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Introduction. On vector bundles over oriented 4-dimensional Rieman-
nian manifolds, the notion of self-dual and anti-self-dual connections plays
an important role in the geometry of 4-dimensional Yang-Mills theory
(see Atiyah, Hitchin and Singer [A-H-S]).

On the other hand, in his differential-geometric study of stable holo-
morphic vector bundles, Kobayashi [K] introduced the concept of Einstein-
Hermitian vector bundles over Kahler manifolds. Let E be a vector
bundle over a quaternionic Kahler manifold M, and p:Z->M the corre-
sponding twistor space defined by Salamon [SI]. Now the purpose of the
present paper is to give a quaternionic Kahler analogue of self-dual and
anti-self-dual connections, and then to construct a natural correspondence
between E's with such connections and the set of Einstein-Hermitian
vector bundles over Z.

Let jffbe the skew field of quaternions. Then the Sp(n) Sp(l)-module
ΛΉn is a direct sum JV2' φ N" φ L2 of its irreducible submodules N2f N"9

L2, where N2 (resp. L2) is the submodule of the elements fixed by Sp(n)
(resp. Sp(l)) and for n = 1, we have N" = {0}. Hence, the vector bundle
Λ2Γ*M is written as a direct sum A2 φ A" φ B2 of its holonomy-invariant
subbundles in such a way that A2, A", B2 correspond respectively to N2f

N2", L2. Now, a connection for E is called an A'2-connection (resp. J32-
connectίon) if the corresponding curvature is an End(£r)-valued A2-form
(resp. jE?2-form). Then we have:

THEOREM (0.1). All A'2-connections and also all B2-connections are
Yang-Mills connections.

Furthermore, for E with a JS2-connection we can associate an unvalued
elliptic complex (cf. (3.2)) similar to those of Salamon [S2]. Such com-
plexes allow us to analyze the space of infinitesimal deformations of J52-
connections (see Theorem (3.5)).

For our quaternionic Kahler manifold M, a pair (E9 DE) of a vector
bundle E over M and a ^-connection DE on E is called a Hermitian pair
on M if DE is a Hermitian connection on E. On the other hand, a pair
(F, DF) of a holomorphic vector bundle over Z and a Hermitian (1, 0)-
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connection DF on F is called an excellent pair on Z if the following
conditions are satisfied:

(a) F with the corresponding Hermitian metric hF restricts to a flat
bundle on each fibre of p:Z-+M. (Hence the real structure τ:Z-^Z
(cf. Nitta and Takeuchi [N-T]) naturally lifts to a bundle automorphism
τΊF^F.)

(b) Let σ:F-*F* be the bundle map defined by Fz3f^σ(f)eF*ω

(zeZ), where σ(f){g) := hF(g, τ'(/)) for each geFτiz). Then σ is an anti-
holomorphic bundle automorphism. We then have the following general-
ization of a result of Penrose's type (cf. Atiyah, Hitchin and Singer
[A-H-S]; see also Salamon [S2], Berard-Bergery and Ochiai [B-O]):

THEOREM (0.2). Let £(f (resp. βέ?) be the set of all Hermitian pairs
(resp. all excellent pairs) on M (resp. Z). Then

J T a (E, DE) κ> (p*E, p*DE) e

defines a bijective correspondence between Sίf and

In particular, if M has positive scalar curvature, then every excellent
pair (F, DF) on Z is a Ricci-flat Einstein-Hermitian vector bundle.

Finally, I would like to express my sincere gratitude to Professors
H. Ozeki and M. Takeuchi for valuable suggestions. Special thanks are
due also to Professors I. Enoki and T. Mabuchi for constant encourage-
ment.

1. Notation, convention and preliminaries. In this section, we give
a quick review of the basic facts on quaternionic Kahler manifolds (for
more details see Salamon [SI], Nitta and Takeuchi [N-T]).

(1.1) Let H(m) denote the standard Sp(m)-module Hm ( = C2m) of com-
plex dimension 2m, where H = R + iR + jR + kR ( = C + jC). Sp(m) =
{SeGL(m, H)\S^S = 1} is imbedded in GL(2m, C) by

Sp(m) BA + jB^ lA' ~?) e GL(2m, C)
\B Aj

where A, BeGL(m, C). Then the multiplication on Hm by j from the
right naturally induces a Sp(m)-equivariant anti-linear mapi ( m ): H^—>H{m)

with (i(w))2 — —id. We now define a non-degenerate skew-symmetric
bilinear form ω{m) on Hm by

ω(wι)(ft, Λ'): = - (h, j{m)h') (h, h' e Hm) ,

where < , > is the standard Hermitian inner product on C2m ( = Hm). This
α>(m) can be regarded as an Sp(m)-invariant bilinear form on H{m) such
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that

(1.1.1) ω{m)(j(m% 3{m)h') = (ω{m)(h, h')Y (Λ, K e Hίm)) .

