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Abstract. In this paper we shall prove that 21€ psz(T) is T-regular if
and only if there exists a family of holomorphic vector functions {fi(#)}ier
defined in some neighborhood 4 of 1 such that {f;(#)}:ier forms a basis of
ker(T—p) for #€ 4, where T is a densely defined closed operator acting in
a complex Hilbert space, pss(T) is the semi-Fredholm domain of T.

In 1976, Apostol [1] gave the definition of T-regular points for linear
bounded operators acting in a complex Hilbert space: A is called a T-
regular point if the function

# g Pker(T—p)

is continuous at A. Two years later Cowen and Douglas [3] proved that
if A e 0x(T) and » is a point of stability, namely dim ker(7 — p) is constant
in some neighborhood of A, then there exist holomorphic vector functions
{fi()}i=; defined in some neighborhood 4 of A\ such that {fi(u#)}r, forms
a basis for ker(T — p) for e 4. Since in pz(T) each T-regular point is
a point of stability,

(*) the continuity in the definition of T-regularity implies the analyticity
in a sense.

But for )€ ps(T) the T-regularity does not imply that ) is a point of
stability. This suggests the following question:

For )\ € pgx(T) does the statement () hold?

In this paper we shall give an affirmative answer to this question
for closed operators using pseudo-inverses as our main tool. To this aim
we should first investigate the structure of p4z(T) for closed operators,
because the main results concerning pg(T) in [1] are established on the
basis of boundedness of operators.

The whole paper is divided into four sections. In Section 1, we
obtain several lemmas which were proved for bounded operators in [1].
Section 2 is devoted to the structure of the semi-Fredholm domain o,(T).
The results are parallel to those in [1] and some of them are deeper and
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more precise. In Section 3, we shall give the analytic characteristic of
T-regular points. Finally in Section 4 we shall give some applications
of the analytic characteristic.

1. Notation and preliminaries. Let H be a Hilbert space over the
complex field C and B(H) (L(H)) be the set of all bounded (closed) linear
operators acting in H. For Te L(H), we denote by D(H) and ker T the
domain and kernel of T, respectively. If T is densely defined, then let
T* be the conjugate of T. For a subset Mc H, TM will denote the set
{Tw, e MND(T)}. TH is called the range of T and denoted by R(T).
Put

" nulT=dimker T, defT = codim R(T).

If R(T) is closed and at least one of nul T' and def T is finite, then we
call T a semi-Fredholm operator. Let

Pse(T) = {(neC: T — \ is semi-Fredholm}

and call it the semi-Fredholm domain of T. )€ C is called a T-singular
point if A is not T-regular. Put

05r(T) = (M€ 055(T): » is T-regular} .

05:(T) = {\n € ps(T): N is T-singular} .
Let po,, 0, 0, denote the right resolvent set, left resolvent set, point
spectrum of T, respectively. Lat(T) will denote the set of all invariant
subspaces under 7. For M e Lat(T), Ty, will denote the restriction of T
to M. For a subset MCH, let Im{M} be the linear subspace spanned
by M, clm{M} be the closure of Im{M} and M* be the annihilator of
M. TFor a closed linear subspace M of H, P, will denote the orthogonal
projection onto M and put T, = (P,T), which is called the compression
of T on M.

DEFINITION 1.1. Each T e L(H) induces a one to one operator from
(ker T)* onto TH. We define S to be the operator which on TH is the
inverse of that induced operator and which is zero on (TH):. We call
S the pseudo-inverse of T.

Clearly we have
(1) ST=I1I—P on D(T),
(2) TS=1—-Q on TH@(TH)*
where P = Piorry @ = Pripye.
REMARK 1.2. S is bounded if and only if R(T) is closed (see [4,
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Theorem 3.1.2]). If TH = H, then S is the right inverse of T; if
ker T = {0}, then S is the left inverse of T. If T is densely defined,
then S* is the pseudo-inverse of T*.

LEMMA 1.8. Let Te L(H) have closed range and S be the pseudo-
inverse of T. Let YeLat(T), TY =Y and ker TCY. Then Y €Lat(S)
and the restriction Sy of S to Y 1s the right inverse of the restriction
Ty of T to Y.

