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Abstract. In this paper we shall prove that λepsF(T) is Γ-regular if
and only if there exists a family of holomorphic vector functions {fi(μ)}ίei
defined in some neighborhood Δ of λ such that {fi(μ)}iei forms a basis of
ker(Γ—μ) for μ£Δ, where T is a densely defined closed operator acting in
a complex Hubert space, PSF(T) is the semi-Fredholm domain of T.

In 1976, Apostol [1] gave the definition of T-regular points for linear
bounded operators acting in a complex Hubert space: λ is called a T-
regular point if the function

is continuous at λ. Two years later Cowen and Douglas [3] proved that
if λ6 pF(T) and λ is a point of stability, namely dimkeτ(T — μ) is constant
in some neighborhood of λ, then there exist holomorphic vector functions
{/i(£θ}£=i defined in some neighborhood Δ of λ such that {/ί(μ)}?=i forms
a basis for ker(!Γ — μ) for μeA. Since in pF(T) each T-regular point is
a point of stability,

(*) the continuity in the definition of T-regularity implies the analyticity
in a sense.

But for xepSF(T) the T-regularity does not imply that λ is a point of
stability. This suggests the following question:

For xepSF(T) does the statement (*) hold?

In this paper we shall give an affirmative answer to this question
for closed operators using pseudo-inverses as our main tool. To this aim
we should first investigate the structure of PSF(T) for closed operators,
because the main results concerning ρSF{T) in [1] are established on the
basis of boundedness of operators.

The whole paper is divided into four sections. In Section 1, we
obtain several lemmas which were proved for bounded operators in [1].
Section 2 is devoted to the structure of the semi-Fredholm domain pSF(T).
The results are parallel to those in [1] and some of them are deeper and
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more precise. In Section 3, we shall give the analytic characteristic of
Γ-regular points. Finally in Section 4 we shall give some applications
of the analytic characteristic.

1. Notation and preliminaries. Let H be a Hubert space over the
complex field C and B(H) (L(H)) be the set of all bounded (closed) linear
operators acting in H. For TeL(H), we denote by D(H) and ker T the
domain and kernel of T, respectively. If T is densely defined, then let
T* be the conjugate of T. For a subset MaH, TM will denote the set
{Tx, xeMf)D(T)}. TH is called the range of T and denoted by R(T).
Put

nul T = dimker T , def T = codimR(T) .

If R(T) is closed and at least one of nul T and def T is finite, then we
call T a semi-Fredholm operator. Let

pSF(T) = {λeC: Γ - λ is semi-Fredholm}

and call it the semi-Fredholm domain of T. λ e C is called a Γ-singular
point if λ is not T-regular. Put

PSF(T) = {λ e PSF(T): λ is T-regular} .

P8

SF(T) = {xeρSF(T):x is Γ-singular} .

Let pr, Pu σp denote the right resolvent set, left resolvent set, point
spectrum of Γ, respectively. Lat(Γ) will denote the set of all invariant
subspaces under T. For ΛfeLat(T), TM will denote the restriction of T
to M. For a subset MaH, let lmjikf} be the linear subspace spanned
by My dm{M} be the closure of \m{M} and ML be the annihilator of
M. For a closed linear subspace M of H, PM will denote the orthogonal
projection onto M and put TM = (PMT)M which is called the compression
of T on M.

DEFINITION 1.1. Each TeL(H) induces a one to one operator from
(ker Γ) 1 onto TH. We define S to be the operator which on TH is the
inverse of that induced operator and which is zero on (TH)1. We call
S the pseudo-inverse of T.

Clearly we have

(1) S Γ = / - P on D(T),

(2) TS = I-Q on TH@(TH)L

where P = P^ττ, Q = PΛ ( Γ,±.

REMARK 1.2. S is bounded if and only if R(T) is closed (see [4,
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Theorem 3.1.2]). If TH = H, then S is the right inverse of T; if
ker T = {0}, then S is the left inverse of T. If T is densely defined,
then S* is the pseudo-inverse of T*.

LEMMA 1.3. Let TeL(H) have closed range and S be the pseudo-
inverse of T. Let ΓeLat(Γ), TY = Y and ker TaY. Then FeLat(S)
and the restriction Sγ of S to Y is the right inverse of the restriction
Tγ of T to Y.