Let Sp(n)-Sp(l) = Sp(n)xSp(l)/Z2. Then HM(g)cH
ω is naturally a

Sp(n) Sp(l)-module of complex dimension 4n with a real structure
HM (g)c iϊ

(1) a α π α e iϊ(7l) (g)c #
( 1 ) defined by

(1.1.2) (h (g) Λ'Γ : = J{m)h <g> i(1)&' (λ e H{n\ h' e Hω) .

We consider the corresponding real form (H{n) (g)c H
a))R of HM ® c iϊ ( 1 ).

Then the symmetric bilinear form ω(7l) (g) ω(1) € S\(H{nψ (g) (ίf(1))*) induces
an inner product (( , )) on (ίf(ra) (g)c £Γ(1))R.

(1.2) Recall that a 4^-dimensional Riemannian manifold (ikf, gM) is
called a quaternionic Kahler manifold, if its linear holonomy group is
contained in Sp(n) Sp(l) (cS0(4w)) with the additional condition for
n = 1 that gM is a self-dual Einstein metric. Throughout this paper, we
fix once for all a quaternionic Kahler manifold (M, gM). By the well-
known reduction theorem (see, for instance, Kobayashi and Nomizu [K-N]),
the frame bundle of the tangent bundle TM is reduced to a principal
Sp(w) Sp(l)-bundle P. Then TM can be regarded as the vector bundle

(1.2.1) PxSpM.SpU)(HM®cH
ω)R

associated to the Sp(w) Sp(l)-module (H{n) (g)c H
(1))R. The inner product

(( , )) on (ίf(n) (g)c H
a))R induces a Riemannian metric g on TM, which

coincides with gM up to constant multiple. Without loss of generality,
we may assume g = gM.

(1.3) Let Sp(n) act trivially on C2. Then the standard Sp(l)-action
on C2 naturally induces an Sp(n) x Sp(l)-action (resp. Sp(n) Sp(l)-action)
on C2 (resp. PιC). Associated to these actions, we have:

(resp. p: Z(: = Px8pM.8p{1)P
1C) - * M) ,

which is a "locally defined" vector bundle (resp. a globally defined fibre
bundle). Here, the bundle Zis nothing but P(V):=V — {zero section}/C*,
and is called the twistor space of M (see Salamon [SI; p. 147]). Then Z
is a complex manifold with a natural real structure τ as follows:

(1.3.1) By the connection on V induced from that of P, we have a
decomposition of Γ( V — {zero section}) into the subbundles Sh and Sυ

corresponding respectively to horizontal and vertical distributions. Let
y be an arbitrary point of V— {zero section}, and put x:—p{y). Via
the projection p, the fibre (Sh)y of Sh over y is regarded as the tangent
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space TXM at x. Then by the identification of H{n)(g)cH
ω with (TZM)C

(cf. (1.2.1)), the space HM<g)Cy defines a C-linear subspace of (TXM)C,
denoted also by H{n) <g) Cy. Furthermore, let (H{n) ® Cy)' be the sub-
space of (T%M)C corresponding to H[n)®Cy via the natural isomorphism
{T%M)€ = (TXM)C induced by gM. Now we define the complex structure
of TyV by specifying the subspace Λ1/ of (1, 0)-forms in (T*F) C as
follows:

where (Λ1/)* : = p*((HM (g) Cy)'), and (Λi'T is the subspace of (1, 0)-forms
in TyC

2 by the identification of Vx with C2. Then this induces a complex
structure on Z.

(1.3.2) The map j { 1 ) : H(1) -> iϊ ( 1 ) naturally defines an antilinear bundle
automorphism z:V —>V, which induces a real structure r on Z.

(1.3.3) Recall that M always has a constant scalar curvature (denoted
by ί). Let gF be the Fubini-Study metric for PXC ( = (C + jC - {0})/C*).
If t Φ 0, then for some nonzero real constant ct,

9z : = P*9M + ctgF

defines a pseudo-Kahlerian metric on Z, i.e., the corresponding (1, l)-form
on Z is a nondegenerate d-closed (1, l)-form.

2. Ag-connections and ^-connections. We shall here give funda-
mental properties of the Ag-connections and J52-connections defined in the
Introduction.

