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1. Introduction. Let X be a compact Hausdorff space and let B(X)
denote the Banach lattice of all real-valued bounded functions on X with
the supremum norm || ||. C{X) denotes the closed sublattice of B(X)
consisting of all real-valued continuous functions on X. Let A be a linear
subspace of C(X) which contains the unit function lx defined by lx(y) = 1
for all y e X. Let N denote the set of all non-negative integers. Let p
be any fixed positive real number and let G be a subset of A separating the
points of X. Suppose that A contains the set {\g — g(y)lz\

p; g e G, y e X}.
For a bounded linear operator T of A into B(X) and a function g e G,
we define

μ{p\T, g)(y) = T(\g - g{y)lx\*){y) (yeX).

Let {La; α e ΰ } be a net of positive linear operators of A into B(X) and put

μίp)(9) = μ{'\Lm g) (aeD,geG),

whose norm is called the p-th. absolute moment for La with respect to g.
In [18] we proved the following convergence theorems, which may

play an important role in the study of saturation property for {La}\

THEOREM A. Let U be a multiplication operator given by U(f) = hf
(/ e A), where h is an arbitrary fixed non-negative function in B(X).
If limβ||/i£p)(fl0|| — 0 for all geG and there exists a strictly positive func-
tion ueA such that \ima\\La(u) - U(u)\\ = 0, then limα||Lα(/) - U(f)\\ = 0
for every feA.

THEOREM B. Let T be a positive projection operator with T Φ I (iden-
tity operator), T(lx) = lx and LaT = T for every aeD. If μ{p)(T, g)eA
and lima\\La(μ{p)(T, g))\\ = 0 for all geG, then limβ||Lβ(/) - T(f)\\ = 0 for
every feA.

The purpose of this paper is to give a quantitative version of the
above theorems in which we estimate the rate of convergence of {La(f)}
by using a modulus of continuity of /. Furthermore, a particular atten-
tion is paid to the degree of approximation by iterations of positive linear
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operators of A into itself (cf. [17]).
Finally the results are applied to various summation processes and

some ergodic theorems for positive linear operators from a quantitative
point of view. Concrete examples of approximating operators can be
provided by the multidimensional Bernstein operators and the semigroup
of Markov operators induced by them (cf. [12]). For the basic theory of
semigroups of operators on Banach spaces, one may consult the books of
Butzer and Berens [2] and Hille and Phillips [4], Actually, the results of
the author [11], [13] can be improved by means of the higher order
moments.

2. Degree of convergence. Here we assume that A contains the
set {\g - g(y)lx\

p; g e G, y e X, p ^ 1}. Let feB(X). If {gu gi9 , gr) is
a finite subset of G and δ ^ 0, then we define

ω(f; glf , gr, δ) = sup{|/(a?) - f(y)\; χ,yeX, d(x, y) £ δ},

where

d(x, y) = max{ 1̂ 0*0 - gt(y)\; i = 1, 2, , r} .

This quantity is called the modulus of continuity of / with respect to
ft, ft, •",&• ([17]).

In order to achieve our purpose it is always supposed that the fol-
lowing condition is satisfied:

(1) There exist constants C ^ 1 and K > 0 such that

ω(f; & , - • - , gr, & ) ^ (C + Kξ)ω(f; &,•••, gr, S)

for all feB(X), ξ, δ ̂  0 and for all finite subsets {g19 g2, , gr} of G.

Now we have the following key estimate for positive linear function-
als on A.

LEMMA. Let L be a positive linear functional on A and y e X. Let
{Qi, 02, * f Qr) be a finite subset of G, p ^ 1 and δ > 0. Then for all
g eA, we have

\L(g) - g(y)L(lx)\ ^ (CL(1X) + a(y))ω(f; gίf , gr, δ) ,

where

a{y) = mm{δ-*KL(Φ(., y)\ r

with

, y) = Σ Mx) - 9
ί=l
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PROOF. Let xeX. If d(x9 y) > δ, then it follows from (1) that

(2) \g(x) - g(y)\ ̂  (C + K(d(x, y)/δ))ω(g; g» , gr, 8)

^ (C + K(d(x, y)lδ)>)ω(g; »„•••, gr, δ)

^ (C + δ~pKΦ(x, y))ω(g; fflf , 0r, δ) .

