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Abstract. We study the differential geometry of codimension-one to-
tally geodesic foliations admitting Killing field and as applications we prove,
among others, that any Killing field preserves a codimension-one totally
geodesic foliation of a manifold of dimension 2 or 3, under certain topological
conditions on the leaves.

Introduction. In 1980 Johnson-Witt (see [6]) proved that any Killing
field preserves a codimension-one totally geodesic foliation by compact
leaves. In 1983 Oshikiri [7] proved a similar result when the manifold
is compact and recently Oshikiri [9] has generalized this result to Killing
fields with bounded length.

In this paper we shall prove, in § 3, that any Killing field preserves
a geodesic flow on a complete Riemannian 2-manifold, if there is at least
one compact leaf or there is some non-closed leaf (non-closed as subspace).
These results are based on a study of the relative topology of the leaves
of such a foliation, developped in § 2 and also in § 3.

§ 4 is devoted to the study of codimension-one totally geodesic foli-
ations; we give another proof of Oshikiri's result and establish some
results which are used in § 5, where is proved that any Killing field
preserves a codimension-one totally geodesic foliation on a 3-manifold if
there is at least one compact leaf.

The author wishes to thank Professor G.-L Oshikiri for his useful
comments on this work.

It is a pleasure to thank the referee for his comments which led to
improvements in the exposition.

1. Preliminaries. This section is concerned with the study of some
properties of complete Riemannian manifolds (M, g) with a codimension-
one totally geodesic foliation jSf.

We recall (see [1] or [7]), that if (M, π) denotes the universal covering
of M and £? the canonical lifting of £f, then M is isometric to a trivially
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foliated Riemannian manifold LxR, where L is the universal covering
of any leaf of Sf and the metric is

g = ds\ + f2df .

Here / is a smooth positive function on M and ds\ is the metric on
L, induced by any inclusion vto

vt\ L —> M = L x R , s -> (s, ίβ)

and dί2 is the canonical metric on R.

We remark that any deck-transformation preserves '£f and our goal
in this paper will be to prove that, under suitable hypothesis, any Killing
field X preserves Sf and we shall do so by proving that the Killing field
X on M, π-related to X, preserves ^ Thus we begin studying some
properties of the Killing fields on M.

All the manifolds considered in this paper will be connected and com-
plete. We work in the C°°-category.

PROPOSITION 1.1. Any Killing field X on M, is of the form Y + φdt,
where

( i ) Y is a Killing field on Lxt, with respect to ds\;
(ii) Y(f) = —(φfY (' denotes the derivation with respect to t);

(iii) For any vector field T, tangent to JZ", with [T, dt] = 0, we have
T(φ)β = g(T, [Ϋ, dt]).

PROOF. Let Tίf Tά be two orthonormal vector fields tangent to .sH
with [Tif dt] = [Tjt dt] = 0. Then from (Lγ+φdt(g))(Tif T3) = 0 we obtain (i).

The same argument applied to g((l/f)dt, (l//)3«) and to g((l/f)dt, T%)
proves (ii) and (iii). Note that g([Y, dt\ dt) = 0.

PROPOSITION 1.2. On M any Killing field preserving & can he ex-
pressed as Y + φdt, verifying (i), (ii) and (iii) of Proposition 1.1 and
either

(iv) T(φ) = 0, for all T tangent to £f> or
(iv') [Y,dt] = 0.

PROOF. If Y + φdt preserves ^ , taking any T tangent to £>?, with

[T, dt] = 0, we know that [Y + φdt, T] must be tangent to &,, so T(φ) = 0

and from (iii) this is equivalent to [Γ, dt] = 0.

From (iv') of Proposition 1.2 we see that any Killing field orthogonal
to '£f preserves £f and the same is true on (M, g, Sf). Furthermore it
is well-known that a codimension-one foliation which admits an orthogonal
Killing field must be totally geodesic (see for instance [2]).
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Now we study briefly such foliations.