(2.1) Let (H{m))* be the dual Sp(m)-module of H{m). Then in view
of Λ\Ha))* = Cω(1), we have

Furthermore, the iSp(^)-module Λ2(H{n))* is written as a direct sum
Cω{n) + Λl(Hin))* of its submodules, where Λ2

0(.BΓ(n))* is the orthogonal
complement of Cω{n) in Λ2(fiΓ(n))*. Hence,

(2.1.1) Λ 2((# ( n ))* ® c (Hω)*) = ΛΓ2

/C © iV2"
c 0 Lf ,

where Nϊc := Cω(n) ®cS\Ha))*, Wc : = Λl(HM)* (g)c S\Hω)* and Lf: =
S2(ίίU))*(8)cCfα)(1). Note that the Sp(w) Sp(l)-modules ΛΓ2'

C, iV2"
c, L^ re-

spectively admit real forms Ni, N", L2 fixed by the real structure
induced from the one in (1.1.2). We have the identification Hln) (g)c

H{1) = (HM)*®c(Hω)* by the metric (( , » (cf. (1.1)). Together with
HM ®cH

a) = £Γn(g)ΛC, the above (2.1.1) induces the decomposition of its
real form:
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which is nothing but the decomposition in the Introduction now for our
principal Sp(n) Sp(l)-bundle P, the bundle T*M is regarded as the vector
bundle associated to the Sp(n) - Sp(iymoάu\e ((H{n))* ®c(Hω*))R = H\
Hence, Λ2T*M is a direct sum A2® A" ® B2 of its subbundles A2, A'2

f, B
corresponding respectively to the Sp(n) - Sp(l)-modxύes N2f N", L2 (cf.
Introduction).

2

(2.2) Fix an arbitrary point x of M. Note that each point z on the
fibre Zx defines an almost complex structure Jz on T*M (cf. (1.3.1)). We
then have the corresponding space ΛM(ΓίΛf, Jz) of (1, Informs of
(T*M, Jz). Choose a point y(Φθ) of V such that its natural image
(denoted by [y]) is z. In view of (1.3.1), the space ΛM(T*M, Jz) in
A\T*M)C is associated to the C-linear subspace (H{n) ®cCy)' A ((H(n) (g)c

Cy)T in the Sp(n) Spa>™dule (HM ® c Hω)* Λ (HM (g)c H
ω)*. Since

j { n ) preserves H(n), we have (cf. (1.1.2)):

(HM ® c Cy) Λ ((HM ® c Cy)~) = (HM (g)c C») Λ (HM ® c Ci(1)2/)

= (ΛΉM 0c C(y (g) i(1)i/ + jωy ® 2/)) φ (S2JΪ(W) ® c C(» Λ i(1)y)) .

The space C(y Λ ja)y) (where y A jωy = (y (x) i(1)2/ — j
ίf(1) (x)c £Γ(1) corresponds to Cω(1) in (£Γ(1))* ® c (iϊα >)* via the natural iso-
morphism Ha) (g)c H

{1) = (Ha))* ® c (Haψ induced by the nondegenerate
bilinear form ω{1). Furthermore,

Γ\y C{y (g) jωy + j(1)2/ 0y) = {0},

where Π̂  always denotes the intersection taken over all y in Vx — {0}.
Thus,

f]y(HM ® Cy)' Λ (iϊ ( n ) <g> C»)' = S\HM)* <g)c Cωω = L2 (cf. Introduction) ,

and we obtain:

LEMMA (2.3). Tλe ./ϊ&re (52)β o/ B2 over x is given by

{B2)x = n, Λ M ( Γ M, J w ) .

We next give a typical example of an ^-connection and also a J?2-
connection.

EXAMPLE (2.4). If n ^ 2, the induced connection on the locally defined
vector bundle

a) (resp. T Γ : = PxSpMxSp{1)H
M)

is an Ag-connection (resp. 2?2-connection). See Salamon [SI; p. 150] for
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related computations of curvatures.

Recall that a connection V is called a Yang-Mills connection if the
corresponding curvature Rv satisfies dv*Rv = 0. We shall finally show:

THEOREM (2.5). All A[-connections and also all B2-connections are

Yang-Mills connections.

COROLLARY (2.6). The Riemannian connection on TM is a Yang-
Mills connection.

PROOF OF (2.6). By (1.2), (2.4) and (2.5), we obtain (2.6).

PROOF OF (2.5). Fix an arbitrary point xQ of M. It then suffices to
show (dv*Rv)(x0) = 0. We may take a local section s to P over a neigh-
bourhood U of x0 such that the corresponding differential at the point
x0 transforms the tangent space TXQM to a horizontal space at s(x0) in the
tangent space TsiXo)P. Let (u\ •• ,w4n) be the local frame of T*Mισ

associated to s. Then all covariant derivatives of uίfs (1 <; i <̂  An) at
the point xQ is zero. Moreover in terms of the frame (u\ •••, uin), we
can identify T*MW with UxR*n (UxHn). Note that V on E naturally
induces a connection (denoted by the same V) on End(i?).