PROOF. Corresponding to the decomposition H = Y(&Y1, (1) can be
written as

( Q * \ IT * \ IT T> C\

Oγ * \ lγ * \ llγ — r U
O O / \ Λ ΠP I \ Γ\

o2i ^r1/ \ " J Y1/ \ ^

where P = Pkerr and Iγ, Iγ± are the identities on Y, Y1 respectively. Since
TY = Y, we see that S21 = 0 and hence YeLat(S). Since Y = TYczTH,
we have (THycY1 and hence (2) can be written as

(TY * \ίSγ * \ ( I γ 0

0 Tγ±)\0 Sγ±) \0 Iγ± - -

where Q = PR{T)±. Therefore
SYTY

 z=z Iγ — x ,

TYSY

 = iy .

These two equalities show that Sγ is the right inverse of Γ.

LEMMA 1.4. Let TeL(H) have closed range, Y e Lat(Γ) and ker Γ c Γ.
Tfcen i2(ΓΓ) is closed.

PROOF. Suppose R(TY) is not closed. Then there exists a sequence
{a J c Γ such that

(3) l|2fcJ|->0, distfe, ker 2» ^ 1 .

Since ker ΓF = ker Γ, (3) shows that R(T) is not closed (see [5, p. 231]).

The following is a key lemma.

LEMMA 1.5. Let TeL(H) be densely defined, G be a subset of C and
Y = clm{ker(:F - λ)hββ-u» Then

(i) YeLa,t(T);
(ii) if TY is closed, then 0 eρr(Tγ)f)Pι(Tγ±).

PROOF. Put Γo = lm{ker(Γ~ λ)h6β_{0}. It is trivial that

(4) Γo =
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(i) Since Y — Ϋo, by (1) we can derive that

(5) SY^STΫ^ (I- P)YO D(I- P)Yz)STY ,

where P = P k e r Γ . If

( 6 ) Yz)TSY,

then by (5) we have

( 7) y=> TSΫZ) TSTY = TY .

To obtain (6) we prove that

By [5, Theorem III.5.29] we need only to prove that

(8) γ±niκτ*)(z(τEΫy.
For xe YλPιD(T*), by (2) we observe that

0 - (a>, y) = (a?, Γ%) = (T*x, Sy) , for y e

This shows that Γ * x l S 7 and hence T*x±_SY. Thus (8) is proved and
hence (7) holds.

(ii) Since TY is closed, (4) implies that

(9) YaTY.

Combining (7) and (9) we obtain Y= TY, i.e., λ = Oepr(Tγ). The veri-
fication of the rest is trivial.

2. Structure of ρSF(T).

PROPOSITION 2.1. Let TeL(H) have closed range, S be the pseudo-
inverse of T and P = Pkerr Then

ker(T - μ)aR((I - μS)~Ψ) for \μ\ < \\S\\'1 .

PROOF. It is easy to verify that

ker(T-μ)a ker((/ - μSy'Si T-μ))a ker(/ - (I - μS)-ψ) c R((I - μS^P)

PROPOSITION 2.2. Let TeL(H), TH = H and P= P k e r Γ . Let S be
the pseudo-inverse of T. Then

ker(Γ - μ) = R((I - μS^P) for \μ\ < \\S\\'1 .

PROOF. By Proposition 2.1 we need only to prove that

R((I - /ιS)-\P)cker(Γ - μ) .

Let y = (I — μSyΨx for some xeH. Then we have
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V = μSy + PxeD(T) .

By Remark 1.2 we obtain Ty = μy, i.e., y ekeτ(T — μ).

THEOREM 2.3. For TeL(H), we have pr(T)aρr

SF(T).

PROOF. Since ρr(T)aρSF(T), it suffices to suppose x = Oepr(T) and
prove that 0 is Γ-regular. Since R{T) is closed, the pseudo-inverse S of
T is bounded. Put P = P k e r Γ and Mμ = R((I- μSyψ) for all \μ\ < \\S\\'1.
By Proposition 2.2 and [2, p. 86] we have

\\P*eτw-μ) - P\\ = max{sup{dist(#, Mμ);xeker T, \\x\\ = 1} ,

sup{dist(α, ker T); x e Mμ, \\x\\ = 1}} -> 0 as μ -> 0 .

This shows that Qepr

SF(T).

Similarly to the proof of [1, Theorem 2.4], by using Lemma 1.5 and
Theorem 2.3 we can prove the following.

THEOREM 2.4. Let TeL(H) be densely defined. Then

Pr

SF(T) = {μe pSF(T): ker(Γ - μ)cclm{ker(T - \)lΦμ) .

