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0. Introduction. A characterization and a presentation of a (uni-
versal) Kac-Moody group over a field (of any characteristic) have been
given by Tits [6]. Such a presentation, which is a natural generalization
of Steinberg's one for a (simply connected) split semisimple algebraic
group over a field (cf. [5]), is conjectured by E. Abe and established by
J. Tits. The most interesting part of the presentation is the so-called
"commutation relation", which is deeply related to the root strings and
whose explicit description is given in [4]. In this paper, we will discuss
certain root strings in Kac-Moody root systems, and give some direct
applications to the associated Kac-Moody groups. Our main result is as
follows.

Let A = (α,y) be an nxn generalized Cartan matrix, A the associated
root system, and Aτe the set of real roots. Put r(α; β) = # \{β + ka \ k e Z}f]
Aτe\ for (α, β)eAτexA. Then the following two conditions are equivalent.

(1) r(a; β) = 3 or 4 for some (α, β) e Aτe x A.
(2) aiS = — 1 and aH < — 1 for some i, j (1 ^ i, j ^ n).
As a corollary, we can simplify the Steinberg-Tits presentation of the

associated Kac-Moody group in the case when A has a certain property.

1. Notation and lemmas. Let A = {aί3)iJ&I be an nxn generalized
Cartan matrix, (Jj, 77, 77V) a realization of A, and Q(A) the Kac-Moody
Lie algebra (over C associated with A), where I— {1, 2, , n), Π =
{aL, , an}> /7V = {K , K) and alh3) = aH (cf. [1]). We denote by W
the Weyl group with simple reflections w19 , wn. Let A be the root
system of g(A) with Π as simple roots, Aτe = {w(cή | w e W, a e Π) the set
of real roots, A+ the set of positive roots, and Δ+ the set of positive
real roots. For each a e Aτe, let ha e § be the dual root of a. Then both
a(hβ) and β(ha) have the same sign (one of +,0, - ) for all α, βe A™ (cf.
[3]). Put ht(α) = Σϊ=i ck, called the height of α, if a = Σ?=i ^α* 6 A.
Let S(a; β) = {β + ka\keZ}f]A for (α, /5) e J r e x A. This S(α; /5) is called
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the α-string through β. Let r(a; β) = #|S(α; β)Π Δτβ\ for each (a,β)e
ΔτexΔ. Then one sees r(a; β) = 0, 1, 2, 3 or 4. Our interest in this
paper (in view of Steinberg-Tits presentation) is when r(a; β) is 3 or 4
for some (α, β) e Δτe x Δ. Set R = {(a, β) e Δτe x Δτβ \ a - β <£ Δ, r(a; β) = 3
or 4} and R+ = Rn(4+x Δ^). Then (a,β)eR implies that α(^) = - 1
and β(ha) < - 1 .

LEMMA 1. Lei i, j" e /, and a = Σ*=i C Λ e ^+ Suppose a^h/) =
aά{K) = - 2 .

(1) In general, a(hi + h0) ^ 0.
(2) // α φ , + hj) = 0, ίfee^ «(&,) = - α ( ^ ) Ξ 0 (mod 2).

PROOF. Put α' = Σ*^,i c^fc Since α'ίΛJ ^ 0, α'(Λy) ^ 0 and (ctat +
Cj(Xs)(frt + hj) — 0, we obtain a(hi + hj) ^ 0. Suppose a(ht + Λy) = 0. Then
a'(ht) = a'(h3) = 0. Therefore α(Λt) = (c^ + CjOί^h,) = 2(c4 - cy) Ξ 0 (mod
2). D

LEMMA 2. Lei if j el, and a = Σϊ=ic*α* e J + . Suppose at(hs) = — 4

(1) In general, a(2ht + Ay) ^ 0.
(2) // a(λ4) = — 1 and a(h5) = 2, then a = ctj + mξ, where m
ξ — cίi + 2ay.