ProoF. Corresponding to the decomposition H =Y @Y+, (1) can be

written as
( ) * )( *Y > ( Y )
S, Syi/\0 Ty 0 I’

where P = Py, and I, I, are the identities on Y, Y * respectively. Since
TY =Y, we see that S,, = 0 and hence Y e Lat(S). Since Y = TYCTH,
we have (TH)*CY* and hence (2) can be written as

(Ty * ><SY * ) _ (IY 0 >
0 Tp/\O0 S;. 0 I,:—Q)’
where @ = Pg,:. Therefore
S;Ty =1, — P,
TySy = Iy .
These two equalities show that S, is the right inverse of T.

LEMMA 1.4. Let Te L(H) have closed range, Y € Lat(T) and ker TC Y.
Then R(Ty) is closed.

PrOOF. Suppose R(Ty) is not closed. Then there exists a sequence
{x,}C Y such that

(8) | Te,|| — 0, dist(z,, ker Ty,) = 1.
Since ker T, = ker T, (8) shows that R(T) is not closed (see [5, p. 231]).
The following is a key lemma.

LEMMA 1.5. Let Te L(H) be densely defined, G be a subset of C and
Y = clm{ker(T — Mheg-o- Then

(i) YeLat(T);

(ii) ¢f TY s closed, then 0¢€ o, (Ty)No(Ty1).

ProoF. Put Y, = Im{ker(T — A)}ieg_i- It is trivial that
(4) Y,=TY,CcTYCTH.
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(i) Sinece Y =Y., by (1) we can derive that

(5) SY>STY = (I = P)Y,>(I — P)YDSTY,
where P= P,..,. If
(6) Yo T1SY,
then by (5) we have
(7) YO TSYDOTSTY = TY .
‘To obtain (6) we prove that
Yic(TSY)*.
By [5, Theorem III.5.29] we need only to prove that
(8) YinND(T*)c(TSY)*: .

For xe Y*ND(T*), by (2) we observe that
0=(x, y) = (x, TSy) = (T*x, Sy), for yeYND(S).

This shows that 7*x L SY and hence T*x 1 SY. Thus (8) is proved and
hence (7) holds.
(ii) Since TY is closed, (4) implies that

(9) YCTY.
Combining (7) and (9) we obtain Y = TY, i.e.,, x =0¢€p,(Ty). The veri-
fication of the rest is trivial.

2, Structure of o4(T).

PROPOSITION 2.1. Let Te L(H) have closed range, S be the pseudo-
wnverse of T and P = Pyep. Then

ker(T — p)CR((I — #S)7'P) for |p| <|S|™.
PrROOF. It is easy to verify that
ker(T — p)cker((I — pS)"S(T — p))cker(I — (I — uS)"*P)C R((I — #S)™'P)

ProroSITION 2.2. Let Te L(H), TH= H and P = Pyoy. Let S be
the pseudo-inverse of T. Then

ker(T — ) = R((I — pS)™'P) for el <|IS|™.
Proor. By Proposition 2.1 we need only to prove that
R((I — pS)'P)cker(T — ) .
Let y = (I — 1S)'Px for some x€ H. Then we have
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y=uSy + Pee D(T).
By Remark 1.2 we obtain Ty = py, i.e., y cker(T — p).
THEOREM 2.3. For Te L(H), we have o, (T)C0%:(T).

ProOF. Since p,.(T)Cps(T), it suffices to suppose » = 0€ o, (T) and
prove that 0 is T-regular. Since R(T) is closed, the pseudo-inverse S of
T is bounded. Put P = Py, and M, = R((I — uS)™'P) for all |z| < ||S||™
By Proposition 2.2 and [2, p. 86] we have

| Peerwr—w — P|| = max{sup{dist(x, M,); x eker T, |jz|| = 1},

sup{dist(x, ker T); x € M,, ||2|]| = 1}} -0 as p£—0.
This shows that 0¢€ p5(T).

Similarly to the proof of [1, Theorem 2.4], by using Lemma 1.5 and
Theorem 2.3 we can prove the following.

