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0. Introduction. A characterization and a presentation of a (uni-
versal) Kac-Moody group over a field (of any characteristic) have been
given by Tits [6]. Such a presentation, which is a natural generalization
of Steinberg’s one for a (simply connected) split semisimple algebraic
group over a field (ef. [5]), is conjectured by E. Abe and established by
J. Tits. The most interesting part of the presentation is the so-called
“commutation relation”, which is deeply related to the root strings and
whose explicit description is given in [4]. In this paper, we will discuss
certain root strings in Kac-Moody root systems, and give some direct
applications to the associated Kae-Moody groups. Our main result is as
follows.

Let A = (a;;) be an nxn generalized Cartan matrix, 4 the associated
root system, and 4™ the set of real roots. Put r(a; 8) =#|{8+ kal|keZ}N
47| for (a, B) e 4x 4. Then the following two conditions are equivalent.

(1) 7(a; B) =3 or 4 .for some (a, B) € 4°X 4.

(2) a;=—1and a; < —1 for some 7,5 1 <1, J < n).

As a corollary, we can simplify the Steinberg-Tits presentation of the
associated Kac-Moody group in the case when A has a certain property.

1. Notation and lemmas. Let A = (a,;);;c; be an nxXn generalized
Cartan matrix, (Y, I, IIV) a realization of A, and g(A) the Kac-Moody
Lie algebra (over C associated with A), where I=1{1,2 -+, n}, Il =
{a, «++, az}, IV = {hy, -+, h,} and a,(h;) = a;; (cf. [1]). We denote by W
the Weyl group with simple reflections w,, ++-, w,. Let 4 be the root
system of g(A) with I7 as simple roots, 4™ = {w(a)|w e W, a € I} the set
of real roots, 4, the set of positive roots, and 4% the set of positive
real roots. For each a € 4™, let h,e} be the dual root of . Then both
a(hs;) and B(h,) have the same sign (one of +, 0, —) for all a, g€ 4™ (cf.
[8]). Put ht(a) = -, ¢, called the height of a, if a=3i- ca,€4.
Let S(a; B) = {8 + ka|ke Z}N 4 for (a, B) € 4°x 4. This S(a; ) is called
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the a-string through B. Let »(a; B8) = #|S(a; B) N4™| for each (a, B) €
4°x 4. Then one sees r(a;B8) =0,1,2, 83 or 4. Our interest in this
paper (in view of Steinberg-Tits presentation) is when »(a; B) is 3 or 4
for some (@, B)ed™x 4. Set R={(a, B)ed* x4 |a— B¢d, r(a;B) =38
or 4} and R, = RN x4¥). Then (a, B) € R implies that a(h,) = —1
and g, < —1.

LEMMA 1. Let 4, j¢el, and a= D7, ca,€4,.. Suppose a,h;) =
ajh) = —2.

(1) In general, a(h, + h;) < 0.

(2) If ah, + h;) =0, then ah,) = —a(h;) =0 (mod 2).

PrROOF. Put o' = 3. ;. Since a'(h,) =0, a'(h;) £ 0 and (ca; +
c;a;)(h, + h;) = 0, we obtain a(h; + h;) < 0. Suppose a(h; + h;) = 0. Then
a'(h;) = a'(h;) = 0. Therefore a(h,) = (c,a; + ca;)(h;) = 2(c; — ¢;) = 0 (mod
2). [

LEMMA 2. Let 1,j5€l, and a = D7, c,a, €4,. Suppose a;(h;) = —4
and a;h;) = —1.

(1) In general, a(2h, + h;) < 0.

(2) If ah) = —1 and alh;) =2, then a = a; + mg&, where me Z-,
and ¢ = a; + 2a;.

