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Abstract. We study the differential geometry of codimension-one to-
tally geodesic foliations admitting Killing field and as applications we prove,
among others, that any Killing field preserves a codimension-one totally
geodesic foliation of a manifold of dimension 2 or 3, under certain topological
conditions on the leaves.

Introduction. In 1980 Johnson-Witt (see [6]) proved that any Killing
field preserves a codimension-one totally geodesic foliation by compact
leaves. In 1983 Oshikiri [7] proved a similar result when the manifold
is compact and recently Oshikiri [9] has generalized this result to Killing
fields with bounded length.

In this paper we shall prove, in §3, that any Killing field preserves
a geodesic flow on a complete Riemannian 2-manifold, if there is at least
one compact leaf or there is some non-closed leaf (non-closed as subspace).
These results are based on a study of the relative topology of the leaves
of such a foliation, developped in §2 and also in § 3.

§4 is devoted to the study of codimension-one totally geodesic foli-
ations; we give another proof of Oshikiri’s result and establish some
results which are used in §5, where is proved that any Killing field
preserves a codimension-one totally geodesic foliation on a 3-manifold if
there is at least one compact leaf.

The author wishes to thank Professor G.-I. Oshikiri for his useful
comments on this work.

It is a pleasure to thank the referee for his comments which led to
improvements in the exposition.

1. Preliminaries. This section is concerned with the study of some
properties of complete Riemannian manifolds (M, g) with a codimension-
one totally geodesic foliation &~

We recall (see [1] or [7]), that if (7, ) denotes the universal covering
of M and @ the canonical lifting of &2, then M is isometric to a trivially
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foliated Riemannian manifold I x R, where L is the universal covering
of any leaf of & and the metric is

g = ds% + fidt*.

Here f is a smooth positive function on I and ds% is the metric on
L, induced by any inclusion v,

v:Lo>M=LxR, 2—(,t,)

and dt* is the canonical metric on R.

We remark that any deck-transformation preserves <7 and our goal
in this paper will be to prove that, under suitable hypothesis, any Killing
field X preserves . and we shall do so by proving that the Killing field
X on I, r-related to X, preserves &>, Thus we begin studying some
properties of the Killing fields on A7.

All the manifolds considered in this paper will be connected and com-
plete. We work in the C~-category.

PROPOSITION 1.1. Any Killing field X on M, is of the form Y + 0,
where

(i) Y is a Killing field on Lxt, with respect to ds;

(ii) Y(f) = —(af) (" denotes the derivation with respect to t);

(iii) For any vector field T, tangent to &, with [T, 0,] =0, we have
T(3)f* = 9(T, [Y, 3.]).

ProoF. Let T, T; be two orthonormal vector fields tangent to Z,
with [T, 0] = [T}, 3] = 0. Then from (Ly.4,(9)(T, T;) = 0 we obtain (i).

The same argument applied to g((1/f)o, (1/f)d,) and to g((1/f)a,, T,)
proves (ii) and (iii). Note that ¢([Y, o,], 0.) = 0.

PROPOSITION 1.2. On M any Killing field preserving &2 can be ex-
pressed as Y + ¢0,, verifying (i), (ii) and (iii) of Proposition 1.1 and
either

(iv) T(g¢) = 0, for all T tangent to Z, or

iv) [Y,a]=0.

Proor. If Y + ¢0, preserves 2, taking any T tangent to <2, with
[T, 0] =0, we know that [Y + ¢0,, T] must be tangent to &, 80 T(g) =0
and from (iii) this is equivalent to [Y, 0,] = 0.

From (iv’) of Proposmon 1.2 we see that any Killing field orthogonal

to & preserves & and the same is true on (M, 9, &¥). Furthermore it
is well-known that a codimension-one foliation which admits an orthogonal
Killing field must be totally geodesic (see for instance [2]).
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Now we study briefly such foliations.

ProposITION 1.8. If a Killing field preserving a codimension-one
totally geodesic foliation & wvanishes at some point, then it is tangen
to &£ everywhere. '

PROOF. We consider the Killing field X = Y + 4d,, induced on the
universal covering 1. Let (I, 0) be a point on MM, where X vanishes.
Thus Y, ., = 0. Since [Y, 9,] =0, Y vanishes along {(/,, t)},cr, hence from
(ii) of Proposition 1.1 we have 0 = —(3f)4,,, i.e., (¢f) remains constant
along (I, t). Since ¢, = 0, we have ¢, ,, = 0, for all teR.

