (4/3)sin2(31/2s). Consequently, the inner
product < , >s on g is given by

< , >β = (4/3)sin2(τr/3 + S^ω, (g) ω1 + (4/3)sin2(ττ/3 - 31/2s)ω2 (x) ω2

+ (4/3)sin2(31/2s)o)3 (x) ω 3 ,

where {ω19 ω2, ω3} is the basis dual to {Xlf X2, X5}.
We are now ready to construct a curvature homogeneous space.

Removing the orbit of iϊ(3~3/27r) from S\ we obtain a connected open sub-
manifold of S\ which is denoted by M. Then M is G-invariant sub-
manifold of S4 and its orbit space is a semi-open interval [0, 3~3/2ττ). We
define a new Riemannian metric g on M as follows:

g = a(s)ga + α(s)2ds2 on ikf* ,

where α(s) = 3(1 + 2 cos(31/22s))-\ while at each point on the orbit of iJ(0),
g coincides with the former metric. Here when we define a metric on

o

ikf*, we use the parametrization F: (G/ίΓ)x/—>ikf*.
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The new Riemannian metric g is a smooth one on M and is G-invariant.
Indeed it is clear that the metric g is smooth and G-invariant on M*.
We will show that the metric g is smooth in a neighborhood of the orbit
of H(0). We denote by N and TλN the orbit of £Γ(0) and the normal
bundle of N in S\ respectively. Let exp^ be the exponential mapping
of TλN onto S\ Then the action of G on TλN is naturally defined and
exp^ is a G-equivariant mapping. The function r on TλN is defined by
r(ξ) = <f, ξ)m for ξ e TλN, where < , > denotes the metric on TLN. De-
fine the subsets U and Uo of TλN by

U={ξe T^N; r(ξ) < S~V2π}

UQ = U — (the zero section) .

We recall that H(s) is a unit speed geodesic of Si and H'(Q) is a normal
vector of N at ίf(0). Therefore we have exp^(siϊ'(0)) = iϊ(s). We define

o

a smooth mapping Φ: (G/K)xI->Ua by Φ(αZ, s) = da(sH'(0)), where dα
denotes the differential of the diffeomorphism a of S4 for αeG. Then Φ
is a G-equivariant diffeomorphism and the following diagram commutes:

M*
o

Moreover, the function r ° Φ coincides with the projection of (G/K) x / onto
o

/. We denote by gQ the Riemannian metric on U induced from the
Riemannian metric on S4 by exp^. Clearly, we have Φ*g0 = g8 + ds2. It
follows that expί g = a(r)g0 + (α(r)2 — a(r))dr2 on ?70. Since α(β) is an
even function of s, α(r) is a smooth function on ?7 and since a(s)2 — α(β)
is an even function of s and α(0)2 — α(0) = 0, (α(r)2 — α(r))ώr2 is a smooth
tensor field on U. Consequently, we see that exp$ # is a smooth Riemannian
metric on U and hence g is smooth in a neighborhood of the orbit of H(0).

PROPOSITION 4.1. The Riemannian manifold (M, g) is complete and
curvature homogeneous but is not locally homogeneous.

PROOF. TO show the completeness and curvature homogeneity, we
change the parametrization of M*. Define a diffeomorphism φ: (G/K) xl-+
(G/K)xR+ by φ(x, s) = (x, t(s)), where

ί(β) = [logsin(ττ/3 + 31/2s) - logsin(π/3 - 31/2s)]/2 .

Then we have (φ~λ)*F*g = a(s(t))g8{t) + dt2. Moreover, on t h e Lie algebra g,

>.(« = 02<<*>i ® α)x + e~2ίω2 ® ω 2 + (β* — e~ι)2ωz (g) ω 3 .
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LEMMA 4.2. The Riemannian manifold ((G/K) x R+

9 g) is curvature
homogeneous, where g is defined by

e2tωγ ® α>! + e~2tω2 (x) co2 + (eι — e~')2o>3 (x) ωB + dtf .

Moreover, we have ||V<o||2 = 32(e* + O 2 and hence ((G/K)xR+, g) is not
locally homogeneous. Here Vp denotes the covariant differential of the
Ricci tensor field p.