PrOOF. By the same reason as in Lemma 1(1), we see a(2h, + h;) <0. -
Suppose a(h) = —1 and a(h;) =2. Then a' = D ;cia, must be zero
and a = c,a; + c;a;, since a'(h) = a'(h;) = 0. If ht(a) =1, then a=a;
or «;, hence o« = a; by the condition. Suppose ht(a) > 1. Then ¢, >0
and ¢; >0, and (@ — a;)(h,) = (@ — a;)(h;) = 0. Therefore a — a; = mé
with m € Zs,. 0

LEMMA 8. Let 4,5¢el, and suppose a,h;)-a;h)>4. Put V=
@i-, Ra, and V' = {n € V|n(h,) = Ah;) = 0},

(1) V=Ra,® Ra;PV'.

(2) If p=ba, + bja; + '€V (b, b;eR, € V') with ph,) < 0 and
p(h;) <0, then b, = 0 and b; = 0.

(8) If ped, and ph)=m for some meZ,, then (w;p)(h,) =
—(m + 1).

ProOF. For peV, put

b, = 2H40) — as(h)ERy) g 20y — Ry
» 4 — a(hj)aihy) ! 4 — a(hy)aih,)
and ¢ = ¢ — b, — bja;, Then p=ba, + bja; + ¢ and e V'. If pe
(Ra; ® Ra;)N V', then ¢ =0 since a,(k;)-aijh,) > 4. Hence V = Ra; P

’
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Ro; ®V'. If mh)<0 and ph;) <0, then b, =0 and b; = 0. Next
suppose f = Di., ¢, €4, and p(h;) = m for some meZ,, Put g =
Desii Gy Then p(h,) <0 and g4(k;) < 0. Therefore, by (2), we can
write #, = ba; + bja; + 5 (b, b; 2 0, t5€ V'). Then gt = d.a; + dja; + 4,
where d, = b, + ¢, >0 and d; = b; + ¢; = 0. Hence

(wi)(hy) = (£ — pha)(h,) = by — phi)ashy)
= (dia; + dja;)(hy) — (dia; + dja;)(h)ashy)
= 2d, + dja;(h,) — dah)aih) — 2d;a;h;)
= (2 — ay(hpa(h))d; — dei(h) < —2d, — djaih,)
= —(2d; + dja;(h) = —ph) = —m .
Therefore, (w;n)(h;) < —(m + 1). O

2. Main result. In this section, we will establish the following
theorem.

THEOREM. Notation s as in Section 1. Then the following conditions
are equivalent.

(1) 7(a; B) =3 or 4 for some (a, B) € 4™ X 4.

(2) a;;=—1and a;; < —1 for some 1, jeI.

COROLLARY. The following conditions are equivalent.
(1) a;;=-114f and only if a;; = —1 (3, jeI).
(2) 7@;8) =0,1o0r 2 for all (a, B) €4™x 4.

PROOF OF THEOREM. The condition (2) implies 7r(a;; ;) = 8 or 4 and,
hence, the condition (1). Therefore it is required to show the converse.
Suppose r(a; B) = 3 or 4 for some (a, B)€4°x 4. Then we can assume
(¢, )eR,. Let Q =R,.N W-(a, B). Then we can also assume ht(a + 3)
is minimal in Q. Since a + B € 4™ and ht(a + B) > 1, there is a; € IT such
that (@ + B)(h,) > 0. Then a # a, for (@ + B)(h,) < 0. If 8+ a,, then
(w,a, w;8) € @ and ht(w,a + w,8) < ht(a + B), which is a contradiction.
Therefore g8 = a,. Since aedy, there are a, €Il and 4, %, -+, 4, €1
(I =z 0) such that a = w,w,,_, *++ w,;, and B,_,(k,,) <0 (1 =s=1), where
Bo= Qipy Bs = wyw,,_, +++ wya,, 1=8=1), and 8, =a. Letj=1. Then
we claim a,; = —1 and a;; < —1, which is our goal. If [ =0, then a =
a,, = a;. Since (a;, a;) € R,, one sees a,; = a;j(h) = —1 and a;, = a,(h;) <
—1. Therefore we suppose, from now on, I > 0, hence ht(a) > 1. Then
j # 1 since a(h,) = —1 and a(h;) > 0. Put o =G,_,. If a;(h;) =0, then
(o, &) = wila, a;) € @ and ht(a’ + a,) < ht(a + a,), which is a contradic-
tion. Thus, a;(h;) <0 and aj;k,) <0. If a'(h) <0, then ah,) =
(w;a)(h;) = (@' — &' (hp)a;)(h) = o' (h;) — & (hj)ai(h,) = —2. Hence a'(kh,) = 0,
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since a(h,) = —1.