We remark that any Killing field orthogonal to & everywhere never

vanishes, because otherwise this vector field should be tangent to .&©
everywhere, a contradiction. So ¢ # 0 for such a vector field.

THEOREM 1.1. Let (M, g, &) be a simply connected Riemannian mani-
fold with a codimension-one foliation such that there exists a Killing field
X, orthogonal to & everywhere. Then M is a warped product L X yl,
for a function  defined on L, where I is either an open interval or a
half-line or R.

PrOOF. We know that & is totally geodesic and M = LxR, g =
g: + f'dt*. From (ii) of Proposition 1.1, we have 0 = —(4f)" so (¢f) is
a function on L. Set 4 = ¢f. We get f = /¢ (we recall that ¢ # 0).
Because of (iii) of Proposition 1.1, we have T(g)f* = 0 for any T tangent
to & s0 ¢ = ¢(t). In a new parametrization s of R with ds = (1/¢)dt,
the Riemannian metric reads as g; + «*ds®.

In general for a Riemannian manifold (M, g, &) with a codimension-
one foliation one can obtain by well-known arguments, a k-fold covering
(M, g, &) of M, where <7 is the induced foliation, such that M can be
oriented and & transversally oriented. % can be 1 (trivial case), 2 or 4.

In §2 we shall be interested in proving, under appropriate hypothesis,
that the closure of any leaf contains some compact leaf. Since k =1, 2 or
4, as above, it suffices to do so on M.

2. Closure of a leaf. In this section we state some results concerning
the closure of any leaf of a codimension-one totally geodesic foliation.
These results will be used in §3 and §4.

Due to the well-known facts pointed out at the end of §1, we may
assume that the manifold is orientable and the foliation transversally
orientable.

ProPOSITION 2.1 (see [5, p. 18], for a more general result). The
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closure of any leaf L of & is saturated, i.e., is the union of a certain
number of leaves.

PROOF. Let ge L\ L. Then ¢ lies in another leaf L,, We know
that there is an open neighborhood U, of ¢, which is isometric to a trivially
foliated Riemannian manifold V,x(—e¢, ¢), where V, is an open neigh-
borhood of ¢ in L, and the metric is of the from dsi, + f'dt* for a smooth
positive function f on V,x(—g¢, ¢).

Since q e L, the connected component of L,N U, containing q also lies
in L, so LNL, is an open set in L,. Since it is obviously closed, we
have LOL,, hence

L=UL,.

seT

In the next section we shall apply this result in the following form:
If a point ¢ge L\ L, then the leaf along ¢ also lies in L\ L.

Let p, and p, be the natural projections from M = I, x R onto I and
R respectively.

LEMMA 2.1. For any leaf L, of &, p(n~(L,)) is a closed subset of R.
PROOF. p;(py(x(L,))) = n~%(L,) is closed and p, is a quotient map.

PROPOSITION 2.2. If ¥ has at least one compact leaf, the closure of
any leaf contains some compact leaf.

PROOF. Suppose that L, is a non-compact leaf such that L, does not
contain any compact leaf. Let I x» e z'(L,) and suppose that (L x0)= L,
is compact.

50! /5<f><fo>
/ q s /Zx o

o

7
/ bt o) /Exo

FIGURE 1
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Without loss of generality we can assume r > 0. Recall that we are
assuming M oriented and & transversally oriented.

Let C = p,(z"%(L,)) N[0, 7], which is a compact subset of [0, »]. Since
0¢C, set r, = inf C, which obviously belongs to C, and (L x r,) is a non-
compact leaf. Let § be any deck-transformation such that §(Lx0) = Lx0
(recall that L, is compact) and 8(Lxr,) = Lxr,. Such a deck-transfor-
mation exists because if not z(Lx7,) should be compact (see Figure 1).
Let 7 be the orthogonal segment to <2 from p to Lxr,. Since S(Lxr,) +
L xr,and r, = inf C, we get p,(5(q)) > r,. Now applying 7' to §(7) from
o(p) to s, we see by the same argument that p,(67'(s)) < r,, which is
absurd.