PROOF OF LEMMA 4.2. We calculate curvature properties on the
Riemannian covering space SO(β) x R+ of (G/K) x R+. Let Xlf X2 and X3 be
left invariant vector fields on SO(3) which correspond to X19 X2 and X3 on
Q, respectively. We naturally extend them to vector fields on SO(S)xR+

and use the same notation. We define vector fields elf e2, es and e4 on
S0(3)xR+ by β1 = e-'ϋi, e2 = etX2, ez = (eι - O " X X e, = d/dt. Then
R, 02, es> e*} * s a n orthonormal frame field on SO(3) x R+ and satisfies

[ T / t —t\ Γ "1

(4.1) [e2, es] = e2t(e' - e" ' ) ' 1 ^ [e4, βj = e2

By direct calculation, we have

β l 2 3 e2 2 4

(4.2) V ' l β 4 = β l V " 2 e 4 = ~ β 2

V ί 3es = - ( β * + β-')(β* - e - ' ) - 1 ^ Vβ4e3 = 0

and

(4.3)

Λ(e<f e4)βy = - { ί ^ - ί<ye4} , i, j = 1, , 4 ,

where V and J? denote the Riemannian connection and the curvature
tensor field of (SO(β)xR+, g). Similarly we obtain ||V^||2 = 32(V + e'*)\
By (4.3), the Riemannian manifold (SO(3)xiί+, g) is curvature homogeneous.

Now we prove Proposition 4.1. Since (Af, g) is curvature homogeneous
on its dense subset M* by Lemma 4.2, (M, g) is curvature homogeneous



CURVATURE HOMOGENEOUS HYPERSURFACES 233

on the whole M. The projection of ((G/K) x R+, g) onto R+ is a Riemannian
submersion onto R+ with the standard metric. Thus (M, g) is complete.

Now we construct an isometric imbedding of the above Riemannian
manifold (M, g) into H\ — l). We first define a G-equivariant injective
map j:M->p by j(a(H(s))) = α(31/2r(s)£Γ(s)) for a e G = SO(3), s 6 [0, 3"3/27τ),
where

r(s) = s inh-^l + 2 cos(31/22s))"1/2) .

We denote by sinh"1 x the inverse function of sinh t = (e* — e~*)/2. Since
r(s) is an even function of s, we see that j is a smooth map. Fix a
point o of iJδ( — 1). The exponential map exp0 at o is a diffeomorphism
of T0H

5 onto if5. We identify p with T0£P by a linear isometry. With
this identification, G = SO(3) acts on T0H

δ as a group of linear isometries.
Since any linear isometry of T0H

δ is extended to an isometry of H\ — 1),
G naturally acts on H\ — 1) as a group of isometries and the exponential
map exp0 at o is a G-equivariant map. We define a map f:M-*H\ — l)
by / = expooj. Then / is a G-equivariant injective smooth map. More-
over, we have:

PROPOSITION 4.3. The map f is an isometric imbedding of (Λf, g)
into H\ — l) and its type number is equal to 2.

PROOF. We denote by g the Riemannian metric on H\ — 1). We will
show that f*g = g. It suffices to prove this on the dense subset M* of
M. We define a diffeomorphism Φ: S*xR+-^ ToH

5\{0} by Φ((x, r)) = 31/2ra,
where S4 denotes the sphere with radius 3"1/2 in T0H

5. Then we have
gf = φ* exp* g = 3(sinh r)2< , > + cZr2, where < , > denotes the Riemannian
metric on S\ Since (Φ"1 °j){a{H(s))) = (a(H(s)), r(s)) for s e ί = (0, 3~3/2τr),
we have

g\{Φ~ι°3)*X, (Φ-'OJXY) = 3(sinhr(s))2<X, Γ> = 3(1 + 2 cos(31/22s)r<X, Γ>

= α(s)<X, F> = g(X, Y)

for vectors X and Y tangent to the orbit of H(s). Since (Φ~ιoj)^(H\s)) =
(iί'(s), (dr/ds)(d/dr)), we have

for a vector X tangent to the orbit of iί(s) and

g\(Φ^oj%H\s\ (φ-iofaHW = 3(sinhr(s))2

= 9(1 + 2 cos(31/22s))"2 = a(s)2 - g{H\s\ H\s)) .

Consequently, j is an isometric imbedding of (M*, g) into (p, exp0 *g) and
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/ is an isometric imbedding of (M, g) into H% — 1).
By Proposition 2.1 and (4.3), the type number of / is equal to 2.