PROOF. By the same reason as in Lemma 1(1), we see a(Zht + hj) ̂  0,
Suppose a(ht) = —1 and a(hj) = 2. Then α' = Σ w < , i ^ m u s t be zero
and α = c ^ + cyαy, since αf(Λ<) = α'(fty) = 0. If ht(α) = 1, then a = at

or αy, hence α = αy by the condition. Suppose ht(α) > 1. Then c* > 0
and Cy > 0, and (a — ai)(h4) = (α — αy)(Λy) = 0. Therefore α — aj = mξ
with meZ>0. Π

LEMMA 3. Lei i,jel, and suppose at(hj) αy(Af) > 4.

1 Λα, and 7 ' = {λe VΊλ(Λ4) = λ(λy) = 0}.
(1) V=Rai®Rai®V.
(2) If μ = biOLi + ha, + μ' e F (6,, δy eR, μ'e V) with -μ(h^ ̂  0 and

0, iften 6, ^ 0 and δy ̂  0.
(3) If μeΔ+ and μ(ht) ^ m /or some m e Z> 0, ίfeen (wjμ)(ht) ^

(m + 1).

PROOF. For jue7, put

Mh) b =
4 - aάhdaάhi) ' 4 -

and μ' = jw — 6 ^ — 6yαy. Then jw = 6 . ^ + 6y«y + μ' and JM' € F' . If μ ε
(Λα, θ Raj) Π F', then // = 0 since alh^a^K) > 4. Hence F =
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Ra3®V. If μ(ht) ^ 0 and μ(hj)^O, then 6 , ^ 0 and 6 , ^ 0 . Next
suppose μ = Σ*=i ckak e Δ+ and μ(h%) ^ m for some m e Z>0. Put μ0 =
ΈkΦij ckak- Then #>(&,) <: 0 and μo(hd) ^ 0. Therefore, by (2), we can
write μ0 = 6 ^ + b3a3 + μί (6*, δ; ^ 0, μ'o e V). Then μ = d ^ + dyα,- + /4
where cZ4 = 6f + c* > 0 and d3 = b3 + cΰ-^ 0. Hence

(w3μ)(h%) = (JK - μ{h3)a3){h%) = μ(ht) - μ{h3)a3{h%)

= (diOίi + dsas)(Jιύ - ((^α* + d3 a3)(h3)a3(h%)

hMh) - 2d3a3(hi)

~ d3a3(K) < -2di - d ^ f c , )

= - ( 2 ^ + djCtjihi)) - -/i(*<) ^ - m .

Therefore, (w&)(ht) ^ - ( m + 1). Π

2. Main result. In this section, we will establish the following
theorem.

THEOREM. Notation is as in Section 1. Then the following conditions

are equivalent.
( 1 ) r(a; β) = 3 or 4 /or some (α, /3) 6 Δτe x //.
( 2 ) ai3 = —1 α^d α Λ < —1 /or some i, i e /,

COROLLARY. The following conditions are equivalent.
( 1 ) ai3 = —1 if ατιcί oni?/ i/ a3i = —1 (i, j e / ) .
( 2 ) r(α; /3) = 0, 1 or 2 for all (α, /3) e J r e x J .

PROOF OF THEOREM. The condition (2) implies r(a3; α j = 3 or 4 and,
hence, the condition (1). Therefore it is required to show the converse.
Suppose r(α; β) = 3 or 4 for some (α, /3) e AτexΛ. Then we can assume
(α, β)eR+. Let Q = J?+Π TΓ (α, /3). Then we can also assume ht(α + β)
is minimal in Q. Since a + β e J r e and ht(α + /3) > 1, there is ^ 6 / 7 such
that (« + /3)(^) > 0. Then a Φ a, for (α + β)(ha) ^ 0 . If /3 Φ aίf then
( ^ α , Wί/S) 6 Q and h t ( ^ α + wtβ) < ht(α + /3), which is a contradiction.
Therefore β = at. Since aeA+, there are aiQeΠ and ΐ lf i2, , i^e/
(i ^ 0) such that α = wiιwiι_1 wi :ιαio and β^h^) < 0 (1 ^ s ^ ί)> where
A = ai0, β8 = WiWi^ whai0 (1 ^ s ^ Z), and # = α. Let j = i,. Then
we claim α^ = — 1 and α^ < — 1, which is our goal. If I = 0, then α =
α i 0 = α5 . Since (a3, a%)^R+, one sees α ί y = a3(h%) = — 1 and αy< = α ^ ) <
— 1. Therefore we suppose, from now on, I > 0, hence ht(α) > 1. Then
j Φ i since α(fc4) = — 1 and α(/^ ) > 0. Put α' = /Sj^. If at{h3) = 0, then
(α', α j = wy(α, α<) 6 Q and ht(α' + at) < ht(α + α j , which is a contradic-
tion. Thus, ctiih) < 0 and as(ht) < 0. If α ' ^ ) < 0, then a(h%) =