( i ) We first assume that V is an ^-connection on E. Recall that
the rank 3 subbundle A'2 of Λ2T*M corresponds to the Sp(w) Sp(l)-sub-
module N2

f of A2Hn, where Ni is the irreducible submodule of the elements
fixed by Sp(n) (cf. Introduction). Let I, J and K be

J = Σ V * + 1 Λ ^4*+3 + uik+i A u'k+2) ,

K = Σ(^ 4 f c + 1 Λ u4fc+4 + u4*+2 Λ u4fc+3) .

Then it is easy to check that At

m is spanned by the sections J, J and iΓ.
Therefore, the curvature form Rη is written on U as

where α, b and c are smooth sections to End(E) over U. Let (ulf , w4n)
be the base for TMm dual to (u\ •••, u4n) defined by u\uά) = δtj. Then
by the first Bianchi identity,

0 = d\R*)(xQ)

Λ I(x0) + (VfiWiXo) A J(x0) + {Vfi)uKx0) A K(x0)} ,
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where Vί denotes Vw<(βo). Consequently,

V*α = Vib = Vic = Of for 1 ̂  i ^ An if n ^ 2 .

Therefore, (dv*i2v)(α0) = 0.
(ii) We next assume that V is a ^-connection on E. Since the

vector subbundle B2 (of rank n(2n + 1)) of A2T*M corresponds to the
irreducible Sp(n) - Sp(l)-svibmodu\e L2 of the elements in A2Hn fixed by
Sp(l), the subbundle B ^ is spanned by

/., /8, J E . , D 9 V E p q , Fpg,Gpq, ( 0 £ s ^ n - l , 0 ^ P < q ^ n - l ) .

w h e r e

I8 = M* +i Λ ^4 β + 2 - ^ 4 8 + 3 Λ ^4 8 + 4 ,
Ja = ^ 8 + l Λ ^4 β + 3 _ ^4,+4 Λ u 4 8 + 2 ^

K, = u*a+1 A ui8+i - ui8+2 A ui8+3 ,

Dpq = uip+1 A uiq+1 + u*p+2 A uiq+2 + u4p+s A u4q+* + u 4 p + 4 Λ ^ 4 9 + 4 ,

Epq = ̂ p + 1 Λ u 4 9 + 2 - u 4 p + 2 Λ uiq+1 - u 4 p + 3 Λ u*q+i + u*p+i A u*q+5 ,

Fpq = uip+1 A u*q+s + u*p+2 A u*q+* - u*p+* A u*q+1 - u*p+* A uiq+2 ,

Gpq = uip+1 A u'q+i - w 4 p + 2 Λ u*q+3 + u*p+s A u*q+2 - uip+i A u*q+1 .

Let V be a B2-connection on E. Then over U, the curvature form Rv is
written in the form

Rv = Σ (i. ® ̂ β + Js ®J8 + k8 Θ iQ

where iβ9 j a , k8, dpq, epq, fpq and gpq are smooth sections to End(2?) over
U. In view of the first Bianchi identity dvRv = 0, we have

-v 4 8 + 3 ΐ 8 + v 4 8 + j 8 + v48+1fc8 = o ,
V48+Λ - V 4 8 +J 8 + V48+3&8 = 0 ,

V48+4ί8 + V 4 8 +J 8 - V48+2fc8 = 0 ,

V48+2i8 + V 4 8 +J 8 + V48+4fc8 = 0 ,

for s with 0 <̂  s ^ n — 1. Furthermore, if I is either p or q, the identity
tfE* = 0 implies

(- l ) e ( ί ) V 4 , + 1 d P 9 - V , ^ ^ , - V^+β/^ - V4ϊ+4ffM = 0 ,

( - l ) e ( l ) V 4 , + 1 d p g - V 4 l + 8 e M + V ^ + J ^ + V4l+1gpq = 0 ,

<Zpg + V4 i + 1ep < 7 - V4 Z + 4/p g + V4l+5gpq = 0 ,

3 c ^ + V 4 i + 4 e P i + V4 Z + 1/p g - Vu+2gpq = 0 ,
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for all p, q with 0^p<q^n— 1, where ε(p) : = 0 and ε(q) := 1.
Then a straightforward computation shows that (dv*Rv)(xQ) = 0, as

required.

3. Deformations of ^-connections. In this section, we shall give
an elliptic complex whose first cohomology group canonically contains the
space of infinitesimal deformations of f?2-connections on M (see Salamon
[S2] for a similar complex).