5. The case of the type number 2—Part 2. In this section we will
prove the following theorem and complete the proof of Theorem C.

THEOREM 5.1. Let (M, g) be a ^-dimensional connected curvature
homogeneous space and let f be an isometric immersion of (M, g) into
H\ — l) of the type number 2. Then (M, g) is locally isometric to the
example constructed in Section 4 and f is locally congruent to the iso-
metric imbedding given in Section 4.

In this section we assume that the assumption of Theorem 5.1 is
satisfied and use the same notation as in Section 3.

LEMMA 5.2. Let \\C\\ be the norm of the conullity operator C at
peM. Then we have \\C\\2 ^ 4 and the equality holds if and only if
I m C = Sym°(TJ).

PROOF. By Proposition 3.3, we see that d imImC = 2 and hence
dimImCnSym°(ΓJ) ^ 1. Therefore there exists a unit vector ξ of T°p

such that CeeSym°(ΓJ). Let {elf e2} be an orthonormal basis of Tι

v such
that Cζex — — e1 and Cζe2 — e2. Let η be the unit vector of T°p orthogonal
to ζ. Then Cη is represented as

Cη = ( α b) , α2 + be = 1
\c -a)

with respect to {eίf e2}. By Proposition 3.3, det(C{cosβ)ξ+{sinθ)η) = —1 for any
θ. This implies that a = 0. Thus | |C||2 = 2 + 62 + c 2 ^ 2 + 2(62c2)1/2 = 4.
The equality holds if and only if 6 = c — ± 1 .

By Lemma 5.2, at a point of M, \\C\\2 is either greater than 4 or
equal to 4. Let us consider the first case. We fix a point p e M at which
||C||2 > 4. By Lemma 5.2, we have dimlm CnSynΛT1) = 1 on some neigh-
borhood of p. Therefore there exists an orthonormal frame field {elf e2, e3, e j
defined on a neighborhood U of p which satisfies the following: {e3, e4}
is an orthonormal frame field of T° on U such that CeieSjm\T) and
{e19 e2] is an orthonormal frame field of T1 such that Ce4ex = — eγ and
Cue2 = e2. By the argument in the proof of Lemma 5.2, Ce3 is represented
with respect to {elf e2} as

We will determine the form of the Riemannian connection V with respect
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to this orthonormal frame field {elf e2, e3, e4}. We denote by Aίs for i, j , k —
1, •••, 4 the components of the connection, i.e., Vues = Σ J L I Λ ^ * .

Applying Proposition 3.1 (2), we calculate (V^C^XeJ and (Vβ4Cβ4)(e2).
We obtain 2Λ\X = -cΛl and 2A\2 = bΛl and hence A\z = Λl = 0. This
means that V ^ = Vβ4e2 = Vβ4e3 = Vβ4e4 = 0. Similarly calculating (V^C^fe)
and (Vβ4Ce3)(e2), we obtain ejb = 6 and e4c = — c. Thus

e4||C||2 = β4{2 + 62 + c2} = 2(δ2 - c2) ^ 0 .

Changing the signs of e3, e± and the indices of e19 e2, if necessary, we
may assume that

Cefii = — βi i C e 4 e 2 = e 2

C^βi = ce2 , CHe2 = bex with 6, c < 0, 6c = 1

e 4 | | C | | 2 > 0 , i.e., δ2 > &

for the orthonormal frame field {elf e2, e8, e j .
Using Proposition 3.1 (2), we calculate (V^C^XeJ and (Ve3Cβ4)(e2). Then

we obtain - 2 ^ = c(l + /ί3

3

4) and 2^^2 = δ(^3

3

4 - 1). Hence we have Λ\x =
— 1/(6 — c) and yl̂ 4 = (6 + c)/(6 — c). Similarly, calculating {VHCe^{e^} and
(Vβ3Ce3)(e2), we obtain ejb = esc = 0. By Proposition 3.1 (1), we have Λ\2 =
(6/2ML Λl = -(C/2ML, β l6 = -(c(6 - c)/2)^, and e2c = -(6(6 - c)/2)^4.
The plane spanned by {elf e2) has constant sectional curvature /c. There-
fore we have

M L - e2Λ\2 - (^}2)
2 - (ΛL)2 = ιc - 3 .