PROPOSITION 1.3. If a Killing field preserving a codimension-one
totally geodesic foliation Sf vanishes at some point, then it is tangent
to Sf' everywhere.

PROOF. We consider the Killing field X = Y + φdu induced on the
universal covering M. Let (l0, 0) be a point on M, where X vanishes.
Thus Y{ι0,o) = 0. Since [Y,.dt] = 0, Y vanishes along {(l0, t)}teR, hence from
(ii) of Proposition 1.1 we have 0 = — (Φf)[ιo,t)> i β > iφf) remains constant
along (l0, t). Since φ{lθf0) = 0, we have φUott) = 0, for all teR.

We remark that any Killing field orthogonal to & everywhere never
vanishes, because otherwise this vector field should be tangent to £?
everywhere, a contradiction. So φ ̂  0 for such a vector field.

THEOREM 1.1. Let (M, g, £f) be a simply connected Riemannian mani-
fold with a codimension-one foliation such that there exists a Killing field
X, orthogonal to Jzf everywhere. Then M is a warped product LXfl,
for a function ψ defined on L, where I is either an open interval or a
half-line or R.

PROOF. We know that J*f is totally geodesic and M = LxR, g =
QL + f2df. From (ii) of Proposition 1.1, we have 0 = —{φf)r so (φf) is
a function on L. Set ψ = φf. We get / = ψ/φ (we recall that φ =£ 0).
Because of (iii) of Proposition 1.1, we have T{φ)p — 0 for any T tangent
to <£f, so φ = φ(t). In a new parametrization s of R with ds = (l/φ)dt,
the Riemannian metric reads as gL + ψ2ds2.

In general for a Riemannian manifold (M, g, Sf) with a codimension-
one foliation one can obtain by well-known arguments, a A -fold covering
(ikf, g, &) of M, where J& is the induced foliation, such that M can be
oriented and £2? transversally oriented, k can be 1 (trivial case), 2 or 4.

In § 2 we shall be interested in proving, under appropriate hypothesis,
that the closure of any leaf contains some compact leaf. Since k = 1, 2 or
4, as above, it suffices to do so on M.

2. Closure of a leaf. In this section we state some results concerning
the closure of any leaf of a codimension-one totally geodesic foliation.
These results will be used in § 3 and § 4.

Due to the well-known facts pointed out at the end of § 1, we may
assume that the manifold is orientable and the foliation transversally
orientable.

PROPOSITION 2.1 (see [5, p. 18], for a more general result). The
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closure of any leaf L of ^f is saturated, i.e., is the union of a certain
number of leaves.

PROOF. Let qeL\L. Then q lies in another leaf L8. We know
that there is an open neighborhood Uq of q, which is isometric to a trivially
foliated Riemannian manifold Vqx(-ε, ε), where Vq is an open neigh-
borhood of q in L8 and the metric is of the from ds2

Vq + f2df for a smooth
positive function / on Vqx(-ε, ε).

Since g e L, the connected component of L8 Π Uq containing q also lies
in L, so LΓ\L8 is an open set in L8. Since it is obviously closed, we
have Lz)L8, hence

L - U Lg .

In the next section we shall apply this result in the following form:
If a point qeL\L, then the leaf along q also lies in L\L.

Let Pi and p2 be the natural projections from M = LxR onto L and
R respectively.

LEMMA 2.1. For any leaf Lr of Sf, p2(π~1(Lr)) is a closed subset of R.

PROOF. vΛvlπ-\Lr))) = π~\Lr) is closed and p2 is a quotient map.

PROPOSITION 2.2. // Sf has at least one compact leaf, the closure of
any leaf contains some compact leaf.

PROOF. Suppose that Lr is a non-compact leaf such that Lr does not
contain any compact leaf. Let Lxre π~\Lr) and suppose that π(Lx0) = Lo

is compact.

S(q)

7

/ P

d{7)

FIGURE 1

δ(LXr0)

LXr0

LXO
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Without loss of generality we can assume r > 0. Recall that we are
assuming M oriented and £f transversally oriented.