(3.1) Let r be an integer with r ^ 2. By setting N? : = Λr(H{n))* (g)c

Sr(Haγ (cf. (2.1)), we can express the Sp(n) Sp(l)-moάule Λr(HM (g}cH
ω)*

as a direct sum i V ί φ L ? , where Lc

r is the orthogonal complement of Nf
in Λ r (# ( r a ) (g) c i/ ( 1 ) )*. As in (2.1), the Sp(n) Sp(l)-modules N? and Lc

r

respectively admit real forms Nr and Lr fixed by the natural real struc-
ture (cf. (1.1.2)). Since T*M is associated to the Sp(n) -Sp(l)~modxύe
(Hln) (x)c H

ω)i (see (1.2.1)), the vector bundle ΛrT*M is a direct sum
Ar(&Br of its subbundles Ar, Br corresponding respectively to Nr, Lr.
Let πr: ΛrT*ikί ( = Ar 0 Br) -> A r be the projection to the first factor.
Then we have:

THEOREM (3.2). For a B2-connection V on E, the following is an
elliptic complex:

(3.2.1) 0 -> gf (J0) Λ ^(£7 (x) T*M) ^ ^ ( S (g) A2)

h&{E®Az) h ^ &{E® AJ ->0 ,

where di'.= (id (g)πi+1)°dv and for every vector bundle Ef on M, we denote
by if (£") the sheaf of germs of C°°-sections of E\

PROOF, (i) Fix a section s e Γ(M, E (x) At) (i ^ 1) and define a sec-
tion t e Γ(M, E (g) Bi+1) by

dvs = diS + t .

Then from (dvocίv)s = (dvodt)s + dvί, we obtain

((id ® 7Γ<+2)odvo(iv)g = (di+1odi)s + ((id (x) πi+2)odv)t .

Since V is a 52-connection, the Aί+2-component of (dv°dv)s is zero, i.e.,

0 = (di+1°di)8 + ((id (g) πi+2)°d*)t .

Write £ as £ = Σ * v* ® &* locally, where vk, bk is a local section of E,
Bi+1, respectively. The Si+1( F*)-component of bk is zero, and hence the
£ ί+2(F*)-component of V(vk) A bk is zero. Therefore,

((id <g) πί+2
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Since d is the composite of the Riemannian connection and the alternation
operator, the Si+2( F*)-component of dbk is zero. Thus, (dί+1°di)s — 0, as
required.

(ii) Secondly, we shall show that (3.1.1) is an elliptic complex. Then
we need to calculate the symbol σ(di9 u) (ueTϊM — {0}). Fix a point of
M and an element s of Ee® Aίx. All computations below are taken at
the point x.

σ(dif u)s : = (d/dt)(e-tqdi(et98)) | ί = 0 = (id <g> πi+1)(u A s) ,

where q is a locally defined function such that dqx = u. We next show
that the following sequence is exact for every u:

(3.2.2) E ®

Without loss of generality, we may assume

u = ex 0 }ιγ + (ex (x) h1)~( = e1 ® hλ + e2 (x) h2) ,

where (elf •••, e2n) (resp. <Alf Λ2)) is a symplectic basis of TF* = W (resp.
F* ^ V), i.e., an orthonormal basis and jMe2j+1 = e2j+2 (resp. j^h^ = Λ2).
Let s e £7® A, be such that σ(di+1, u)s = 0. Note that S 'F* = Span(Λ,ϊ Λ,Γfc;
0 ^ fe ^ i), where h\-h\~k denotes the symmetric component of Λί ® AΓfc.
Hence, there are local sections s0, , s4 of £7® A*W* such that

We can now write o(di+1, s) = 0 as follows:

0 = (id (x) πi+1)(u A s) = (id ® π<+1)((βi (x) /*Ί + e2 (x) fc2) Λ Σ sfc ® hk-hl~k)
i

Since the coefficient of the right-hand side in hk hi+1~k is zero, we have:

( 0 ) e2 A s0 = 0 ,

( 1 ) e, A So + e2 Λ s, = 0 ,

( i ) βx Λ Sί_! + e2 Λ Si = 0 ,

(i + 1) e, A s, = 0 .

By (0), there exists r o e Ai'1W* such that s0 = e2 A r0. Plugging this into
(1), we obtain e2 A ( — ex A r0 + s j = 0. Hence there exists r x e Λ*"1!^*
such that sx = ex Λ r0 + e2 Λ rx. Repeating this process inductively, we
obtain rk e Aί~1W* such that sk = e1 A rk_x + e2 A τk, 1 ^ k ^ i. Now by
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(i + 1), the identity e1 A e2 A rt = 0 holds. It then follows that there
exists r'i e Λ*"2 W* such that e2 A rt = ex A e2 A τ\. Since e2 A (r,_x +
e2 A r'i) = e2 A rt_19 we may replace rt^ by r^ + e2 A r\. Therefore,

s, = ex A r 0 + e2 A rx ,

*i = «i Λ r<_x

Thus,

fc=0 \Jk=O

i.e., the sequence (3.2.2) is exact, as required.