Consequently, we have

ce3 ,

Lβ, , Vβ 2e4 = -e2 + Λ2

3

4e3

V ^ = 0

Vβ 4e2 = 0

(5.1) Vβ 3e3 = AUβt , Vβ 4e3 = 0

Vβ 3e4 = Ale, , Vβ 4e4 = 0

e46 = 6 , e36 = 0 , ejb = - ( c ( 6 - c)/2)Az

u

e±c = — c , e3c = 0 , e2c = —(6(6 — c)/2)Au

Al= - 1 / ( 6 - c ) , i &

4L = (& + c)/(δ - c) , ΛL
M L - MJ 2 - (^ί2)

2 - (ΛL)2 = * - 3 .
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Now we consider the condition for M to be isometrically immersed
in ί F ( - l ) . Since ker A = T\ we have h(eS9 e5) = h(e49 es) = 0 for 1 ^ j <: 4.
By the equation of Gauss, we obtain h(e19 e^h{e2, e2) — h(e19 e2)

2 = K + 1.
By Proposition 3.2, we have h(Cue19 e2) = h(e19 CHe2) and hence h(elf e2) = 0.
Similarly, we have h{CHel9 e2) — h(e19 Ce5e2) and hence bh(e19 ej = ch(e2f e2).
Hence ic + 1 = b2h(e19 e j 2 is positive, h(e19 eλ) = ±c(ιc + 1)1/2 and h(e2f e2) —
±b(κ + 1)1/2. Changing the sign of the normal vector field, if necessary,
we may assume that h(e19 et) = c(ιc + 1)1/2 and h(e2t e2) = b(/c + 1)1/2. Calcu-
lating h(e29 e2, ex) = h(e29 e19 e2), we have efi = (c — b)Λ2

21. In view of ejj —
-(c(6 - c)/2)Λl4 and Λ\\ = -(c/2)Λ3

4 in (5.1), we have Λ\\ = AW = 0. Simi-
larly, by the equation h(e19 e19 e2) = h(e19 e2, e j and (5.1), we obtain ΛJ2 =
Au — 0. From these results and the last equation of (5.1) follows K — 3.
Put t = (l/2)cosh-1((||C||2 - 2)/2), where cosh"1^ denotes the inverse func-
tion of cosh θ = (eθ + e~θ)/2. Then t is a positive smooth function on a
neighborhood of p. Solving equations b2 + c2 = e2t + e~2t and be — 1 under
the condition 6 < 0, c < 0 and 62 > c2, we obtain 6 = — e* and c = — e~\
Since e^ = e2b = e36 = 0 and e46 = 6, we see that exί = e2t = e3ί = 0 and
e4ί = 1. Namely, e4 is the gradient vector field of the function t.

Consequently, we have:

LEMMA 5.3. (1) Putting t = (l/2)coshr\(\\C\\2 - 2)/2), we have e±t =
e2t = eBt = 0 αtid ej, = 1 so that the vector field e4 is the gradient vector
field of the function t.

( 2 ) The Riemannian connection V is given with respect to the
orthonormal frame field {e19 β2, e3, e4} as follows:

V e = —e~*e

Vβ!βχ = (e4 - β - ' Γ ' β , ,

V,2β2 =

v β 2 β 3 =

V β 2 β 4 =

V β 4 β x =

V β 4 e 2 =

V β 4 β 3 =

V β 4 β 4 =

\ρ p λ

: — e%

• eA

eιex

- - e 2

0

0

0

0V Λ — (pi JL. p~t\(p* 0~*\~^O

r -| / t —t\

r -I 2£/ ^ _^\_i r -|

(3 ) The second fundamental form h is given by

h(e19 ej = ±2e~* , h{e2, e2) = ±2e* 9

h(e19 e2) = h(eS9 βj) = h(e49 e5) = 0
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for the orthonormal frame field {elf e2, e3, e j .