Case 1: a'(k) = 0. In this case, we obtain —1 = a(h,) = (w;a’)(h,;) =
o' (h,) — o' (hah,) = —a' (hy)ayh,) and a'(h;) = a;h) = —1. If ay(hy) = —1,
then (o, a;) = w,wia, a;) € Q and ht(a’ + a;) < ht(a + a;), a contradiction.
Hence a,(h;) < —1, so a;; = —1 and a;; < —1.

Case 2: a'(h) > 0. We proceed in several steps.

Step 1. Suppose a;(h;) = a;(h;) = —2. Then a(h, +h;) <0 by Lemma
1(1). Since a(h;) = —1 and a(h;) > 0, one sees —1 < a(h,) + a(h;) <0,
hence a(h, + h;) = 0. By Lemma 1(2), we obtain a contradiction: —1 =
a(h;) = 0 (mod 2).

Step 2. Suppose a;(h;)-ajh,) > 4. Then o' €4, and o'(k;) > 0 imply
a contradiction: a(h,;) = (w;a’)(h;) < —1 by Lemma 3(3).

Step 3. We have just got {ai(h,), «a;h)}={-1, —1}, {-1, —2},
{—1, —8} or {—1, —4}. If ww;(a)c 4, then o’ = w;(a) = a;, hence a =
a, — a,(h)a; and —1=ah) =2 — a(h)aih), so ahajh,)=3. If
a,(h;) = —1 and a;(k,) = —8, then a = wi(a;) = a; + a; and (a, @))€ R, a
contradiction. If a,(h;) = —3 and «a;(k,) = —1, then a = wi(a,) = a, + 3a;
and (@, ;) ¢ R, also a contradiction. Therefore w,w;(a) € 47 and (ww;a,
ww;a;) € Q.

Step 4. Our hypothesis, the minimality of ht(a + B) in @, leads to

ht(ww;(a + a))) — ht(a + a,)

= —(a + a)h) — (@ + a)hy) + (a + a)ha;h,)
= —(a+ a)h)ll — a;jh) —120,

which implies (a + a;)(h;) <0 and a,h;) < —1. Therefore a;h,) = —1
and a;(h;) = —2, —3, —4. Hence our theorem has been established. We,
however, want to continue in order to obtain a stronger result.

Step 5. Suppose aj;(h;) = —1 and a,(h;) = —2. Then Step 4 says
alh;) =1 and o'(h;) = (@ — a;)(k,) = 0, a contradiction.

Step 6. Suppose «a;(h;) = —1 and a,(h;) = —8. Then Step 4 says
alh;) =1 or 2, and a'(h;) = alh;) — alh))aih,) = —1 + a(h;). Therefore
alh;) = 2 since a'(h,) > 0. Hence a'(h,) =1. Put w, = wwwww;e W.
Then wy(a, ;) = (@ — a; — 2a;, a;) €Q and ht(w,(a + a,)) < ht(a + o), a
contradiction.