3. Preservation of geodesic flows. In this section (M, g) denotes a
two-dimensional complete Riemannian manifold and & a geodesic flow.
We know that the universal covering (I, #) of M, is trivially foliated as
M = Rx R and the Riemannian metric can be written as

g = dax* + f(x, t)de?,
where f is a smooth positive function on R x R.
Any Killing field on I is of the form Y + ¢9,, where Y = a(t)d, is a
Killing field on (R, dx?).
From (iii) of Proposition 1.1, we know that
(A) 0.(¢)f* = —a’ (' denotes the derivation with respect to ¢t).

From now on we suppose that X is a Killing field on M and X =
a(t)d, + ¢0, is the Killing field on M z-related to X.

ProroSITION 8.1. If n(RXxr) is a compact leaf, then o'(r) =0 and
¢ remains constant on RXr.

ProOF. We can suppose r» = 0. Since (R x0) is compact, there exists
a deck-transformation 6 such that 6(Rx0) = Rx0 and the subgroup of
deck-transformations preserving R X0 admits 6 as a generator.

Let (x,, 0) = 5(0, 0). Since § is an isometry we have:

5(‘%)(3,,,0) = (az)(zo,o)
8(0) wo0 = (f(0, 0)/f(2,, 0))(00) ey -
Since X is o-invariant, at (x,, 0) we have:
o(ad, + ¢0,) = ad, + ¢(f(0, 0)/f(x., 0))d, .
Thus
B) #(%,, 0).f (2o 0) = 4(0, 0)£(0, 0) .
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Since Y = o, and (1/f)o, are /-invariant and since [Y, (1//)3,] = Y(1/1)o,
—(1/f)a’'a,, we may apply d to [Y, (1/f)d,] and we see that if a’(0)# 0, then
£, 0) = f(x,, 0), so ¢(x,, 0) = ¢(0, 0). But from (A) we get (3,4)f* = —a’
80 0,9 has constant sign along Rx0 and ¢(x, 0) = ¢(0, 0).

Hence a'(0) = 0 and a,(¢) = 0.

Now suppose that L, = 7(Rx0) is non-compact. We know that L,
is the union of some leaves. Let L.cL, and (R xr) = L,, 7(Rx0) = L,,
r > 0.

LEmMA 3.1. If L,cL,, then o'(r) =0 and further if L,ZL,, then
L, 18 compact.

PrROOF. Each point of Rx», for instance (0, r), is the limit of a
sequence (0, r,), with r, T » and Rxr, = §,(R x0), where each §, is a deck-
transformation.

0.(0, 0) = (x,, r.) and as in Proposition 3.1 we have

5n(az)(zn,1n) = (ax)(xn,rn) and
an(at)(xn,rn) = (f(or 0)/f(xm 'rn))(at)(zn,rn) .

Since Y is §,-preserved we see that
a(0) = a(r,)
(@ ) (@0 1) = 6(0, 0)£(0, 0) .

Since a is C* with respect to £, we have a'(r) = -+ = a™(r) = -+ = 0.

If L,z L, we continue considering Rx0 and Rxr on I, z-related
to L, and L, respectively (r» > 0) such that there exists a sequence of
deck-transformations ¢,, verifying »,(5,(Rx0)) 1 r.

Since L,¢ L,, let r, = inf{p,(x«L,) N[0, 71}, r.€p(z~(L,)) and L, C
L.cL,, see Figure 2.

By considering the above sequence §,, one sees immediately that L,
lies in the closure of any leaf n(Rxs), 0 <s < 7, so w(R X7, can not
be compact, unless », = . No one leaf Rxs, 0 <s < r, can be of the
form 6(R x0), for some deck-transformation g, because otherwise p,(67*(R X
r,)) €(0, r,), which is absurd. Hence any leaf 6(R x0) with p,(6(Rx0))e
0, r), verifies p,(6(R % 0)) € (1, 7).

Since any transversal through any point of RXxr intersects leaves
of the form o(Rxr), with p belonging to the group of deck-transforma-
tions, one sees that L, is not a proper leaf (see [4, p. 45]). Since we
are in the C>-category we have that L, is locally dense, i.e., there is a
transversal ¢, through any point of Rx» such that ¢,NL, is a closed
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RXr

0z (RX0)

RXr,

RX0

FIGURE 2

interval. But as p,(0,(Rx0))1r we have L,eL,, which is absurd, so
‘mecessarily », = r and L, is compact.

THEOREM 8.1. Let (M, g) be a compact Riemannian two-manifold
with a geodesic flow . Then any Killing field preserves .