COROLLARY 2.5. For any densely defined closed operator, we have
p°SF(T)czσp(T).

PROPOSITION 2.6. Let TeL(H) be densely defined and have closed
range. Put P = Pkerr, Q = P^T*, H, = R(T*), H2 = R(T). Let S be the
pseudo-inverse of T. Then for \μ\ < HSH"1 we have

(i) (T-μ)Hx = ker(Q(J - μSD;
(ii) (Γ - μ)*H = ker(P(/ - μS*)-1).

PROOF, (i) Let x e ker(Q(7- μS)'1). Then ( ϊ 7 - /ίS)-1^ 6 H2 and hence
( / - μSy'x = Tx, for some x.eHΠDiT). By (1) we have

x = (I- μS)TXί = (2V- μ)x1β(T-μ)H1 .

Conversely, let y = (Γ - jw)a? for some a e ^ n ΰ t T ) . Then

Q(7 - ^SJ-^Γ - /ί)α = Q(I - ^ Γ X / - ^S)Ta; = QTα = 0 .

(ii) By considering T*, we can prove (ii) similarly.

COROLLARY 2.7. Le£ TeL(H) be densely defined and have closed
range. Let S be the pseudo-inverse of T. Put G = {μeC: \μ\ < HSU"1}.

(i) IfOepr(T), then Gczpr(T);
(ii) IfOeρSF(T), then GcpSF(T).

PROOF, (i) If Oepr(T), then Q = Pk e r Γ* = 0 and hence ( T - μ)HzD
(T- μ)Ht = H ίor μeG, i.e., Gapr(T).
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(ii) First we prove that R{T - μ) is closed for μeG. Without loss
of generality we may suppose nul T < co. Note that

R(T - μ) = (Γ - μ)ker Γ + (Γ - μ)Hx = ker T + (Γ - μ)Hx .

By (i) of Proposition 2.6 and [5, Lemma III.1.9], we know that R{T - μ)
is closed. Next we prove that nul(T—/*)< °° for μeG. Indeed, by
(ii) of Proposition 2.6 we have

nul(Γ - μ) + def(Γ* - μ) ^ codim(Γ* - jS)fl"a = dimPff = nul Γ < oo .

Therefore T— μ is semi-Fredholm, i.e., GaρSF(T).

REMARK 2.8. Corollary 2.7 shows that /0r(Γ) and pSF(T) are open
sets.

THEOREM 2.9. Lei TeL(H) be densely defined, semi-Fredholm and
let S be Us pseudo-inverse. Put Go = {μeC: 0 < \μ\ < \\S\\~1}. Then

(i) frsr{T*) = PUT)';
(ii) Goapr

SF(T).

PROOF. Put Y = clm{ker(Γ - λ ) W
(i) Without loss of generality we may suppose 0 is a Γ-regular

point. By Lemmas 1.5 and 1.4 we have 0 e pr(Tτ)Γ\Pι(Tr). Clearly
(Γr±)* = Γ?i and ft(ΓΓ±) = |θr((ΓF)*Γ = /9r(Γ?i). Therefore Oe/θr(Γ?±)-.
By Corollary 2.7 and Theorem 2.3 there exists a neighborhood G of 0
such that

(10)

On the other hand, by [1, Lemma 2.1], we have

ker(Γ - λ)*c(clm{ker(T - λ J ^ ^ c Γ 1 for all λ6 G ,

and hence

(11) k e r ( T - λ)* = ker(T£± - λ) for all xeG .

(10) and (11) imply that

l i m jPker(Γ- i)* = = PkeτT* 9

i.e., 0epsr(T*).
(ii) First we consider the case in which 0epr

8F(T). The regularity
of λ = 0 implies that k e r Γ c F . Then 0epr(TY) follows from Lemmas
1.5 and 1.4. By Lemma 1.3, Sγ is the pseudo-inverse of Tτ. Put Gγ =
{μeC:\μ\<\\Sγ\n. Clearly

GodGY.

By Corollary 2.7 and Theorem 2.3 we have



PSEUDO-INVERSES 337

By the definition of Y, we have

ker(Γ - μ) = ker(ΓF - μ) for all μ e Go ,

and hence

lim Pkθr(Γ_;o = Pker(r_^) for all μ e Go ,

i.e., Goapr

SF(T).
Next suppose Oe/0£*(T). By (i) we may suppose nuljΓ<oo. By [5,

Lemma IV.5.29] we know that TY is closed. Thus 0 e pr{Tγ) follows from
Lemma 1.5. Then following the above argument we obtain Go<z.pr

SF(T).