Now we prove Theorem 5.1 on a neighborhood of a point peM at
which ||C||2 is greater than 4. By Lemma 5.3 (1), the level sets of the
function t are hypersurfaces of M and the vector fields e19 e2, and es are
tangent to these hypersurfaces. Put t(p) = t0. We take a sufficiently
small connected neighborhood V of p in the hypersurface given by t = ί0

and take a sufficiently small ε > 0. Then there exists a diffeomorphism
F of Vxϊ into U defined by

F(x, t) = &_ί0(a?) for xeV and ί e / = (t0 - ε, ί0 + e) ,

where {̂ J denotes the local one-parameter group of local transformations
generated by the vector field e4. By the definition of F, we have t(F(x, s)) = s.
Put Xx = e%, X2 = e~% and X3 = (e* — e"*)β8. Then by Lemma 5.3 (2), we
have

[X2,X3] = Xlf

The restrictions of Xlf X2 and Xz to F are denoted by Xlf X2 and X3, respec-
tively. Then there exists a diffeomorphism of V into SO(3) which sends
Xx, X2 and X3 to left invariant vector fields on SO(3). Let oo19 oo2 and α>3

be the 1-forms defined on V and dual to Xί9 X2 and X5. By using the
diffeomorphism F, the Riemannian metric g on J^(Fx7) is represented as

£ = e2tωι 0 0 ) ! + <r2fα)2 (x) ω2 + (e* - e"*) 2^ (g) α>8 + ώί2 .
o

Thus JFXVX/) in ί7 is locally isometric to the example in Section 4. By
Lemma 5.3 (3), the immersion / is rigid. Therefore Theorem 5.1 has been
proved in our case.

Next we consider Theorem 5.1 on a neighborhood of a point of M a t
which ||C||2 is equal to 4. We note that | |C||2 is equal to 4 at points on
the orbit of H(0) for the example in Section 4. We fix a point p e M at
which ||C||2 is equal to 4. Let 7: [0, δ] —> M be a unit speed geodesic such
that 7(0) = p and 7(0) e T°p. By Lemma 5.2, we have Q (o) e Sym°(ΓJ). Let
{fiy f*} be an orthonormal basis of T\ such that Cm

mfx = —f and Cr(0)/2 = /2,
and let {/i(t),/2(t)} be a parallel orthonormal frame field of T1 along 7
such that /€(0) = fif i — 1, 2. We represent Q ( ί ) as a 2x2-matrix with
respect to {fit), /2(ί)}. Then by Proposition 3.1 (3), we obtain the following
ordinary differential equation:
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< * » - ( 0 1

We immediately have

' - 1 0

0 1

Let η(t) be a parallel vector field along 7 such that η(0) is a unit vector
of T% and orthogonal to 7(0). By the argument in the proof of Lemma
5.2, we have

with respect to {fίf f2}.

Solving the equation

given by Proposition 3,

Thus IICII2 = 2 + e2t + e

We may

c
7(0)

—c
dt ">

Gym =

.1 (3), we

cW) --

r 2 ί at Ύ(t)

•ί °
\±1

0/

assume that

1°

f-

/0 1'

\i o,

have

- c°
. In

0/ '

1

0 l)

) •

Λ.
0/

particular, ||C||2 is greater than 4
at τ(ί), ί > 0.

We fix t0, 0 < t0 < δ. Put 7(t0) = Po. Since ||C||2 > 4 at p0> a neigh-
borhood of p0 is locally isometric to the example in Section 4. In par-
ticular, the sectional curvature of the jP-plane is equal to 3 and there
exists an orthonormal frame field {elf e2, ea, ej on some neighborhood U of
p0 such that Lemma 5.3 holds. We note that %t) = e4 on τ(ί) Π U. The
subset K in U consisting of points at which ||C||2 = 2 + e2to + e~2t° is a
hypersurface of U and the vector fields elf e2, and e3 are tangent to K.
Evidently K contains p0. We define a smooth map φ: K-+M by #(g) =
expff( — toβ^lg) for geίΓ, which is well-defined on a suitable neighborhood
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of p0 in K. Put φ(K) = N. Then we have

LEMMA 5.4. N is a 2-dimensional submanίfold of M containing p.
Moreover, N is an integral submanifold of the distribution T1.