DEFINITION (3.3). Let ^ be the set of all ^-connections on E with
holonomy groups contained in a compact semisimple Lie group G. Assume
that ίT Φ 0 and let V e ^ . Then the frame bundle Q of E can be
regarded as a principal G-bundle. Put GQ:= QxθG and 9Q:=QXA<I&

where 0 is the group conjugation and Ad: G —> GL(g) is the adjoint re-
presentation of G. Now, a C°°-section to GQ over ikf is called a #aw0e
transformation of (?. Let gf be the set of all gauge transformations of
Q. Then gf naturally acts on ^ (see Atiyah-Hitchin-Singer [A-H-S]).
We call ^ ^ ( : = ̂ 7 ^ ) the moduli space of the ^-connections on 2? with
holonomy groups in G.

(3.4) Let V e ^ be irreducible in the sense that gρ admits no non-
zero parallel section over M. Fix a smooth one-parameter family V*
(|ί| < e) of connections in i f such that V° = V. Put S = (d/dt)Ψ\t=t0. We
write the curvature form Rvt of V* as

jRv + ίcP'S + higher order terms in t ,

where V is the connection on QQ naturally induced by V. Since Rvt is a
gρ-valued i?2-form, the corresponding derivative eZv'S at t = 0 also satisfies

(((g):r)cnS
Let /* (|ί| < e) be a one-parameter family of gauge transformations such
that f° = id. Then,

where / : = (d/dt)(f%=Q. Since / ' ( V J e ^ for all ί, the same argument as
above shows that the gρ-valued 1-form V'(/) satisfies
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((id®7r2)o^)(V'(/)) = 0 .

For each A e Γ(QQ), there exists a one-parameter family /* = exp(ίA) such
that (d/dt)f*\t=Q = A. Then together with (3.2), we immediately obtain
the following:

THEOREM (3.5). Assume that <& Φ 0 and let V e ^ be irreducible.
Then the space of infinitesimal (essential) deformations at V of connections
in ^ that is, the tangent space of ^t at V is a linear subspace of the
first cohomology group of the elliptic complex

0 -> Sffo) ^ if(9ρ <g> T*M) Q if (gρ (x) A2)

where d\ : = (id ® ττΐ+1)°cίv'.

4. Einstein-Hermitian connections associated with ^-connections.
In this section we shall prove Theorem (0.2) (see the Introduction) which
clarifies the relationship between ^-connections and the corresponding
Einstein-Hermitian connections.

PROOF OF (0.2). (i) Let (E, DE) be a Hermitian pair. Then by the
definition of J32-connections, the curvature form corresponding to the
connection DE is an End(i?)-valued f?2-form, and by Lemma (2.3) the
curvature form corresponding to the connection p*DE on p*E is an
Έnd(p*E)-valued (1, l)-form. Hence the connection p*DE induces naturally
an integrable complex structure on p*E as follows: Put Z:=rank(2<7)
and denote by q: p*E —• Z the natural projection. Let (slf •••, Si) (resp.
(y\ --->y1)) be a local unitary frame for p*E (resp. the dual frame
corresponding to (slf •••, st)). Then the vector subbundle Λ1>0T*(p*E) of
type (1, 0) in the complexification T*(p*E)c of the cotangent bundle
T*(p*E) is defined as the direct sum of the pull-back g*(Λ1'°Γ*2') and
the space spanned by {dyj + Σί=i Vi(tθH, 1 ^ j ^ 1), where (βiS) is the
connection matrix for p*DE with respect to the frame (slf •••, st) (i.e.,
(P*DE)Sj = Σ*=i Siθij)- Now, we may take the frame (s19 •••, st) as the
pull-back (p%, , p%) of a local unitary frame (t19 , ί,) on ϋ/. Then
the 1-forms θijf 1 ^ i, i ^ ϊ, are written as p*ψv, where (ψ^ ) denotes
the connection matrix for DE with respect to the frame (ίlf •••, ίz). Let
g': (p*E)* -> Z be the projection naturally induced from g: p*E-> Z. Since
the real structure τ:Z-^Z is antiholomorphic (cf. Nitta and Takeuchi
[N-T]), and since the mapping (jΌtf: p*E -^ Z is equal to τog, the mapping
σ:p*E —>(p*E)* is clearly an antiholomorphic bundle automorphism by
the definition of the complex structures on p*E and (p*E)*.
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(ii) We next fix an arbitrary excellent pair (F, DF) on Z. Then by
the condition (a) in the definition of excellent pair (see the Introduction),
we can choose an open cover {Uλ} of M, and a local unitary frame
(fίy"'yfr) (r = rank of F) of F{p_liUχ) such that each restriction
(/iiP-i(x), •• ,/riP-i(β)) over p~\x) (xeUx) forms a holomorphic frame for
jPip-i(x). When Uλf]UμΦ 0 , the transition matrix for F in terms of the
frames (//, •••,/,?), (/Λ •••,/?) is holomorphic (and hence constant) along
each fibre p" 1 ^) (a? 6 Uλ Π ί7^). Hence there exists a Hermitian vector
bundle E on M such that, including metrics, we have p*E = F. In
particular, we obtain a local unitary frame (f[x, , f'r