By (ii) of Theorem 2.9 we know that for densely defined operator
TeL(H), pr

SF(T) is an open set and p*SF(T) has no accumulation points
in ρSF(T).

3. Analytic characteristic. Throughout this section we assume that
TeL(H) is densely defined. Put as in [1]

Hr(T) = clm{ker(T - λ); λ e pr

SF{T)} ,

Ht(T) = clm{ker(T - λ)*; λ 6 pr

SF(T)} ,

T' rp rp __ rp rn rp
r - ~ 1Hr{T) i i o — •LHΛT) i -*• I — •*• H

LEMMA 3.1. Corresponding to the decomposition H =
T has the form

jTr *
(12) T = 10 Γo

\ 0 0 Γ,/

PROOF. Regardless of whether λ = 0 is Γ-regular or not we observe
that Hr(T) = clm{ker(Γ - λ); λ e ρr

SF(T), λ Φ 0}. Thus (12) follows from (i)
of Lemma 1.5.

Clearly

Hr(T) = Ht(T*) , Hι(T) = Hr(Tη9 (Γr)* = (Γ ) I f (Γz)* = (Γ ) r .

THEOREM 3.2. Lei TeL(H) be densely defined. Then
(i) PsF{T)(zpr{Tr)^pι{Tι)\
(ii) « F ( Γ ) C I 9 ( Γ 0 ) .

PROOF, (i) Let λ 6 ^ ( ϊ 7 ) and put Y = jffr(Γ). Without loss of gen-
erality we may suppose nul(Γ— λ) < «>. Hence (Γ— λ)Γ is closed. By
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Lemma 1.5 we see that FeLat(T — λ) and \epr(Tr). Since xepSF(T*),

we have \epr(T*r = Pr((Ti)*) = ft(Γ,).
(ii) Let λ e ^ ( Γ ) . Then (i) implies that λ 6 Λ(Γ ί f r ( Γ ))cft(To). Simi-

larly, we can prove that λ6ft(Γ*)~ = pr(To). Thus χep(T0).

THEOREM 3.3. Let Oepr

SF(T) and let S be the pseudo-inverse of T.
Then corresponding to the decomposition H = Hr@HQ@Hι, S has the
form

ίSr *

(13) S = 0 So *

\0 0 SJ

PROOF. ker T c i ϊ , since Oeρr

SF(T). Hence (1) can be written as

jSr * *\IT'' * *\ (I~P ° °\
Stt So * 0 Γo • = 0 Io 0 1 on Hr®Ho®Hl9

\szi sB2 sj\o o r,/ \o o v
where P = Pk e rr. It is easy to see that S21 = S81 = S32 = 0 by 0 e pr(Tγ)
and 0 6|θ(To). Thus (13) is proved.

REMARK 3.4. If λ = 0ep'SF(T), we can only obtain S81 = 0, i.e.,

THEOREM 3.5. Let x = 0 6/θ£F(T), P = Pk e rr, Q = Pw a^d let S be
the pseudo-inverse of T. Put G = {μ: \μ\ < \\S\\~1}. Then for μeG,

(i) ker(T - μ) = R((I - μS)-ψ);
(ii) ker(Γ - μ)* = R((I - /ZST'Q).

PROOF. Since 0epr

SF(T) by (i) of Theorem 3.2 and Lemma 1.3 we
have ΓeLat(S). Since \μ\ \\Sr\\ ^ |μ| | |S| | < 1, by (1) of Corollary 2.7 we
see that G<zpr(Tr). By (13) we can derive

(14) (/ - μSΓP = (/ + μS + + μ"Sn + ~)P

= (I+ μSr+ + μ"Sn

r + >")P
= (I- μSr)~ιP for μeG.

By (1) of Theorem 2.9 and (14) we see that

ker(T-μ) = ker(Tr-μ) = R((I-μS^P)=R((I-μS)-ψ) for all μeG .

Thus (i) is proved.
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By passing to T* we can prove (ii) similarly.

THEOREM 3.6. Let x = Oep'SF(T), P = P k e r r , Q = i W * and let S be
the pseudo-inverse of T. Put Go = {μ: 0 < \μ\ < \\S\\-1}. Then for each
μeGo,

(i) ker( T-μ) = R((I - μSΓP) Π Hr;
(ii) ker(Γ - μ)* = R((I - μS*)-^) Π fli.