Let C = p2(π~\Lr)) Π [0, r], which is a compact subset of [0, r]. Since
0 $ C, set r0 = inf C, which obviously belongs to C, and π(L x r0) is a non-
compact leaf. Let 3 be any deck-transformation such that δ(L x 0) = L x 0
(recall that Lo is compact) and δ(L x r0) Φ Lx r0. Such a deck-transfor-
mation exists because if not π(Lxr0) should be compact (see Figure 1).
Let 7 be the orthogonal segment to £? from p to L x r0. Since <5(L x r0) Φ
Lxr0 and r0 = inf C, we get p2(δ(q)) > r0. Now applying δ"1 to δ(7) from
δ(p) to s, we see by the same argument that P2(δ~\s)) < r0, which is
absurd.

3. Preservation of geodesic flows. In this section (M, g) denotes a
two-dimensional complete Riemannian manifold and Jϊf a geodesic flow.
We know that the universal covering (M, π) of M, is trivially foliated as
M = RxR and the Riemannian metric can be written as

g = dx2 + /(α, ί)2ώί2 ,

where / is a smooth positive function on RxR.
Any Killing field on M is of the form Y + ^3f, where F = a(t)dx is a

Killing field on (Λ, do;2).
From (iii) of Proposition 1.1, we know that

(A) dx(φ)f2 = — α' (' denotes the derivation with respect to £) .

From now on we suppose that X is a Killing field on M and X =
+ 3̂ί is the Killing field on iίί 7r-related to X.

PROPOSITION 3.1. // π(Rxr) is a compact leaf, then a\r) — 0 and
φ remains constant on Rxr.

PROOF. We can suppose r = 0. Since π(R x 0) is compact, there exists
a deck-transformation δ such that δ(R x 0) = R x 0 and the subgroup of
deck-transformations preserving RxO admits δ as a generator.

Let (x0, 0) = <5(0, 0). Since δ is an isometry we have:

(^0, 0))(dXot0) .

Since X is δ-invariant, at (x09 0) we have:

δ(adx + φdt) = αδ. + ^(/(0, 0)//(^

Thus

(B) φ(x0, 0)f(xo, 0) = φ(0, 0)/(0, 0) .
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Since Γ = adx and (l/f)dt are δ-invariant and since [Y, (1//)3J = Y(l/f)dt

-(VfWd.f we may apply 5 to [Γ, (1//)3J and we see that if α'(0) ̂  0, then
/(0, 0) = /(α0, 0), so φ(x0, 0) = 0(0, 0). But from (A) we get (dxφ)f2 = - α '
so 3^ has constant sign along R x 0 and ^(#0, 0) ^ ^(0, 0).

Hence α'(0) = 0 and dx(φ) = 0.

Now suppose that Lo = ?r(JB x 0) is non-compact. We know that Lo

is the union of some leaves. Let L r c L 0 and π(Rxr) = Lr, ττ(iϊxθ) = Lo,
r > 0.

LEMMA 3.1. // LPcL 0, £fcew α'(r) = 0 and further if LoglLr, then
Lr is compact.

PROOF. Each point of R x r, for instance (0, r), is the limit of a
sequence (0, rn), with rn | r and Rxrn = δn(J? x 0), where each δn is a deck-
transformation.

δre(0, 0) = (&n, rn) and as in Proposition 3.1 we have

Since Y is δn-preserved we see that

α(0) = α(r J

Φ(xn, rn)f{xn, rn) = φ(0, 0)/(0, 0) .

Since a is C°° with respect to t, we have αf(r) = = am{r) = = 0 .
If Loςz!Lr, we continue considering ΛxO and Rxr on M, τr-related

to Lo and L r respectively (r > 0) such that there exists a sequence of
deck-transformations δnf verifying p2(3n(R x 0)) | r.

Since L 0 ?L r , let r0 = infjp^π"1^)) n [0, r]}, r0 e p.&rXLΛ) and L r o c
L r cL 0 , see Figure 2.