THEOREM 2.4. Let Tec L(H) be densely defined. Then
05e(T) = {#t € 0sp(T): ker(T — p)Celm{ker(T — N)zx,} -
COROLLARY 2.5. For any densely defined closed operator, we have
Osr(T)Ca,(T).

PROPOSITION 2.6. Let Te L(H) be densely defined and have closed
range. Put P = Pyiorry, @ = Piorrs, H, = R(T*), H, = R(T). Let S be the
pseudo-inverse of T. Then for |p| < ||S||™ we have

(i) (T — @H, = ker(Q — pS)™);

(i) (T — p)*H = ker(P(I — pS*)™).

PrOOF. (i) Let zeker(QUI—pS)™). Then (T— puS)'x € H, and hence
(I — puS)'x = Tx, for some 2, € HND(T). By (1) we have

x=U— pS)Tx, = (T — px, (T — wH, .
Conversely, let y = (T — p)x for some x€ H ND(T). Then
QU — pS)y™ (T — )z = QU — uS)™(I — pS)Tx = QTx = 0.
(ii) By considering T*, we can prove (ii) similarly.

COROLLARY 2.7. Let TeL(H) be densely defined and have closed
range. Let S be the pseudo-inverse of T. Put G = {peC: |y < ||S||™Y}.

(i) If 0ep(T), then GCp(T);

(ii) If 0€psx(T), then GCpPsp(T).

PrROOF. (i) If 0ep,(T), then @ = Pyppe = 0 and hence (T — p)HD
(T — wH, = H for pe@, ie., GCp(T).
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(ii) First we prove that R(T — ) is closed for xeG. Without loss
of generality we may suppose nul T < «. Note that
R(T—p)=(T—pwker T+ (T — )H, =ker T + (T — p)H, .

By (i) of Proposition 2.6 and [5, Lemma III.1.9], we know that R(T — )
is closed. Next we prove that nul(T — g¢) < o for pxeG. Indeed, by
(ii) of Proposition 2.6 we have

nul(T — p) + def(T* — f) < codim(T* — g)H, = dimPH =nul T < .,
Therefore T — p is semi-Fredholm, i.e., GC P4 (T).

REMARK 2.8. Corollary 2.7 shows that 0.(T) and ps(T) are open
sets.

THEOREM 2.9. Let Te L(H) be densely defined, semi-Fredholm and
let S be its pseudo-inverse. Put G, = {#eC:0 < |g| < ||S||™*}. Then

(1) O5(T*) = 05e(T)7;

(i) G,cEsx(T).

Proor. Put Y = clm{ker(T — \)}ieo..

(i) Without loss of generality we may suppose 0 is a T-regular
point. By Lemmas 1.5 and 1.4 we have 0€p.(Ty)No(Ty). Clearly
(Ty)* = T} and p(Ty:) = 0,((Ty)*)~ = p,(T%.). Therefore 0ep(T%:)".
By Corollary 2.7 and Theorem 2.3 there exists a neighborhood G of 0
such that

(10) GCosp(T)NP(TF:)Co5e(TE) -
On the other hand, by [1, Lemma 2.1], we have
ker(T — W*c(clm{ker(T — Mhee)tC Y+ for all AeG,
and hence
11) ker(T — \)* = ker(T¢. — ) for all AneG.
(10) and (11) imply that
lim Pker(z'-z)' = PkerT‘ y

i.e., 0€ 05-(T™*).

(ii) First we consider the case in which 0 € p5(T). The regularity
of » =0 implies that ker TcY. Then 0€ o, (Ty) follows from Lemmas

1.5 and 1.4. By Lemma 1.8, S, is the pseudo-inverse of T,. Put G, =
{eeC: |yl <|ISy]I7}. Clearly

G,cGy.
By Corollary 2.7 and Theorem 2.3 we have
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Gy (Ty)C05x(Ty) .
By the definition of Y, we have
ker(T — p) = ker(Ty — p) for all pedG,,
and hence
lxi_r‘.'i“l Piorir-ty = Pierr_y for all peG,,

i.e.,, G,Cp5x(T). ‘

Next suppose 0¢ p5-(T). By (i) we may suppose nul < . By [5,
Lemma IV.5.29] we know that 7Y is closed. Thus 0€ p,(Ty) follows from
Lemma 1.5. Then following the above argument we obtain G, cCp%(T).