PROOF, (i) By Proposition 2.1 and (ii) of Theorem 2.9 we have
ker(Γ - μ)aR{{I - μS)~ιP) n Jϊ r. Conversely, let 2/ e J?((I - /iS)-^) Π Hr.
Then y = (I — μS^x for some a? e ker T. Thus (/ — μS)?/ = x and hence
Γl/ = μTSy = μy(vi* yeHra R(T)). Therefore R((I - μS)~ιP) PiHr<z
ker(T-μ).

The proof of (ii) is similar.

Combining Theorems 3.5 and 3.6 we obtain:

THEOREM 3.7. Let x = OepSF(T) and let S be the pseudo-inverse of
T. Then χepr

SF(T) if and only if there exist holomorphic H-valued
functions {fi(μ)}iei defined on the neighborhood Δ = {|μ| < HSU"1} such that
{fi(μ))iei forms a basis for ker(T — μ) for μeA.

PROOF. Let {/Jί6/ be an orthonormal basis of ker T and put ft(μ) =
(I -

4. Some applications.

P R O P O S I T I O N 4 . 1 . Let TeL(H) be densely defined, xeH and let the
set of the zeros of the function

have an accumulation point ζ£pr

SF(T). Let Gξ denote the component of

ρr

SF(T) which contains ξ. Then we have

ker(Γ—X)™ — v uiv \JΓς

PROOF. Let A be a neighborhood of ξ, on which there exist holo-
morphic H-valued functions {/i(λ)}ί6i such that {/i(λ)}i6i forms a basis of
ker(Γ—λ) for xeΔ. Choose a sequence {ξn}ciΔ such that ξn—>ζ and
P*eτiτ-ξn)X = 0. Thus we have that (/^ίJ, x) = 0 for i e I. Since (/,(λ), x)
is a C-valued holomorphic function on J, we have that (/έ(λ), x) = 0 on
A for i e / . Therefore #_Lker(T- λ) for xe A, i.e.,

P*eτ(τ-x)% = 0 on J .

Let μ be any point in Gξ and ΓdGξ be an arc connecting £ and μ.
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For each xeΓ there exists a neighborhood Δx, on which there exist
holomorphic ίf-valued functions described as above. By using the finite
covering theorem and the above argument we can derive that in a finite
number of steps

Thus the proposition is proved.

REMARK 4.2. Since ρr(T)aρr

SF(T), we see that Lemma 1.6 of [1] is
a corollary of Proposition 4.1.

PROPOSITION 4.3. Let T be densely defined, have closed range and
ker TaY= TY. Put G = {μ: \μ\ < \\S\\~1}. Then we have

(15) keτ(T-μ)czY for μeG .

PROOF. Let S be the pseudo-inverse of T. Similary to the proof
of Lemma 1.3, we obtain that

(16) s-(* g J „„
Then (15) follows from (16) and Proposition 2.1.

PROPOSITION 4.4. Let TeL(H) be densely defined and 0 6 ρr

SF(T). Let
G be the component of pr

SF{T) containing λ = 0. Put Y = clmjker ϊ7*}?^,
Z = clm{ker(Γ - \)}λeβ. Then Y = Z and 0 e pr(Tγ).

PROOF. The proof proceeds as follows:
( i ) YdZ. Clearly ker TaZ. Suppose ker TkaZ for k ̂  n - 1 and

x e ker Tn. Then Tx e ker Tn~ι and hence Tx e Z. By Lemmas 1.5 and 1.4
we have ZGLat(Γ) and 0epr(Tz). So there is yeZ such that Tx = Ty.
Set z = x — y. Then z e ker T and hence x = y + z e Z.

(ii) 0 e ρr{ Tγ). Put Yo - lm{ker( T- λ)*}?=1. It is trivial that T 7 o c 7 o .
Conversely, let x e ker Tn. Since xeZ, we have that x — Ty for some
# e ̂  and hence y 6 ker Tn+1. Thus Γo = ΓΓO is proved. Then we follow
the proof of Lemma 1.5 to obtain TY = Y.

(iii) Zd Y. Let S be the pseudo-inverse of T. By Proposition 4.3
we have

ker(Γ - μ)<z Y for all \μ\ < \\S\\~1 .

Therefore if x±Y, then x±ker(T- μ) for \μ\ < \\S\\-1 and hence for μ e G
by Proposition 4.1. Thus YLaZL, i.e.,

REMARK 4.5. [1, Lemma 1.7] is a corollary of Proposition 4.4.
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