If eZ(o5, y) ^ <5, then (2) also holds since C ^ 1. Consequently, we have

Iflf - ff(»)lχl ^ ω(ff; fflf , gr, δ){Clx + δ~*KΦ{-, y)) ,

and applying L to both sides of this inequality we get

( 3 ) \L(g) - g(y)L(lx)\ ^ ω(g; gίf , gr, δ)(CL(lx) + δ-*KL{Φ{-} y))) .

On the other hand, there holds

(4) Iff - g(y)lx\ ^ ω(g; gίf • , grf δ)(Clx + δ~'K{Φ{ , yψ*) .

Now we extend L to a positive linear functional on the whole space C(X)
and denote this functional by the same L. Then applying L to both sides
of (4) and using Holder's inequality, we obtain

\L(g) - g(y)L(lχ)\ ^ ω(g;glf ,gr, δ)(CL(lx) + δ"ιK{L{Φ^,y)))1/p(L(lx)γ-^),

which together with (3) implies the claim of the lemma for p > 1. If
p = 1, then (3) is obviously identical with the desired estimate. q.e.d.

We are now in a position to recast Theorem A in a quantitative form
with the rate of convergence.

THEOREM 1. Let U be as in Theorem A and let u be a strictly posi-
tive function in A. Then for all feA and for all aβD,

\\La(f) - U(f)\\ <ί ||//tt|| \\La(u) - U{n)\\

{ ί / r ||l/p\

κH\\flu\\(ύ(u , gu , gn e Σ #"(&) )
\ \ ΐ=i II /

( II r \\y»\\

f\g» • • • . S n ί Σ t f W ) ) ;
!U'=i II //

P^l,e>O,flfu , greG,\\± μ^igl > 0, r = 1, 2, - - \ ,
ll<=i I! )

where
<« = \\CLa(lx) + mm{ε-»Klx, ε

PROOF. Let y be an arbitrary point of X. Then for all feA and
all aeD, we have

\La(f)(y) - U(f)(y)\ ^ \f(y)/u(y)\ \L,(u)(y) - U(u)(y)\

+ {\f(y)/u(y)\ \La(u)(y) - u(y)La(lx)(y)\ + |L.(/)(y) - f{y)La{lx){y)\} .
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Now making use of Lemma with L( ) — La(-)(y), the second term on the
right hand side is majorized by

(PLa(lz)(v) + a(y))(\f(y)/u(y)\ω(u; gl9 --,gr, δ) + ω(f; glf , gn δ)) ,

a n d

\ \ \ ± ± Atf)(fif4)|Γ(Lιr(
i II

a(y) <; mi

Therefore, putting δ = ε||ΣΓ=i
over all y eX we arrive at

\\La(f) - U(f)\\ <ί I

+ K?>ε)(\\f/u\\<

+ ω(f;g1, •••,

which implies the desired result.

REMARK 1. If A contains the set

Fq(G) = {g*; g 6 G, i = 0, 1, 2,

for an even positive integer q, then we have

> 0 and taking the supremum

- U(u)\\

q.e.d.

and so Theorem 1 yields the estimate for \\La(f) — U(f)\\ in terms of the
corresponding quantities for the test system Fq(G).

Concerning the degree of convergence in Theorem B we have the
following:

THEOREM 2. Let T be as in Theorem B. Then for all feA and all
aeD,

{ ( gu • , gr, e||g L.(^(I|L.(/) - T(/)|| ^ ir

p ^ 1, ε > 0 , glf '",greG,

where

(5) O " = C + mmiK/ε", K/ε) .