By (ii) of Theorem 2.9 we know that for densely defined operator
TeL(H), 05-(T) is an open set and p%r(7T) has no accumulation points
in 0sx(T).

3. Analytic characteristic. Throughout this section we assume that
Te L(H) is densely defined. Put as in [1]

H,(T) = clm{ker(T — \); v € 05(T)} ,
H(T) = clm{ker(T — \)*; n € 05x(T)},
H,(T)=HO (H(T)® H(T)),

T, = TH,(T) y To=Tam, Ti= TH;(T) .

LeMMA 8.1. Corresponding to the decomposition H= H,@ H, D H,,
T has the form

T, =x *
(12) T = ( 0 T, =« ) .
0 0 T,
ProOF. Regardless of whether ) = 0 is T-regular or not we observe

that H,.(T) = clm{ker(T — A); » € 05(T), » # 0}. Thus (12) follows from (i)
of Lemma 1.5.

Clearly
H(T)= H(T*), H(T)=HJ(T*), (T)*=(T*),, (T)*=(T"),.
THEOREM 3.2. Let Te L(H) be densely defined. Then

(i) osx(T)cp(T,)Np(T);

(i) ps«(T)cp(T,).

ProoF. (i) Let ne€p4(T) and put Y = H,(T). Without loss of gen-
erality we may suppose nul(7 — ) < 0. Hence (T'— \)Y is closed. By



338 S. LU

Lemma 1.5 we see that YeLat(T — \) and n€0,(T,). Since X € ps(T*),
we have v e 0(T7)” = 0,(T)*) = O(TY).

(ii) Let A€ P5(T). Then (i) implies that A € 0Ty, o)) CO(T,). Simi-
larly, we can prove that e, (T%)~ = 0,(T,). Thus nepo(T,).

THEOREM 38.3. Let 0€ 0%:(T) and let S be the pseudo-inverse of T.
Then corresponding to the decomposition H= H,@ H, @ H,, S has the
form

S, * x
(13) S = (0 S, *) .
0 0 S
PROOF. ker TC H, since 0¢€ 05+(T). Hence (1) can be written as
S, x x\/T, = * I—-P 0 O
(S21 S, *)(0 T, *)=<0 I, 0) on HPOH PH,,
Sy S, S/\0 0 T 0 0 I

where P = Pyor. It is easy to see that S, =S,, =S, =0 by 0€p0,(Ty)
and 0eo(T,). Thus (13) is proved.

REMARK 3.4. If » = 0€p%x(T), we can only obtain S; =0, i.e.,

S, * x
S=(sﬂ S, *)
0 Saz Sl

THEOREM 8.5. Let \» = 0¢€ 05(T), P = Pierry @ = Pyrorrs and let S be
the pseudo-inverse of T. Put G = {p: |¢| < ||S||™"}. Then for peG,

(i) ker(T — p) = R((I — pS)™'P);

(i) ker(T — w)* = R((I — gS*)™'Q).

ProOF. Since 0€ 05:(T) by (i) of Theorem 3.2 and Lemma 1.3 we
have Y e Lat(S). Since [¢|||S,]| = ¢l |IS]] <1, by (1) of Corollary 2.7 we
see that Gcp,(T,). By (13) we can derive
(14) I—pSy"P=UT+pS+ -+ + pS*+ --+)P

=T+ pS, + o +pSy+--0)P

=({I— pS,)'P for peG.
By (1) of Theorem 2.9 and (14) we see that
ker(T — p) = ker(T,—p) = R(I — ¢£S,)*P)=R((I — pS)™*P) for all peG.
Thus (i) is proved.
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By passing to T* we can prove (ii) similarly.

THEOREM 3.6. Let » = 0¢€ 05+(T), P = Pierr, @ = Pyerps and let S be
the pseudo-inverse of T. Put G, = {¢: 0 < |¢| < ||S||™*}. Then for each
ﬂ € Go ’

(i) ker(T — p) = R((I — pS)"'P)NH,;

(i) ker(T — pm)* = R((I — g£S*)"Q)N H,.