THEOREM 3.2. Let (M, g) be a complete Riemannian two-manifold
with a geodesic flow & such that there exists at least one compact leaf.
'Then any Killing field preserves 2.

PROOF OF THEOREM 3.1. As above, if X is a Killing field on M, X =
Y + 40, denotes the Killing field on I, 7-related to X, where ¥ = a(t)3,.

We show o = 0 everywhere so [Y, 3] = 0. Since X preserves &, X
preserves .

Let L, be any leaf, and suppose n(Rx0) = L,. If L, is compact we
know that a’(0) =0, so we may assume that L, is not compact. Let
L,cL, If L,cL,, the argument of Lemma 3.1 shows that a’(0)=0, so from
now on we assume that L,#L,, and then we know that L, is compact.
Let » be such that n(Rxr) = L,. There exists a sequence of deck-trans-
formations ¢, such that p,(6,(Rx0)) 1 r. By Lemma 3.1, we have §,(Rx7r) =
Rxr. Since L, is compact, we may assume that §, = o, with 6 = 4,.

Now one sees immediately that if 6(Rx0) = Rxr,, for any t€|0, r,),
then L,cr(Rxt). Since a is the same for any two leaves on <, which
are rw-related, and a(r) = lima(t) (as t —r), we have a(r) = a(t) for all
te[0, r,), so a is locally constant and a'(0) = 0.

PrOOF OF THEOREM 38.2. As above we shall prove that ' = 0. Let
L, be any leaf and suppose that it is non-compact. Let n(RXx0) = L,,
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we know from Proposition 2.2 that there is a compact leaf L.cL,. Let
n(RXr)= L,. By the same argument as in Theorem 3.1 we see that
a = 0.

Finally we give sufficient conditions not related to compactness, which
ensure the preservation of geodesic flows. These conditions refer to some
topological properties of the leaves and along this study we shall obtain
some interesting properties of the topology of the leaves.

From now on we suppose that (M, g, &) is a complete Riemannian
two-manifold, with a geodesic flow . and furthermore we suppose that
there is not any compact leaf.

As a corollary to Lemma 3.1, we have:

LEMMA 8.2. If L, = Ujer, Lj, then f,-:)Li Jor any jert,.

From this lemma we see that for any two leaves L,, L;, their closures
L,, L; coincide or are disjoint, because if L,cL,NL,, then L, = L, = L,.
According to [4], the closure of any leaf is a minimal set.

From now on whenever we say that a leaf is closed, it means that
it is closed as a subspace (L = L), but non-compact, because from now
on we are supposing that there is not any compact leaf.

LEMMA 3.3. If there is some non-closed leaf, them any leaf is non-
closed.

PrROOF. Let L, be non-closed. Then L, = U,.., L,, with #r, > 1. Sup-
pose that L, is a closed leaf. Note that L, #L, by Lemma 3.2.

On I one can find leaves, Rx1,, Rx0, Rxk, m-related to L,, L,, L,,
respectively, with L, CL, such that there is not any leaf z-related to
L, between Rx1, and Rxk, Furthermore we can find a sequence of
deck-transformations ¢, with p,(c.(Rx0)) | k,. See Figure 3.

Since L,, is non-compact, ¢,(7) must be as deseribed in Figure 8 and

RXi,

4 &, (7)

RX0
&£, (RX0)

RXk,

FIGURE 3
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applying ¢;’, we see that &;'(R x1,) lies between R x1, and R Xxk,, which
is absurd.

THEOREM 3.3. Let (M, g, &) be a complete non-compact Riemannian
two-manifold with a geodesic flow & but without compact leavgs. If
there is some mon-closed leaf, then any leaf s dense on M, i.e., L = M.

Proor. If L, &M, we can find L; with L,nL; = @. On M one can
find Rx1%, RxJj, Rxj', m-related to L, L; L;, respectively, such that
L;=L; with ¢ >j > j and without any leaf r-related neither to any
leaf of L, nor to any leaf of L, between Rx¢ and Rxj. Since there is
a sequence of deck-transformations ¢, with (e, (R xJ")) 14, we obtain a
contradiction as in Lemma 3.3.