PROOF. Applying Lemma to L( ) = T( )(y) with any fixed point y of
X, we get

(6) \T(f) - /| ^ ., gr, δ)(Cίx + a) ,
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where

a =

Now let α/r be a positive linear functional on A with ψ(lx) = 1 and denote
an extension of ψ to the whole space C(X) by the same ψ. Applying ψ
to both sides of (6) and using Holder's inequality, we obtain

\Ψ(T(f)) - 5g (C

and

/ j

Take ψ(-) — La(-)(y), where y is an arbitrary fixed point of X. Then,
since LaT = T, we have

\T(f)(y) - La{f)(y)\ <ί (C + M)ω(f; glf , gr, δ) ,

where

M = mm^" p ίL Σ La(μ{p)(T, gt

Thus putting δ = ε\\Σ*ULa(μ{p)(T, g{

over all y sX, we obtain
> 0 and taking the supremum

; flflf

which establishes the desired result. q.e.d.

REMARK 2. If A contains Fq(G) for an even positive integer q and

( 7 ) TV) = fift (flreG,t = 0 f l , 2 , . . . , g - l ) ,

then we have

| S I'.(j"(f)(Γ, fir,))!! ̂  Σ \\La(9!) - T(gϊ)\\ ,
ί=i II ί=i

and so Theorem 2 gives an estimate for \\La(f) — Γ(/)|| in terms of the
corresponding quantities for the test system G9 = {gq; g 6 G}.

In the rest of this section A is assumed to contain Fq(G) for an even
positive integer q. Let T be a positive projection operator on A with
T Φ I\ which satisfies (7) and LaT = ϊ7 for every aeD. Suppose that each
Lα maps A into itself and La(gq) = gq + ζa(T{gq) - gq) for all α e ΰ ,
where {fα} is a net of real numbers with 0 < ζa < 1.

For feB(X) and <5 > 0, we define
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Ψ(f, δ) = ioϊ\c™ω(f; gt> , gn δε ± (T(g!) - gf)\\")
ϊ=l II /

e>0, gu -",greG,

where C(9>e) is given by (5) with p = q.
As a consequence of Theorems 1 and 2, we have the following corollary

which is more convenient for later applications.

COROLLARY 1. Let {ka;aeD} be a net of positive integers and let
Lk

a<* denote the ka-iteration of La for each aeD. Then for all feA and
all aeD,

and
\\LHf) ~ Άf)\\ £ Ψ(f (1 - fβ)V ) .

In [18; Theorem 3], we showed that if \imakaξa = 0, then {Lk

a

a; α e ΰ }
is saturated in A with order 1 — (1 — fα)

fc«, or equivalently, with order
kaξa, and its trivial class coincides with the range of T. Thus the above
corollary may give the optimal estimate for the order of approximation
by Ll«.

3. Applications. Let A be a closed linear subspace of C(X). A
mapping L of A into itself is called a Markov operator on A if it is a
positive linear operator with L(lx) = l z . Let {αα,m; a e D, m e N} be a
family of non-negative real numbers with Σm=o α«,m = 1 for each asD.
For examples of such families, see, for instance, [14] and [16]. Let
{im; meN} be a sequence of non-negative integers and {jm; meN} a se-
quence of positive integers. Let {Sr; 7 e Γ] be a net of Markov operators
on A and {Tm; m ^ 1} a sequence of Markov operators on A. For any
feA, we define

(8) Sβ,r(/) = Σ o β l ^ " ( / ) (aeD, yeΓ)
m=0

and

( 9 ) Tatk(f) = Σ α...Tfc*(/) (α 6 β , ^ D ,
m=0

which converge in A. Let {W(t); t Ξ> 0} be a family of Markov operators
on A such that for each feA, the map t —*W(f)(f) is strongly continuous
on [0, oo). For any feA, we define