= (α' - αf(λi)αy)(λ4) - α'(Λ,) - a'{h3)a3(K) ^ - 2 . Hence «'(&,) ^ 0,
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since a(ht) — — 1.
Case 1: α'(^) = 0. In this case, we obtain — 1 = a(h%) = (w3-a')(h%) =

a\h) - ar(h3)a3(K) = -ocf(h3)a3(h%) and α'(Λy) = α/fe,) = - 1 . If αt(fcy) = - 1 ,
then («', a3) = w.w^a, aτ) e Q and ht(α' + α, ) < ht(α + α<), a contradiction.
Hence α4(Λy) < — 1, so aiS = — 1 and α Λ < — 1.

Case 2: a'(ht) > 0. We proceed in several steps.
Step 1. Suppose at(h3) = a3(h%) = - 2 . Then α(fet + Λy) ^ 0 by Lemma

1(1). Since a(ht) = - 1 and α(λy) > 0, one sees - 1 < a(K) + α(fcy) ^ 0,
hence a(ht + fey) = 0. By Lemma 1(2), we obtain a contradiction: — 1 =
a(ht) = 0 (mod 2).

Step 2. Suppose α4(Λy) αyφj > 4. Then α ' e J + and α'(^) > 0 imply
a contradiction: a(fcj = (Wja!)(h?) < —1 by Lemma 3(3).

Step 3. We have just got {^(λy), a3{h%)} = {-1, -1}, {-1, -2},
{-1, -3} or {-1, -4}. If WiWjia) e J-, then a! = Wy(α) = a4, hence a =
α< - oti(h3)a3 and - 1 = «(/&,) = 2 - alh^ajih), so a.Qi^ajiK) = 3. If
«t(Λy) = — 1 and αy(Λi) = — 3, then a = Wy(αt) = α* + α^ and (α, a^eR, a
contradiction. If α f̂cy) = — 3 and a3{h%) = — 1, then α = Wy(α<) = α t + 3αy

and (α, α<) £ # , also a contradiction. Therefore WtW^a) e J+ and (WiW3a,
WiWjCti) e Q.

Step 4. Our hypothesis, the minimality of ht(α + /3) in Q, leads to

ht(tι;4iι;y(α + ad) — ht(α + «<)

= - ( α + α j ( ^ ) - (α + αJίΛy) + (α + α*)(Λy)αy(λ<)

which implies (α + α4)(Λy) < 0 and α4(Λy) < — 1. Therefore ay(fc4) = — 1
and «<(/&,-) = —2, —3, —4. Hence our theorem has been established. We,
however, want to continue in order to obtain a stronger result.

Step 5. Suppose αy(Λ4) = — 1 and α/Ay) = —2. Then Step 4 says
α(Λy) = 1 and α'(Λ4) = (α — αy)(fei) = 0, a contradiction.

Step 6. Suppose αy(Λ4) = — 1 and α4(Ay) = — 3. Then Step 4 says
a(h3) = 1 or 2, and «'(&,) = α(^) - α(λy)αy(λi) = - 1 + α(Λy). Therefore
α(Λy) = 2 since α'(Λ4) > 0. Hence a'(ht) = 1. Put w0 = WjWiWjWtWj e W.
Then wo(α, α£) = (α — α4 — 2αy, α4) e Q and ht(wo(α + αt)) < ht(α + α4), a
contradiction.