Finally we observe that in the conditions of Theorem 3.3, any Killing
field X on M, induces, as is well known, X on I, with X = a(t)d, + ¢0,
and as no one leaf is closed we deduce from the proofs of Theorem
3.1 and Theorem 3.2, that o’ = 0 everywhere, so we have:

THEOREM 3.4. Let (M, g, &) be a complete non-compact Riemannian
two-manifold with a geodesic flow & but without compact leaves. If there
18 some mnon-closed leaf, then any Killing field preserves &

For complete non-compact Riemannian two-manifolds, it remains only
to consider the case whenever all the leaves are closed, but in this case
it is possible to have Killing fields not preserving the foliation. For in-
stance on R? = RX R consider the standard flat metric and the foliation
{R X t},.r, any non-parallel Killing field does not preserve this foliation.

4, Codimension-one foliations. In this section (M, g, &) denotes a
complete Riemannian n-manifold, with a codimension-one totally geodesic
foliation 2. We know that the universal covering (M, z) of M, is trivially
foliated as L x R, where I is the universal covering of any leaf of &©
and the metric is of the form ds% + f*dt’.

Any Killing field X on I can be written as Y + $0,, where Y and ¢
satisfy the conditions of Proposition 1.1. In particular from (iii) of Propo-

sition 1.1, for any T tangent to .&© with [T, 0,] =0, we get
(©) T(¢)f* = 9(T, [Y, 4. -

We now prove that any Killing field preserves & if M is compact.
At the same time we obtain some technical results which will be used
in §5.

LEMMA 4.1. For any Killing field X on I, [Y, 3,] is tangent to &
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everywhere and is a Killing field on each leaf.

PROOF. Locally Y = a'3,,, for a local frame {z,, ---, z,} in L. [Y,d,]=
—a'%3,, which is tangent to £ Ly ,dst = Ly(Ls(ds})) — La(Ly(ds?)),
which is zero because ds: does not depend on t and Y is a Killing field
on (L, ds).

From now on X denotes a Killing field on M and X the Killing field
on I, m-related to X. Under certain hypothesis we shall prove that X
preserves . by proving that [Y, 0,] = 0, which amounts (see Proposition
1.2) to proving that X preserves &

Recall that we may assume & to be transversally oriented, so the
field [Y, (1/f)0,] can be projected to M. Since

[Y, /e = YA/, + A/NIY, a.]

and (1/1)[Y, 3,] is the < -tangent component of [Y, (1//)3,], we see that
1/1)Y, 0,] can be projected to M.

PROPOSITION 4.1. If [Y, d,] vanishes at some point pe M, then it
vanishes along the leaf through p.

Proor. Let T, be any vector in p tangent to <2 and let ¥(¢) be the
geodesic verifying v(0) = p, 7(0) =T,. Let T =1. _

One can extend T to a suitable neighborhood in such a way that
[T, 3,] = 0. Since [Y, 9,] is a Killing field on each leaf of &, it is a Jacobi
field along 7. It is known that ¥(g9(7, [Y, 0.])) = 0 and we have g(7(0),
[Y, 0.](p)) = 0. Thus ¢(T, [Y, 3,]) = 0 along v and hence T(g) = 0 along ¥
by (C).

Since T, was arbitrary we have proved that ¢ is constant on this
leaf, so at any point of this leaf we have T(¢)f* = 0 = ¢g(T, [Y, o,]). Hence
[Y, 0,] = 0 on this leaf.

Now looking at the leaves where [Y, 0,] # 0, we see that ¢ verifies
d¢ # 0. Since [Y, 0,] is a Killing field and so a Jacobi field, the level
hypersurfaces of ¢ are totally geodesic and the Killing field (on the leaf)
[Y, 0,] is orthogonal to them. Because of Theorem 1.1 any leaf, where
[Y, 3]0, is a warped product Sx wI. If s is the canonical parameter
of I, then [Y, 0,] = ko, with k& constant along the leaf.

LEMMA 4.2. Let 5 be any deck-transformation of (M, ). For any
p of M, we have

S()g(p) = f(a(p)p(0(D)) .
PrOOF. Since X can be projected to M, we have §(X) = X. Since



TOTALLY GEODESIC FOLIATIONS 545

8 preserves .&© we see that oY) =Y and 06(¢0,) = ¢0,, We are done,
since ¢ is an isometry.

THEOREM 4.1. Let (M, g, &) be a compact Riemannian manifold
with a codimension-one totally geodesic foliation & Any Killing field
preserves F.