(10) C(tλ(f)
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and

(11) Rξfλ{f) = fΓexp(-ft)W(t + X)(f)dt (ft λ ^ 0) ,
Jo

which exist in A.
All the operators given above are Markov operators on A and our

general results obtained in the preceding section are applicable to them.
As illustrations of these general results we restrict ourselves to the fol-
lowing setting:

Let X be a compact convex subset of a real locally convex Hausdorff
vector space E with its dual space E*, and G = {v\x; veE*}, where v\x

denotes the restriction of v to X. Note that Condition (1) holds for
C == K = 1 (see, [11; Lemma 1]). Let T be a positive projection operator
of C{X) onto a closed linear subspace of C(X) containing l x and G (which
is the case where A = C(X) and q = 2).

For applications to Corollary 1 it is convenient to make the following
definition: Let {Pλ;χe Λ} be a family of Markov operators on C(X) and
{xλ; λ e 4 a family of non-negative real numbers. We say that {Pλ} is of
t y p e [ T ; x x ] i f P λ T = Γ a n d Pλ(g2) = g2 + xλ(T(g2) - g2) f o r a l l λ e Λ a n d
all #eG.

Now we first consider the case where E = Rr, the r-dimensional Eu-
clidean space equipped with the metric

ρ(x, y) = maxifo - yt\; i = 1, 2, , r}

for as = (α&i, ίc2, , a5r) and y = (ylf y2, , yr). Let βΛ denote the i-th
coordinate function on X. Then ω(f; elf , er, S) reduces to the usual
modulus of continuity of /, given by

ω(f, δ) = sup{|/(a;) - f(y)\; x,yeX, p(x, y) £ δ}.

In view of Remarks 1 and 2, we have a quantitative version of the
Korovkin type convergence theorem due to Karlin and Ziegler [5; Theorem
1 and Remark 2] for multidimensional case.

Take X = Ir, the unit r-cube, i.e.,

Ir = {fo, , xr)eRr; 0 ^ xt ^ 1, i - 1, 2, . , r)

and let F be the closed linear subspace of C(X) spanned by the set

{ekM2 ehs; k< e {0, 1}, i = 1, 2, . , r) .

Let {Bn\ n ^ 1} be the sequence of Bernstein operators on C{X) given by

(12) Bn{f){x) = ± . - ΣΛfci/Λ, , fcr/*) Π
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for feC(X) and x = (xίf x2, •• , a ; r ) e l (see, e.g., [8]). It can be verified
that Bγ is a positive projection operator of C(X) onto F and {Bn} is of
type [J^; l/ri\. Consequently, if Γ = iV\{0}, Sr = Bγ and Tm = Bm, then
{SaJ} and {Ta>k} are of types [B,; 1 - xα J] and [Bλ; 1 - yαιfc], respectively,
where

x«j = Σ α«fW(l - l/^) ί m and ya%k = Σ αα,m(l
m=0 m=0

and so Corollary 1 can be applied to these operators. In particular, con-
cerning the order of approximation by iterations of the Bernstein operators
we have the following estimates: For all feC(X) and all n}zΊ,

(13) \\Bγn{f) - f\\ £ (1 + min{r/4, r1-

^ (1 + min{r/4, r1

and

(14) \\B)«n{f) - Bx{f)\\ £ (1 + min{r/4, r1/2/2})ω(/, (1 - 1/iJ *) .

Therefore, on account of (13) and (14), we have lim*-*, ijjn = 0 if and
only if limn_co \\B^{f) — f\\ = 0 for every /eC(/ r), and linv+oo iw/in = +°°
if and only if lim^oo ||J?};(/) — i?i(/)|| = 0 for every/eC(/ r). When r = 1
and jn = n for all ^ ^ 1, this result reduces to that of Kelisky and Rivlin
[6] (cf. [5], [9], [10]). For extensive approximation properties by iterations
of positive linear operators, we refer to [18]. If {in} = {1}, then we can
sharpen (13) further as

\\Bάn(f) - f\\ ^ (1 + min{3r/16, (3r/16)1/4})ω(/, (l/in)
1/2) ,

by taking the fourth absolute moment and making use of Theorem 1 (cf.
[14], [15], [16], where quantitative Korovkin type estimates can be treated
in the setting of an arbitrary compact metric space).