Step 7. Suppose αy(Λ4) = — 1 and ^(fcy) = — 4. Then Step 4 says
α(Λ, ) = 1, 2 or 3, and a\ht) = - 1 + α(Λy). Therefore α(λy) = 2 or 3 since
a'(ht) > 0. Suppose α(Λy) = 3. We inductively define yt (t e Z^o) by 70 = α,
72m+1 = w3(Ύ2m) and 72m+2 = ^(T 2 m + 1) for m 6 Z^o. Then one can easily check
that Ύ2m(h3) = 2m + 3 > 0 and Ί2mΛ.x(h%) = m + 2 > 0. This means that α
must be of the form ctat + Cy«y e Jτ+, since ht(7«) < 0 for some (sufficiently
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large) t. Then 0 ̂  α(2Λ<+Λy) = 2aQιι)+a{h3) = - 2 + 3 = 1,a contradiction.
Therefore a(h3) = 2 and a{hx) = —1. By Lemma 2(2), we obtain a =
ctj + mζ, where m e Z>0 and £ = α* + 2a3-.

Step 8. In particular, we have established that a'(hi) > 0 implies
ai3- = — 1 and αΛ = —4. •

3. Relations in Kac-Moody groups. (1) Steinberg-Tits presentation.
Let A be a generalized Cartan matrix and G{A) the associated (universal)
Kac-Moody group over a field K. Then G(A) has the following presen-
tation (cf. Tits [6]):
generators

xjf) for all a e Δτβ and t e K ,

relations

(A) 0β(β) 0β(t) = &«(« + «),

(B) [xa(s)> xβ(t)] = Π*«+^βj' ;<,i>o«*«+^(^iiβ<ίi) if (Z>0α+Z>0/3)Π J i m = 0 ,

(C)
for all a, βeΔ™, s,teK and u, veKx, where caβi3 is a certain integer,
βf = β — β(ha)a, v! — ±u~βlha)t, wa(u) = Xaiiή-X-ai—u^'Xaiu) and ha(u) =
wa{n)*wa{—1). An explicit description of the right-hand side in (B) has
been calculated (cf. [4]). We must notice that the coefficients caβi3 are
deeply related to the root strings in the rank two subsystem generated
by a and β.

(2) Symmetry of — 1. Suppose that A = (ai3)it3eI has the property
that ai3 = —1 if and only if aH = —1 (i, j el). Then the above relation
(B) can be simplified as follows:

(B) [xa{8), xβ(t)) = ( 1 l f

[xa+β(±8t) if a

The other type relations for (B) (cf. [4]) do not happen here. This comes
from our theorem (or its corollary). Then we should compare this to the
corresponding relation for SLn.

(3) A2'subsystems. As a direct consequence of Kac-Peterson con-
jugacy theorems (cf. [2]), we obtain the equivalence of the following
two conditions.

(i) There exist a, β 6 Aτe such that a and β generate an A2-subsystem
of J.

(ii) There are some i, j el such that α^ α^ = 1 or 3.
(4) No entry of — 1. If A has no —1 as an entry, then from (2)

and (3) we see that the relation (B) is just
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(B) [».(«), a,(t)I = 1 if a + βϊΔ.

( 5 ) The set P(A). Let P(A) be the set of all the prime numbers
p having the property that p divides |α^| for some i, j el with α Λ = — 1.
If char K does not belong to P(A), then the following two conditions are
equivalent.

(i) [xa(s)> xβ(t)] = 1.
(ii) a + β$Δ.

Here α, /3e J r e and s, teKx. This equivalence is due to [4], [6] and the

proof of Theorem. For example, P(Bn) = {2}, P(G2) = {3}, P(Ai1]) = 0 , and

*>((_? i ) ) = (2, 3,.
( 6 ) Example. Let A = ( | g) w i t h α & = 4» a n d ^ ( A ) t h e s u b "

group of G(A) generated by xa(t) for all a e Aτ+ and t e K. Put Φt —
{αe J?|α(Λ4) > 0} for each i = 1, 2. Then 4? = Φ i U ^ . Let ί7, be the
subgroup of U(A) generated by xa(t) for all aeΦt and ί e i ί (i = 1, 2).
If char K = 0, then we see Ϊ7(A) ^ ί/x* I72, the free product of Ux and Ϊ72

(cf. [6], (1)). If a > 1 and 6 > 1, then each £/* is abelian by Theorem.
Suppose a = 1 (, hence 6 ^ 4 ) . If char K belongs to P(Λ), then each C/i
is abelian. Otherwise each C/* is meta-abelian (not abelian).
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