PROOF. We shall prove that X preserves &

Let p be a point of Lxt=SxI We may assume p = (¥, 0) and
é(p) = 0; if ¢ < 0 at all the points of L xt, replace X by —X. Let be
the geodesic with v(0) = p, 7(0) =[Y, 9,] and let » be the parameter of
Y. From (C) we have '

(D) (0g/ou) f* = 9(7, [Y, 3.]) .

Since [Y, 9,] is a Killing field on Lxt, we know that g(¥, [Y, d,])
remains constant along v and equal to ||[Y, 0,)||l?o = k. Since (d¢/ou) =
1/Hg(v, [Y, 0.]) along v, we get (dg/ou) = 1/fHh = 0.

Then suppose there exists some sequence %, — ~ with (1/f(v(u,))*) — 0.
Since ¢ is strictly increasing, we get f(7(«,))$(Y(%,)) — <, which is absurd,
because fg can be projected to M and M is compact.

If 1/f%) = (1/k?) (as u — ) for some constant k, then f < k. In this
case from (D), ¢ goes to infinity as u — . Since [Y, (1/f)d,] can be
projected to M, we have

(/1) =1/NH9(Y,8.],%) = 9(Y,1/f)a:,7) £ |¥lm =Vv'h -m (m = constant)

Since g([Y, 3], 7) is constant along v, we have f = 1"k /m, along v. Thus
fo goes to infinity as u — oo, which is also absurd.

REMARK. The arguments involved in the proof of Theorem 4.1, show
that if L, is a compact leaf, [Y, 0,] vanishes on each leaf of z7'(L,).

From Lemma 4.2 we see that if ¢ +# 0 on some leaf of n7'(L,) (L,
compact), the same is true on all the leaves of 77 *(L,) and f remains
bounded on any-one of these leaves.

5. 3-dimensional case. Our purpose now is to prove the validity of
a result similar to Theorem 8.2 for three-manifolds.

THEOREM 5.1. Let (M, g, ) be a 3-dimensional complete Riemannian
manifold, with a codimension-one totally geodesic foliation &, such that
there exists at least one compact leaf. Then any Killing field preserves .

PROOF. We know that the universal covering (Iif, z) is Lx R and
g =ds: + fidet. If X denotes the Killing field on M, rn-related to X,
then X =Y + ¢4,
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Recall (see (§4)) that if n(Lxt) is a compact leaf [Y, ,] vanishes on
Lxt; we prove that [Y, d,] is zero everywhere. In order to do so let
L, = n(L xt,) be a non-compact leaf of & and L, = (L x0) a compact
leaf with L,cL,; our claim now is [Y, 8,];zx;, = 0.

Indeed, suppose [Y, 9,];7x,, # 0. Since [Y, 4] does not vanish on Lxt,
this leaf is a warped product Sx vI, where S =R and I is an interval,
a half-line or the whole R. Since ge L, for any point geL,, there is a
sequence p,€ L,, such that p, —¢. Translating it to M we may assume
z(l, 0) = q and n(z,, t,) = D,, t, <0, and there exists a sequence of deck-
transformations ¢, such that ¢, (2, t,) = (, t,), with ¢,170. Since L, is
compact we may also assume that I x0 remains fixed by ¢, and without
loss of generality that ¢, = ¢" for some deck-transformation ¢ and there
is not any leaf z-related to L, between L xt, and L xO0.

We firstly observe that L, e n(L xt) for any leaf L xt with t€[t, 0).

LemwmaA 5.1. f(z, t,) — 0, as n — oo.

PROOF. Since ¢"(Lx0) = LLx0 and ¢" preserves the curves orthogonal
to the foliation, we have &(z,, 0) = (I, 0).

Recall that (1/f)[Y, 0,] can be projected, hence &*((1/f)[Y, a.]) =
/ALY, 3,], so that for any (r, t,.,) € Lxt,,, = (L xt,), we have

5([ Y, at])(r,tn.H) = (f(e_l(r’ tn+1))/f(,ry tn+1))[ Y; at](r,t,,‘.;_l) ’

but as &(Y, 3,]) is a Killing field on L xt,,,, fe(*, t,4))/f(r, t...) does not
depend on r ¢ L, thus it is equal to f(z, t.)/f{, t...). Since

e”(e”'([Y, a.) = e ([Y, d.]) »

one sees that f(z, t.)/f({, t..,) does not depend on .