λ) for 2?,^ such that
(P*fί\ ' # #> P*/r*) coincides with the previous (//, •••,/£) over p~\Uλ). Fix
an arbitrary λ. If there is no fear of confusion, we shall omit the suffix
λ and denote Uλ, {ft, , f}\ simply by U, (f19 , fr\ , respective-
ly. Let {(ύij) be the connection matrix of DF with respect to the frame
(fi, -,fr)> i e., DFfj = Σ/i=ιfi(0ij Furthermore, we choose a local
symplectic basis (elf •••, β2n) (resp. (h19 h2)) for W*lεr (resp. F*Iί7) (see
Section 3). Now, since DF is a Hermitian connection, we have:

( 1 ) (Oίj + (Oji = 0 , for 1 ^ i, j ^ r .

Then the construction of Z^ is reduced to showing that there exist 1-
forms ωfij (1 ̂  i, i ^ r) on C/ satisfying ω^ = p*ω^ . In fact, once we
can find such 1-forms α>ίy, they define a Hermitian connection on E, such
that the corresponding curvature form is pulled back by p to an End(F)-
valued (1, l)-form on Z, which together with Lemma (2.3) implies that
our connection on E is a ^-connection. Recall that, for each x e U, the
frame (f1]p-i{x), •• ,/f.|P-i(.)) for Fh-ί{x) is trivial. Hence,

(2 ) ωi3(v) = 0 , 1 ̂  i, j ^ r ,

for every vector v tangent to p~\x) (^PΎ). Since ( β i ® ^ , ^(H)^, •••>
β2»®Λi, β2n(g)Λ2) is a frame for T*MC

]U = TF*iZ7 (g) F*IZ7, there exist by (2)
C°°-functions α{>, δfy (1 ̂  i, i ^ r, 1 <: fc ̂  2n) on jΓ^Ϊ/) such that

(3 ) ωtj = Σ « p*(e, (g) ΛJ + δjyp*^ (x) h2)) , 1 ̂  i, j ^ r .

For every form η on Z l l7, we denote by η the pull-back of η to ( F — {zero
section}),tf. Then by (3), we have:

Rij = dώi5 + Σ ώ i e Λ ώtj

= Σ d{ah

iSp*{ek ® h,)) + d(bk

ijp*{ek <g> Λ,)) + Σ ώ i ( Λ ώ o .
fc=l t = l

Fix an arbitrary point x on ί7. Choosing an appropriate (βlf , β2n) (resp.
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(his K))y w e m a y a s s u m e t h a t (Vv*ek)(x) = 0, k = l, 2, •••, 2n ( r e s p . (Vw*ht)(x)
= 0, i — 1,2), where Vy* (resp. V^*) denotes the connection of F*
(resp. W*) canonically induced by that of P (cf. Example (2.4)). Then,
on ί>-\x),

Λ (x) ΛJ Λ Σ ώ« Λ

Recall that the complex structure on the twistor space Z ( = (V — {zero
section})/C*) is induced by the complex structure on 7 - {zero section}
(see Section 1). Since Ri3 is of type (1, 1), we have:

( 4 )

+ Σ
ί=l

Λ

Σ Λ (β*(β» (

+ Σ ώg » Λ
ί

Λ (p*(

' = 0 on p-»(χ)

jy " + dψii) A (p*(ek

'1' = 0 on p~\x) ,

where for every 1-forms ζ on (V — {zero section})^, ζ(1>0) (resp. ζ ( M )) always
denotes the (1, 0)-component (resp. (0, l)-component) of ζ. Let (z1, z2) be
the local triviality for V\π corresponding to (hlf h2). Then, by the def-
inition of the complex structure of (V — {zero section}), we obtain from
(4) and (5) the following:

4') 4l
dz2 Λ z2p*(ek

Λ

= 0 on

5')
dz2

Λ

= 0 on

Since both «lP-i(β) and z]p-Hx) are holomorphic on p~\x) ^ C2 - {0}, we

have

oz%
%) = 0 « = 1, 2) ,
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on p~\x), i.e., both/^z1, z2) : = z1^- + z% and f2(z\ z2):= -z2ak

i5 + z% are
holomorphic on C2 — {0}. By Hartogs' theorem, both fγ and /2 extend
further to holomorphic functions on C2. Since fi(cz\ cz2) = c/Λs1, z2) for
all z = (z1, z2) 6C 2 and c e C * (i = 1, 2), there exist constants ak

jf βk

jy 7k

jf

δkj e C independent of z such that

\ Ό ) 6 U/ij -Γ ^ ϋ<5 — 6 (Λij Π^ Λ- Pij ,

( 7 ) -z2ak

ί3 + z1^- = - z % + z% , (1 ̂  k ^ 2n) .