PROOF OF LEMMA 5.4. p is contained in N, since φ(pQ) = p. We
compute the differential dφ of φ at q e K. Let σ: [0, t0] —> M be a geodesic
such that (j(0) = g andσ(0) = — ej g . Let X be a Jacobi field along α such
that X(0) = a? 6 ΓffίΓ and X'(0) = AHx, where A denotes the shape operator
of the submanifold K in M. Then we have dψ(x) = X(tQ). Let /,(ί) be
a parallel vector field along σ such that /<(()) = et\q, i = 1, 2, 3. We note
that/^ί) and/2(ί) are tangent to T1 while /8(ί) is tangent to Γ°, and that
R(fif a)σ = -fif i = 1, 2, 3. By Lemma 5.3 (2), we have Auex = —e19

AHe2 = e2 and AHe% = -(etQ + e-ίo)(eίo - β"*0)"^ at β e iΓ. Let JŜ , £;2 and ^
be Jacobi fields along σ whose initial conditions are given by 2^(0) = ej9,
^ί(O) = -ex\q and E2(0) = e£|ff> ^ ( 0 ) - e2|9 and JE7a(0) = β,|f, ^ ( 0 ) -
— (eί0 + e~<0)(eί0 — e"*0)""^^, respectively. Solving the equations of Jacobi
fields, we obtain ^ ( ί ) = e~ιf{t), E2(t) = e%{t) and E3(t) = {(β* + e~ι)β -

(etQ + e-*o)(e* _ 6-0/2(6*0 - e-'°)}/8(ί). Thus dφ{ei\q) = e - ^ t o ) , ^(e 2 | f ) - e*o/f(ίo)
and ώ^(e3|g) = 0. Hence Lemma 5.4 has been proved.

We will investigate the properties of the submanifold N in more
detail. The subspace T°q at q e N is just the normal space T^N of the
submanifold N in M and the conullity operator C is just the shape operator
of N in M. Therefore Cξ for f 6 ΓJ, g e iV, is a symmetric linear endo-
morphism of T\ = TqN. By Lemma 5.2, we have ||C||2 = 4 at qeN. For
an arbitrary orthonormal basis {e3, e j of Γ° = T^N, there exists an or-
thonormal basis {elf e2] of TqN with respect to which Cβ3 and Cβ4 are rep-
resented as

) and (
0 1/ \1 0,

respectively (see the argument in the proof of Lemma 5.2). By the equa-
tion of Gauss, we see that N is a surface with constant curvature 1 with
respect to the induced Riemannian metric.

Now we fix some notion on the symmetric tensor product. Let V be
a 2-dimensional Euclidean space with the inner product < , >. We denote
by S\ V) the symmetric tensor product of V. The space S2( V) is linearly
spanned by x y — (a?®y + y®x)j2 with x, y running through V. We
introduce an inner product ( , ) on S\V) by (x-y, u-v) = {(x, u)(y, v) +
(x, v)(y, u)}/2. We identify S\V) with the space of all symmetric linear
endomorphisms of V, defining the linear endomorphism x-y by (x-y)(u) =
{(x, u)y + (y, u}x}/2 for x,y,ue V. Then we note that Q(x), y) = (x y, ζ)
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for ξeS2(V), x, ye V. Put e = eι-e1 + e2-e2 for some orthonormal basis
{e19 e2} of V. This definition is independent of the choice of an orthonormal
basis. Then we have e{x) = x and (x-y, e) = (x, y). With H\V) =
{f eS2(F); (£, e) = 0}, we have an orthogonal decomposition:

S\V) = H\V) + Re .

We may take {2"1/2(e1 e1 — e2-e2), 21/2e1-e2} as an orthonormal basis of H\V)
for some orthonormal basis {elf e2} of V. We apply the above arguments
to the tangent space TqN at qeN. We denote by S\TN) the tensor
bundle on N consisting of the symmetric tensor products S\TqN) and by
H\TN) the subbundle of S\TN) consisting of H\TqN). The Riemannian
connection of N with respect to the induced Riemannian metric is denoted
by the same notation V as that of M. The connection V on TN is natu-
rally extended to S\TN) and the subbundle H\TN) is parallel with re-
spect to this connection.

The following holds:

LEMMA 5.5. Let a be the second fundamental form of the submanίfold
N in M.

(1) a is a linear isomorphism of H\TqN) onto T^N = T°q. More-
over, we have <α(£), a(η)} = 2(£, η) for ξ, ηeH\TqN) and Ca{ζ)x = 2ζ(x),
where ζ(x) means the action of ζ on x as a symmetric linear endomorphism.