Let o(t,) = p(t,) = f(z, t.)/f(, t...). We have f(z, t,) = f(, t,)-0(,)".
By a continuity argument we have p(t,) = f(z, 0)/f(, 0), thus for any leaf
Lxt, telt, 0), with [Y, 8,]lzx. = 0, we have p(t) = f(z, 0)/f{, 0) = o(t,).

If p(t,) =1, then S f(z,, t)dt is lower bounded away from zero, which
is absurd because this fntegral gives the length of the orthogonal curve
to & from (2, t) to (2, t,), but this length is preserved by &" so
S:lf(z,,, t)dt — 0, as m — oo, hence p(¢,) <1 and f(z,, t,) — 0.

REMARK. We deduce from the proof of this Lemma that ¢ must vanish
on I.x0 (in general on any leaf m-related to a compact leaf), because if
¢+ 0 on this leaf (f)(z,, 0)— 0, but as L, is compact and fg can be proj-
ected. ¢ must vanish at some point, recalling that ¢ is constant on such
a leaf we have ¢ = 0.
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One can obtain the same result by applying a Proposition due to
Oshikiri (see [9, p. 355]), where is proved that any flow-generating Killing
field maps a compact leaf in another one also compact obviously, so neces-
sarily ¢ = 0 on L x0.

LEMMA 5.2. The foliation S is d,-invariant at all the leaves L xt,
for all telt, 0).

PROOF. On any leaf L xt, with [Y, 9,]lix; # 0, we know that D x¢ =
§(,)><WI(,). We may assume the sequence &"(z,, t) = (I, t.), with £, 1 0.

Let 7, be a normalized minimal geodesic in L x ¢, from 7,(0) = (I, ¢) to
(2., t). Reecall that (1/f(z,, t)|[Y, a.]|| — 0, as n» — «, and since f(z,, t) — 0,
we have ||[Y, d.]ll¢,.» — 0, i.e., ¥.(z, t) =0, as n — oco.

Since [Y, 8,] is a Killing field on L xt and so a Jacobi field, ¥,(0) goes
to a unit vector 7(0) on Tu,t)(g,). Since ¥(0) does not depend on ¢, because
(2., t) and so 7, can be defined for any ¢, S, is §,-invariant and so is the
function +,.

REMARK. From the above proof we see that S is also defined for
Lx0.

LENMMA 5.3. Any deck-transformation preserving Lx0 must pre-
serve S.

PRrROOF. Since (1/f)[Y, 9,] can be projected its direction is preserved
by any deck-transformation and so is its orthogonal distribution.

Since Lxt= Sx wI = RxyI, for all telt, 0), we can take global
coordinates (x, ¥) and Y is of the form

Y =\, + (o, ,

with » =\, v, t) and ¢ = p(x, ¥, t). Since 19, is a Killing field for any
leaf of S, we have ) = \(y, t). Since [Y, 9,] = 79, (r = constant, on any
leaf L'xt), we have » = \(y) and g = 6(x, y) — o(t). Since Ixo0= §><I
and L, is compact, from Theorem 4.1 we have that Y preserves S on
L x0. Since Yoo = Yuo — (00 — 00)d, whose last term obviously pre-
serves S, we see that Y preserves S on I xt, thus

[Y,0,]=0 and [Y, (1/4)9,]=0,
and we obtain 4 = 6(y), A = A\, = const. and —\,(y,/¥*) — (1/4)6, = 0.
If A, # 0, then +,/4v = (—1/A,)0, = k = const., because the first term
depends only on x and the second one only on y, thus 8(y) = (—N\.k)y +

and + = +, exp(kx). But k # 0, because otherwise ¢ = 4, = const., in
contradiction to (2, t,) — 0.
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Thus k # 0 and Y = A0, + ((—\.k)y + ¢, — o(¢))d,. Since L, is com-
pact we have that ||Y] must be bounded on Lx0, A, =0 and we get
Y = —p(t)d,, with o(0)=0. So we have Y|;,,=0 and [Y, d,]/ix.=0'(0)=0.

As we pointed out at the remark to Lemma 5.1, 4 = 0 on Lx0, so
X vanishes on /x0 and as p’(0) =0, A =Lz —Vz=0, on Lx0, so
that X = 0. Hence [Y, 9,] = 0 everywhere.
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