Statements analogous to the above-mentioned results may be derived
for the case where Bn are the Bernstein operators on C(Δr) with the
standard r-simplex

Δr = {(a?lf , xr)eRr; xt ^ 0, i = 1, 2, . , r, x, + + xr £ 1} ,

given by

(15) Bn(f)(x) = ^ ^ Σ + f c ^f(kjnf , Kin)

V Ύi T I ((tP f ^* Y If Y \( Ύl —— IC — If —— — If \ Y ^/\ 10 i / \\»*'i i fvo ivγ \ )\'v A/1 Λ/o I^T) /

y ' y l^y* 2 . . . /y* ί " ^ 1 — Ύ — . . . — - Ύ ^ ^ fcj_~~ * A;^.

for feC(Jr) and &•= ( ^ #2, •••, x r ) e z ί r (see, e.g., [8]). These can be ob-

tained in t h e following very general set t ing.
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Again let X be a compact convex subset of a real locally convex
Hausdorff vector space E and G = {v\x; v e E*}. Let A(X) denote the
space of all real-valued continuous affine functions on X. If L is a Markov
operator on C(X), then for a point xeX, a Radon probability measure
vx on X is called an L(A(X))-representing measure for x if

Uf){x) = \ fdvx

for every feA(X). Let M = {Mn; n ^ 1} be a sequence of Markov oper-
ators on C(X), vίJίl = {y M ; ίC6l,w^l} a family of Radon probability
measures on X such that vXt7l is an Mn(A(X))-representing measure for
x, P— (pnj)n,j>i an infinite lower triangular stochastic matrix, Y= {yx; xeX}
a family of points of X, and p = {pn; n^l} a sequence of functions mapping
X into [0, 1]. Then we define

where εt denotes the Dirac measure at t, and also define the mapping

πn>P: Xn->X by (x19 x2, , xn) -* Σ Pnύ%ά

For a function feC(X), the n-th Bernstein-Lototsky-Schnabl function of

f on X with respect to v{M), P, Y and p is defined by

Bn{f){x) = B^p^γ\f){x) = \ f°πntPd (g) vif/̂

([13], cf. [3], [19]).
Now take

im = l (m = 0, 1, 2, . . . ) , Γm = 5 m (m = l, 2, . . . )

and let {Γαιfc; α e ΰ , Λ ̂  1} be the family of operators given by (9). Then
we have the following:

THEOREM 3. Suppose that Mn(g) = g for all n ^ 1 and all g e A(X).
he following statements hold:

(i) If Vx — % for every xeX, then for all feC(X), aeD and all

(16) \\Tβ.h(f) - f\\ £ C.,k

where

ζa>k(f) = inf{(l + minίε"1, ε~2})ω(f; gu , firr, e||λβi*(fflf , gr)\\1/2)

e > 0, glf , gr e G, \\haΛ(glf , ffr)|| > 0, r = 1, 2, . .} ,
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KM, ••-, βr)(.χ) = Σaa,mΣPl.nPtix)Σ (v*M) - ri
m=0 i£l n=l

(ii) // pn = lx for all n^l, then (16) holds for

Λ«,*(ffi, , flrr)(«) - Σ αβfW Σ Pjm** Σ (V*M) ~ Λ(*0) (* € X) .
0 iai n l

PROOF. Assume that yx = x for every xeX. Then, by [13; Lemma
4], it can be seen that for all a e D, k ^ 1 and all g e G,

TaΛ(lx) = l x , Γβifc(flr) = g

and

- Tatk(g*)(x) - jf (ίB)

= Σ aatm Σ P
0 i^i

Therefore, the desired estimate (16) follows from Theorem 1 with h =
u = lx. The proof of Part (ii) is similar. q.e.d.