Let Γ(Z, F*) (resp. Γ(Z, JP7* 0 T*ZC)) be the space of global C°°-sections
over Z to JP7* (resp. F * (x) T*ZC). Let f: Γ(Z, ί7*) -> Γ(Z, F * (x) Γ*ZC)
be the C-linear map sending each s e Γ(Z, F*) to an element ψ(s) of
Γ(Z, F * ® T*ZC) defined by

for XeTzZ
€ (zeZ).

Then by the condition (b) in the Introduction, this ψ defines a Hermitian
(1, 0)-connection on the holomorphic vector bundle F*. The corresponding
connection matrix with respect to the frame (σf19 •••, σfr) for F*p-im is
written as (τ*ωi3-). By the definition of σ, it is easy to check that the
frame (σflf , σfr) is dual to our previous (fu , f r ) . Hence the unique-
ness of the (1, 0)-connection on the Hermitian vector bundle F* implies
the equality {τ*ωiSy — ®*3> where ω*5 : = — ωH. In view of (1), we have
r * ^ - = ωi3 and f *ώ<y = ώi3. By (3) and p°τ = p, we obtain:

Therefore,

Moreover by (6),

Hence by (7) and (9), we obtain:

Now, in view of (6), (7) and (10), we see that

z1,

where (z1, z2) e C 2 - {0} (=p-\x)). Thus, ak

3 = a% and bk

3 = βk

β (1 ̂  fc ^ 2n),
i.e., both αfy and bk

3 are constant along p~\x), as required.

REMARK (4.1). In some sense, our Theorem (0.2) completely clarifies
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the following result by Salamon [S2] (see Berard Bergery and Ochiai [B-O]
for another generalization):

For a Hermitian pair (E, DE) on M, the pull-back (p*E, p*DE) to Z
is a Hermitian holomorphic vector bundle over Z.

COROLLARY (4.2). Let (F, DF) be an excellent pair on Z. If the
quaternionic Kahler manifold M has positive scalar curvature, then F
with DF is a Ricci-flat Einstein Hermitian vector bundle over Z.

PROOF. Consider the twistor space p:Z-^M. Then the horizontal
component of the Kahler form on Z is a p*A'2-ίoτm (cf. (1.2), (1.3)). Recall
that the curvature of DF is an End(ί7)-valued p*i?2-form. Hence the
Hermitian vector bundle F with DF is Ricci-flat.

REMARK (4.3). We have the decomposition of TZ = Th φ T\ where
Th (resp. Tv) is the horizontal (resp. vertical) distribution in terms of
the connection on Z induced by that of P. Since the complex structure
on TZ is a direct sum of complex structures on Th and Tv, the holomor-
phic part TZa>0) admits the corresponding decomposition TZM) = Th{1>0) φ
Tυ{1'°\ where Tha>0) (resp. Tυa>0)) denotes ThcnTZa>0) (resp. TvCΓ\TZa>0)).

Recently, Zandi [Z] obtained the following:

The vector bundle (Tha'0), Dh) is an Einstein-Hermitian vector bundle,
where Dh is the connection on Tha>0) obtained as the restriction of the
Riemannian connection on TZ to Tha'0).

This result can be regarded as a straightforward consequence of our (4.2).
We denote by L a locally defined (line) subbundle of p* W (cf. (2.4)) such
that, along each fibre p~\x) = PXC (xeM), it restricts to a universal
bundle over PXC. Let VF (resp. Vw) denote the connection of V (resp. W)
canonically induced by that of P and VL the restriction of p*Vw to L.
Then the vector bundle (TΛ(1'0), Dh) is nothing but (p*I7(g)L*, p*Vw <g)
(VL)*), where (L*, (VL)*) is dual to (L, VL) (see Salamon [SI]). Since L*
is a locally defined line bundle and since Vτ^ is a B2-connection on W,
Corollary (4.2) clearly implies Zandi's result.

Added in proof. After the completion of this paper, the author
received a preprint by M. M. Capria and S. M. Salamon entitled "Yang-
Mills fields on quaternionic Kahler spaces", which gives (i) a result slightly
stronger than (2.6) and (ii) a statement similar to (3.2).
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