(2 ) The second fundamental form a is parallel and hence is a bundle
isomorphism of H2(TN) onto TLN which preserves the connections, where
TλN is equipped with the normal connection V1.

PROOF OF LEMMA 5.5. (1) Let {e19 e2) and {e3, ej be the orthonormal
bases of TqN and T^N, respectively such that

- I 0\ (0 1

J and C, (
with respect to {e19 e2}. Then we have a(elf e j = —es, a(e2, e2) = e3 and
a(e19 e2) = β4. P u t ζ = 2"1/2{e1 e1 — e2-e2] a n d η = 21/2e1 e2. T h e n {ς, η] is a n

orthonormal basis of H\TqN). We see that a(e) = a{e1-e1 + e2-e2) — 0,
a(ξ) = -21/2e3 and a(η) = 21/2β4.

(2) By (1), we have <«(», 2), α(w, v)) = {y, u)(z, v) + (yt v)(z, u) -
{y, z)(u, v}. Thus <(Vβα)(2/, z), a(u, v)} + <α(i/, z\ (Vxa)(u, v)) = 0. By
Proposition 3.1 (1), we have (Vxa)(y, z) = (Vyα)(a?, 2). Using the above
equations, we have <(Vβα)(y, «), α(%, v)> = —(a(y, z), (Vxa)(u, v)) =
<(V.α)(y, 2;), α(α;, v)> = - <α(w, «), {Vya)(x, v)} = ((vva)(u, z\ a(x, y)) =
-(a(u9v),(Vza)(x,y)) = -((yxa)(y,z),a(u,v)) and hence ((Vxa)(y,z),a(u,v)) =
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0. Consequently, we have (yxa)(yf z) = 0, that is, Vi(a(y, z)) = a(Vxy, z) +
<x(y, Vβz) = a(V9(y z)) holds. This equation means that a preserves the
connections.

We will show that there exists a local isometry of a tubular neigh-
borhood of N into the example of Section 4. For this we need a general
lemma on equivalence problem. Let M be an m-dimensional Riemannian
manifold and N an ^-dimensional submanifold imbedded in M (0 <; n ^
m — 1). We denote by TλN the normal bundle of N. The exponential
map exp^ of the normal bundle maps a neighborhood UN of the zero section
of TLN into M. We denote by Ur

N the neighborhood of the zero section
of TλN with radius r and put Ur(N) = exp^(C/^). For a unit vector £
of T9M, let 7 be a geodesic of M such that 7(0) = p and 7(0) = f. We
denote by τJ:TpΛf—> Tr{t)M the parallel translation along 7 and denote by
jβ(M) the tensor of type (1, 3) on TPM defined by

R{tiξ)(x, y)z = (τtrXR(τlx, τ\y)τ\z) for x, y, z e ϊyif .

Let M be another m-dimensional Riemannian manifold and let N be an
w-dimensional submanifold imbedded in M.

We prove a lemma on equivalence problem under the following as-
sumption: For some r > 0, the exponential maps exp^: Ur

N —• Ur(N) and
expî : i7^ -> Ur(N) are both diίfeomorphisms. There exists an isometry φ
of N onto JV and a bundle isomorphism / of TλN onto TLN which satisfy
the following conditions:

(1) The following diagram is commutative;

-I , i
N -U N

(2) The isomorphism / preserves the metrics and the normal con-
nections of the normal bundles TλN and TLN.

(3) The differential dφ of φ and / preserve the shape operators of
the submanifolds N and N in M and M, respectively, i.e.,

dφAξ = Af{ξ)dφ for ξ e T£N .

(4 ) We denote by F = dφ + f the bundle isomorphism of TM\N onto
TM\N defined by dφ and /. Then F satisfies

1*1
for any point peN and any unit vector ξe
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LEMMA. Under the above assumption, the diffeomorphism Φ of the
tubular neighborhood Ur(N) onto Ur(N) defined by Φ = exp^o/oexp^1 is
an isometry.

This lemma is seen by using the arguments of Jacobi fields. We
sketch the proof (for reference [7, Chapter 2]).