COROLLARY 2. Let M be as in Theorem 3. Then the following state-
ments hold:

(i) If Vx = % for every xeX, then for all feC(X) and all n^l,

(17) \\Bn(f) - /II ^ ωn(f) ,

where

ωn(f) = inf{(l + minis"1, ε"2})ω(/; 0lf , gr, εδn(glf , gr))

e>O,flr l f '"99reGfdn(glf , flrr) > 0, r = 1, 2, . . . } ,

*n(ffi, , ffr) = ( S U P | Σ PiiΛ(*) Σ (v.,i(ffϊ) - ffί(*));

(ii) // ρn = l x /or αZZ w ^ 1, ίfeen (17) holds for

δn(glf , <7r) = ( S U P J Σ PlyΣ (

This corollary gives a quantitative version of the result ([cf. 19; Satz
1]) of Grossman [3] and it estimates the degree of strong convergence of
{Bn} to / on C(X).

From now on we suppose that

Mn = I ( n ^ l ) , . y. = x (xeX)

Pn = lχ (n ^ 1) , and yx>n = yx ( x e l , w ^ l ) ,
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where vx is a representing measure for x (i.e., an J(A(X))-representing
measure for x) such that the map

)X

belongs to A(X) for every feC(X). Thus each Bn maps C(X) into itself
and Bx is a positive projection operator of C(X) onto A{X) (cf. [3; Propo-
sition], [13; Remark 7]).

For any feB(X) and δ > 0, we define

Ω(J, 8) = inf{(l + mints-1, ε-2})ω(f; glf , </r, &||r(ft, , gr)\n

ε > 0 , gl9 "'9greGf \\τ(g19 •• ,flrr)|| > 0, r = 1, 2, •},

where

τ(g19 , gr)(χ) = Σ(v.(flri) - *!(*)) ( » e l ) .

Now take Tm = Bm (m = 1, 2, •), and let {Γαjfc; α e D, fc ̂  1} be the
family of operators given by (9). Then we have the following:

THEOREM 4. Let {mα; a 6 D} be a net of positive integers. Then for
all feC(X), aeD and all k ^ 1,

II Γ;.Ϊ(/) - f\\ ^

and

where

PROOF. By induction on the degree m of iteration of Bn9 it can be
verified that {B%} is of type [Bx\ 1 - (1 - Σ ϋ i P W " ] (Λ, m = 1, 2, •)•
Therefore, {Γα>fc} is of type [5X; 1 — xayk] and so the desired result follows
from Corollary 1. q.e.d.

COROLLARY 3. For all feC(X) and all neN,

f) - f\\ ̂  Ω(f, (1 - (1 - Σ Pί.J' )171) ^ Ω(f, «. Σ PjmJ1/2) ,

From this result we conclude that if lim^oo Σm^i V)nm = 0, then
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lim iΛ Σ # „ . = 0 if and only if lim ||Bfc(/) - / | | = 0

for all/eC(X), and

lim i, Σ ί>U = + °° if and only if lim ||5}:(/) - A(/)ll = 0
l

for all/e C(X). Also, by [18; Theorem 3(b)] we see that if limn-ooΣ»aiP/n» =
0, then {B};} is saturated in C(X) with order 1 - (1 - Σm^ Pϊn J S or
equivalently, with order i»Σn* îPinm> a n d its trivial class coincides with
A(X) (cf. [18; Theorem 4]). Therefore the first part of Corollary 3 seems
to be useful for the characterization of the saturation class of {J?Jj} by
structural properties on the functions /.