Proor. (i) By Proposition 2.1 and (ii) of Theorem 2.9 we have
ker(T — p)cR((I — wS)™*P)N H,. Conversely, let ye R(I — p#S)*P)NH,.
Then y = (I — uS)™x for some xecker . Thus (I — p#S)y = x and hence
Ty = pTSy = py(viaye H,C R(T)). Therefore R(I — puS)'P)NH,C
ker(T— ).

The proof of (ii) is similar.

Combining Theorems 3.5 and 3.6 we obtain:

THEOREM 3.7. Let N = 0€ 03x(T) and let S be the pseudo-inverse of
T. Then )€ p5(T) if and only if there exist holomorphic H-valued
Sfunctions {f()};c; defined on the nmeighborhood 4 = {|p| < ||S||™*} such that
{fi}ier forms a basis for ker(T — p) for ped.

PrOOF. Let {f};c; be an orthonormal basis of ker T and put fi(¢) =
(I — pS)'f:.
4. Some applications.

PROPOSITION 4.1. Let Te L(H) be densely defined, x€ H and let the
set of the zeros of the function
A Pker(T—z)x
have an accumulation point &€ Psr(T). Let G, denote the component of
05¢(T) which contains & Then we have
Py =0 on G,.

PrROOF. Let 4 be a neighborhood of ¢ on which there exist holo-
morphic H-valued functions {f;(\)}ic; such that {f,(\)},c; forms a basis of
ker(T — ») for ned. Choose a sequence {¢,}C4 such that ¢, — & and
Pierir_eyr = 0. Thus we have that (fi(&,), #) = 0 for ¢e I. Since (f,(\), )
is a C-valued holomorphic funection on 4, we have that (f,(\), ) = 0 on
4 for 1€1. Therefore x L ker(T — \) for A€ 4, i.e.,

Pke,(T_Dx = O on A .

Let 2 be any point in G, and I"CG, be an arc connecting ¢ and g.
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For each ) eI there exists a neighborhood 4;, on which there exist
holomorphic H-valued functions described as above. By using the finite
covering theorem and the above argument we can derive that in a finite
number of steps

Pke,u._l)x = 0 on AF .

Thus the proposition is proved.

REMARK 4.2, Since 0,(T)C0%+(T), we see that Lemma 1.6 of [1] is
a corollary of Proposition 4.1.

PROPOSITION 4.3. Let T be densely defined, have closed range and
ker TCY = TY. Put G={p: |y <|S||™*}. Then we have

(15) ker(T — p)cY for peG.

PrROOF. Let S be the pseudo-inverse of T. Similary to the proof
of Lemma 1.3, we obtain that

(16) S=(i" s*> on Y@Y-.

Then (15) follows from (16) and Proposition 2.1.

PROPOSITION 4.4. Let T e L(H) be densely defined and 0 € 05z(T). Let
G be the component of O5x(T) containing » = 0. Put Y = clm{ker T*};,,
Z = clm{ker(T — A\)}iege Then Y = Z and 0¢< p,(Ty).

PrOOF. The proof proceeds as follows:

(i) YcZ. Clearly ker TCZ. Suppose ker T*C Z for k<n — 1 and
xeker T". Then Tx cker T ' and hence Txc Z. By Lemmas 1.5 and 1.4
we have ZeLat(T) and 0€ p,(T,). So there is y € Z such that Tx = Ty.
Set z=2 —y. Then zcker T and hence x =y + z€ Z.

(ii) 0ep(T%). PutY,=Im{ker(T—n)*};i,. Itis trivial that TY CY,.
Conversely, let x eker T". Since x € Z, we have that x = Ty for some
y € Z and hence ycker T"*'. Thus Y, = TY, is proved. Then we follow
the proof of Lemma 1.5 to obtain 7Y =Y.

(ili) ZcY. Let S be the pseudo-inverse of 7. By Proposition 4.3
we have

ker(T — )Y for all |g < ||S|.

Therefore if x 1 Y, then = 1 ker(T — g) for |¢| <||S||™* and hence for e G
by Proposition 4.1. Thus Y*cCZ*, i.e., ZCY.

REMARK 4.5. [1, Lemma 1.7] is a corollary of Proposition 4.4.
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