We first calculate the differential d(expN) of exp^ at a point (p, ξ)
of TLN, where (p, ξ) means a normal vector ζ at p 6 N. We denote by
β^iP)ζ) the horizontal subspace of the tangent space T{p>ξ)T

1N with respect
to the normal connection V1 and by T{Ptξ) the vertical subspace, i.e., the
kernel of the differential dπ of the natural projection π: TLN-+ N. Then
we have the direct sum decomposition:

We naturally identify T{p,ξ) with T£N. For xeβέf{Pjξ), put a curve c(s)
of N such that c(0) = p, <5(0) = dπ(x) and let £(s) denote the parallel
normal vector field through ζ along c(s) with respect to the normal con-
nection V1. Then we have ξ(0) = x. Put α(ί, s) = expc(β) ί£(s). Then
a(t, s) is a variation of the geodesic 7(t) = expp if and its variational vector
field X(t) is a Jacobi field along τ(ί) and satisfies X(0) = dπ(x) and X'(0) =
—Af(0)X(0) = — Aedπ(ίc). In particular, cZ(exp )̂(Pie)(aj) = X(l). On the other
hand, for y e TlPiξ), put a(t, s) = expp t(£ + sy). Then α(ί, s) is a variation
of 7 and its variational vector field Y(t) is a Jacobi field along 7(ί) and
satisfies Y(0) = 0 and Y'(0) = y. Moreover, we have d(ex^N){p>ζ)(y) = Y(l).
For an arbitrary vector ve T{Pfξ)T

1N, let y be the vertical component of
v and let F(t) be the Jacobi field along the geodesic 7(t) = expp tζ whose
initial conditions are F(0) = dπ(v) and F'(0) = y — Aξdπ(v). Then the above
argument implies d(expN)(Ptξ)(v) = V(l).

Given veT{p^TLN, (p,ζ)eUr

N, let 7(ί) be the Jacobi field along
7(t) = exppί£ such that F(0) = dπ{v) and F'(0) = y — Aedτr(v), where y
denotes the vertical component of v under the identification of TlP>ξ)

with T£N. Define a vector field F(ί) along ϊ(t) = exp#(p) ί/(ί) by F(t) =
ΓOFCTO)"1"^*)* where τ$ and τ\ denote the parallel translations along 7 and
7, respectively. Then by the assumption of Lemma, V(t) is a Jacobi
field along 7. Moreover, we have V(0) = FV(0) = dφdπ(v) — dπdf(v) and
F'(0) = FV\ϋ) =M - dφAξdπ(v) =f(y) - Af{ξ)dφdπ(v) =f(y) - Af{ξ)dπdf(v).
Since / preserves the normal connections, f(y) coincides with the vertical
component of df(v) under the identification of 3^(P,f/(e)) with T£{P)N.
Therefore we have d(ex^)mp)>f{ξ))(df(v)) = F(l). Since' ||F(1)|| = ||F(1)||,
we see that ||d(exp^)(Pie)(i;)|| = \\d(ex^){φ{p)tf{ξ))(df(v))\\. Consequently, Φ is
an isometry.
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Now let us return to the proof of Theorem 5.1 on a neighborhood of
a point at which ||C||2 is equal to 4. We fix a point p of the example
in section 4 at which ||C||2 is equal to 4. Then there exists an integral
submanifold N of the distribution T1 containing p. Since both N and N
are surfaces of constant curvature 1, there exists an isometry φ of JV
onto JV. Here we take N and JV sufficiently small. Let a and a be the
second fundamental forms of JV and N, respectively. Then by Lemma
5.5, a: H\TN) -» T^JVand δ: H\TN) -+ TxJVare both bundle isomorphisms.
We extend the differential dφ of the isometry φ to a bundle isomorphism
of H\TN) onto H\TN) and define a bundle isomorphism / of TLN onto
TλN by /' = a°dφ° a~ι. We note that the curvature tensor field R is
parallel along the geodesic tangent to T°. Then the isometry φ and the
bundle isomorphism / satisfy the assumption of the above lemma. Hence
there exists an isometry of a tubular neighborhood of JV onto a tubular
neighborhood of JV.

By Proposition 3.2, we see that the shape operator A of the immer-
sion of M into H5( — 1) has the form A — ±2 id on T\ at a point p e M at
which ||C||2 is equal to 4, where id denotes the identity map of T*. On
the other hand, Lemma 5.3 (3) holds at a point of M at which ||C||2 is
greater than 4. Thus the immersion of M into H\ — 1) is rigid. Hence
Theorem 5.1 has been proved.
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