If L is a Markov operator on C(X), then for any feC(X), we define

σmi<(L; /) = (l/(n + 1)) Σ L™+ί(f) (n, i e N)

and

AM(L; /) = (1 - t) Σ ί-L«+'(/) (0 < t < 1, i e iV) ,
m=0

which is a particular case of (8). Note that if {Sr} is of type [Bj xr],
then {SaJ} is of type [B,; 1 - Σm=0 αα>m(l - »r)*"] Thus, in view of this
fact, making use of Corollary 1 we have the following quantitative ergodic
type theorem for iterations of the discrete Cesaro and Abel means of the
Bernstein-Lototsky-Schnabl operators.

THEOREM 5. Let m, j *> 1 be fixed, and set β = β{m, j) = (1 — Σ ^ i 3>ϊn)i

Then the following statements hold:
(i) Let {kn;neN} be a sequence of positive integers. Then for all

feC(X), neN and all ieN,

\\σί%BL; f) - BXOH £ Ω(f, χΛ>t) ,

where

(18) xnΛ = (^(1 - βn+i)/((l - β)(n + 1)))»-̂  .

(ii) Lei {w*; 0 < t < 1} 6β a family of positive integers. Then for
all feC(X), te(0, 1) and all ieN,

WAUBL; f) - W)ll ^ Ω(f, ytti),

where

(19) ytfi = O3'(l - ί)/(l - tβ))^ .

In particular, for the sequence {Bn; n ^ 1} of the Bernstein operators
on C(Δr) given by (15) we have:
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COROLLARY 4. Let m, j ^ 1 be fixed. Let xnji and ytΛ be given by
(18) and (19) with β = β(m, j) = (1 — l/ra)}\ respectively. Then for all
f eC(Ar), n, ieN and all te(0,1),

\\σl%BL; / ) - , (β4 - ί

min{r/4, r1/2/2})co(/,

and

L; f) - Σ (e, - ej)
ϊ=l

2/ί,i)

1/2

^ (1 + min{r/4, r

We also note that the corresponding result of Corollary 4 holds for
the Bernstein operators on C(/r) given by (12).

Finally, we restrict ourselves to the case where P = {Vnj)n,ό^ι is the
arithmetic Toeplitz matrix, i.e., pnj = 1/n for n ^ 1, 1 ^ j ^ n, and pnj = 0
otherwise. In [12] we showed that there exists a unique strongly con-
tinuous semigroup {S(t); t^O} of Markov operators on C(X) such that
for every feC(X) and every sequence {kn} of positive integers with

^oo kjn = ί,

lim ||BW/) - S(ί)(/)ίl = 0

and

lim 1)) Σ = 0.

whenever t 2: 0.
Now take W(ί) = S(ί) (ί ^ 0) and let {Cί>λ; ς > 0, λ ^ 0} and {2ίefi; f, λ ^ 0}

be the families of operators defined by (10) and (11), respectively. Then
we have the following quantitative ergodic type theorem for iterations
of continuous Cesaro and Abel means of the semigroup {S(t)}.

THEOREM 6. Let {mξ; ζ > 0} be a family of positive integers. Then
for all feC(X), ξ>0 and all λ ^ 0,

WCΐMf) - #i(/)ll ^ Ω(f, exp(-λm f/2)((l -

and

type

\\R7,ί(f) - Si(/)ll ^ Ω(f, exp(-λm</2)(f/(£ + 1))^/2) .