Step 7. Suppose aj(h;) = —1 and a;(h;) = —4. Then Step 4 says
alh;) =1,2o0r 3, and a'(h,) = —1 + a(h;). Therefore a(h;) = 2 or 3 since
a'(h;) > 0. Suppose a(h;) =3. We inductively define v, (t € Z.,) by 7, = a,
Yomir = Wi(Yom) 8NA Vypiy = Wy(Yomss) fOr m € Z-,. Then one can easily check
that 7,,(kh;) =2m 4+ 3 > 0 and 7,,..(h;) =m + 2 > 0. This means that «
must be of the form c,a; + c;a; € 47, since ht(v,) < 0 for some (sufficiently
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large) t. Then 0= a(2h;+h;) = 2a(h;)+a(h;) = —2+8 = 1, a contradiction.
Therefore a(h;) =2 and a(h,) = —1. By Lemma 2(2), we obtain a =
a; + meg, where me Z,, and £ = a; + 2a;.

Step 8. In particular, we have established that «'(k;) > 0 implies
a;; = —1 and a;, = —4. O

3. Relations in Kac-Moody groups. (1) Steinberg-Tits presentation.
Let A be a generalized Cartan matrix and G(A) the associated (universal)
Kac-Moody group over a field K. Then G(A) has the following presen-
tation (cf. Tits [6]):
generators
2,(t) for all acd™ and teK,

relations

(A) @ (8) 24(t) = 2o(s + 1),

B)  [@u(s), 25(t)] = ILiarise ave;i,550 Tiatis(Capis8’t?) if (Zso@+2Z58) N 4™ =,

(B wa(w): xs(t) wo(—u) = x5(u't),

(C)  ho(u):ho(v) = ho(uv)
for all a, B€ 4™, s,te€ K and u, ve K*, where c,,; is a certain integer,
B =B — Bha, u' = £u P*t, w,(u) = x.(u) x_(—u™) x,(w) and h,(u) =
wa(u) w(—1). An explicit description of the right-hand side in (B) has
been calculated (cf. [4]). We must notice that the coefficients c,;; are
deeply related to the root strings in the rank two subsystem generated
by « and 3.

(2) Symmetry of —1. Suppose that A = (a,;);je; has the property
that a,; = —1 if and only if a;, = —1 (¢, je€I). Then the above relation
(B) ean be simplified as follows:

if a+pg8¢4,
® ) 2OV =1, (kst) i at gede.
The other type relations for (B) (cf. [4]) do not happen here. This comes
from our theorem (or its corollary). Then we should compare this to the
corresponding relation for SL,.

(8) A,-subsystems. As a direct consequence of Kac-Peterson con-
jugacy theorems (ef. [2]), we obtain the equivalence of the following
two conditions.

(i) There exist @, g € 4™ such that a and 3 generate an A,-subsystem
of 4.

(i) There are some ¢, j €I such that a,-a;, =1 or 3.

(4) No entry of —1. If A has no —1 as an entry, then from (2)
and (8) we see that the relation (B) is just
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(B) [.(8), 2s(0)] =1 if a+pB¢4.

(5) The set P(A). Let P(A) be the set of all the prime numbers
p having the property that p divides |a,;| for some 4, j € I with a;;, = —1.
If char K does not belong to P(A4), then the following two conditions are
equivalent.

(1) [2a06), @(®)] = 1.

(i) a+ pBe4. ‘
Here o, € 4™ and s, te K*. This equivalence is due to [4], [6] and the
proof of Theorem. For example, P(B,) = {2}, P(G,) = {3}, P(A") = @, and

LR T

(6) Ezample. Let A=(_% “g) with ab =4, and U(4) the sub-
group of G(A) generated by z.(t) for all ae4? and te K. Put @, =
fa e d¢|alh) > 0} for each ¢ =1,2. Then 4% =0, U®, Let U, be the
subgroup of U(A) generated by z,(t) for all ac®, and te K (i =1, 2).
If char K =0, then we see U(A) =~ U,xU,, the free product of U, and U,
(cf. [6], 1)). If a >1 and b > 1, then each U, is abelian by Theorem.
Suppose @ =1 (, hence b = 4). If char K belongs to P(A), then each U,
is abelian. Otherwise each U, is meta-abelian (not abelian).
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