PROOF. From the proof of [12; Theorem 4], {S(t)} is of
[B,; 1 - . e x p ( - ί ) ] . Therefore, {Cί>;} and {Rξ>x} are of types [B,; 1 -
exp(—f))exp(—λ)] and [2?x; 1 — (ζ/(ζ + l))exp(—λ)], respectively. Thus the
desired result follows from Corollary 1. q.e.d.
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Let {mξ; ζ > 0} be a family of positive integers. Then, by [18; Theo-
rem 3(b)], we have the following result: If lim^+0 we(£ — 1 + exp(—ξ))/ξ = 0,
then {Cli} is saturated in C(X) with order 1 - ((1 - exp(-ξ))/ξ)m*, or
equivalently, with order mξ(ξ — 1 + exp(—£))/£, and its trivial class coin-
cides with A(X). Also, if l i m ^ mξ/(ζ + 1) = 0, then {iϋfj} is saturated in
C(X) with order 1 - (ξ/(ζ + l))Wf, or equivalently, with order mξ/(ξ + 1),
and its trivial class coincides with A(X). Concerning the direct estimates
of the degree of approximation for these processes we have, by Corollary
1, the following:

THEOREM 7. Let {mξ; ξ > 0} be a family of positive integers. Then
for all feC(X) and all ξ>0,

||CΓj(/) - f\\ ^ Ω(f, (1 - (d - exv(-ζ))/ξ)mζY/2)
<ί Ω(f, (mξ(ζ - 1 + exp(-ξ))/ί)1/2) ^ Ω{f, (me5)1/2)

and

\\R7,l(f) ~ f\\ ^ Ω(f, (1 - (f/(f + l))m01/2) ^ Ω(f, (mξ/(ξ + 1))1/2) .

REMARK 3. Let u > 0 be fixed. Then the following statements hold:
(i) Let {kn;neN} be a sequence of positive integers. Then for all

feC(X), tieiVand all ieN,

ll<£*(S(i0; /) - Si(/)ll ^ Ω(f, «.,,),

where

α;n>ί = exp(-mfcn/2)((l - exp(-ie(n + 1)))/((1 - exp(-iθ)(n + l)))"n/2

(ii) Let {̂ ίj 0 < t < 1} be a family of positive integers. Then for
all fe C(X), t e (0, 1) and all i e N,

\\AZ(S(u); f) - Bx{f)\\ ^ Ω(f, ytfί) ,

where

Consequently, for {fcn} = {nt} = {mξ} = {1}, Theorems 5 and 6 and Re-
mark 3 give quantitative versions of [18; Theorem 5] and they enable us
to estimate the rate of convergence.

REMARK 4. Let X be a compact connected Hausdorίf abelian group
and let G be an independent subset of the character group of X. Then,
under the setting of complex-valued functions, Condition (1) holds for
C = K = π (see, [1; Lemma 3]). Thus it should be possible to apply our
general results (which are valid for the case of complex-valued functions)
to this situation and we are able to derive a sharp improvement of the
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results of Bloom and Sussich [1]. Consequently, we have quantitative
estimates for the degree of approximation by various positive convolution
operators on C(Tr), where Tr is the r-dimensional torus. We omit the
details.

We also note that results analogous to those of this paper is obtained
for approximation processes in the sense of the author [13], whose results
can be actually improved by means of the higher order moments. As
illustrations of general results in this direction, for instance, concerning
the degree of almost convergence (i^-summability) (in the sense of Lorentz
[7]) of {Bnn; n ^ 1} with a sequence {kn} of positive integers, we have the
following estimates for all feC(X) and all n^l:

supf||(lM)n +^BHf) ~ / ,meN\ £Ω(f,xn),
Ul i=m )

where

xn = (supjα/n)" ΣΓ'd ~ (1 - VΦY, m e N\T
\ I i=m ) I

( ( n+m-l \ \ 1/2

sup Ul/w) Σ kji'f meN\) .
( i=m ) /

In particular, if kn — 1 for all n ^ 1, then

( ( n+m-l \ \ 1/2

supj(lM) Σ, (l/i);meiV[)

^ ((7 + log(n + 1))M)1/2,

where 7 = 0.5772156649015328- •• is Euler's constant.
sup] 1(1/n) Σ BHf) — Bi(f)\\'f m 6 N[ ^ Ω(f, yn) ,

( I ϊ = m I! j

where

yn = (supjα/wΓ^d - l/i)ki; m e N\J2 .
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