By considering the above sequence δn, one sees immediately that Lr

lies in the closure of any leaf π(Rxs), 0 ^ s ^ rβ, so π(Rxr0) can not
be compact, unless r0 = r. No one leaf R x s, 0 < s <; r0 can be of the
form S(-BxO), for some deck-transformation 8, because otherwise p2(δ~\Rx
rβ))e(0, r0), which is absurd. Hence any leaf 3(Rx0) with p2(δ(Rx0))e
(0, r), verifies 2>2(δ(Λ x 0)) 6 (r0, r).

Since any transversal through any point oί Rxr intersects leaves
of the form p{Rxr), with p belonging to the group of deck-transforma-
tions, one sees that Lr is not a proper leaf (see [4, p. 45]). Since we
are in the C°°-category we have that Lr is locally dense, i.e., there is a
transversal c0 through any point oί Rxr such that c0ΠLr is a closed
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RXr

dn(RXQ)

RXr0

RXO

FIGURE 2

interval. But as p2(δn(R x 0)) f r we have Lo e L r, which is absurd, so
jnecessarily ro~r and L r is compact.

THEOREM 3.1. Let (M, gr) 6e α compact Riemannian two-manifold
with a geodesic flow £f. Then any Killing field preserves Jϊf.

THEOREM 3.2. Let (M, g) be a complete Riemannian two-manifold
with a geodesic flow Sf such that there exists at least one compact leaf.

[Then any Killing field preserves Jίf.

PROOF OF THEOREM 3.1. As above, if X is a Killing field on M, X =
Y + φdt denotes the Killing field on M, π-related to X, where Y = a(t)dx.

We show a! = 0 everywhere so [F, dt] = 0. Since X preserves .sH X
preserves £f.

Let Lo be any leaf, and suppose π(R x 0) = Lo. If Lo is compact we
know that α'(0) = 0, so we may assume that Lo is not compact. Let
LrczL0. If LoaLr, the argument of Lemma 3.1 shows that α'(0) = 0, so from
now on we assume that Loς£Lr, and then we know that Lr is compact.
Let r be such that π(R xr) — Lr. There exists a sequence of deck-trans-
formations δn such that p2(δn(R x 0)) | r. By Lemma 3.1, we have δn(R x r) =
Rxr. Since Lr is compact, we may assume that δn = δn, with δ — δλ.

Now one sees immediately that if δ(Rx0) = Rxriy for any t e[0, r j ,
then Lrczπ(Rxt). Since α is the same for any two leaves on J2?, which
are π-related, and a(r) = lim α(ί) (as t-^r), we have α(r) = a(t) for all
* 6 [0, r j , so α is locally constant and α'(0) = 0.

PROOF OF THEOREM 3.2. As above we shall prove that a! — 0. Let
Lo be any leaf and suppose that it is non-compact. Let π(Rx0) = Lo,
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we know from Proposition 2.2 that there is a compact leaf LraL0. Let
π(Rxr) = Lr. By the same argument as in Theorem 3.1 we see that

Finally we give sufficient conditions not related to compactness, which
ensure the preservation of geodesic flows. These conditions refer to some
topological properties of the leaves and along this study we shall obtain
some interesting properties of the topology of the leaves.

From now on we suppose that (Λf, g, £f) is a complete Riemannian
two-manifold, with a geodesic flow <£? and furthermore we suppose that
there is not any compact leaf.

As a corollary to Lemma 3.1, we have:

LEMMA 3.2. // Lt = {JjeτiLjf then Lsz>Lt for any jeτt.

From this lemma we see that for any two leaves Lif L3, their closures
Li9 Lj coincide or are disjoint, because if LkdLtΠLJf then Lk — Li~ L3.
According to [4], the closure of any leaf is a minimal set.

From now on whenever we say that a leaf is closed, it means that
it is closed as a subspace (L = L), but non-compact, because from now
on we are supposing that there is not any compact leaf.

LEMMA 3.3. // there is some non-closed leaf, then any leaf is non-
closed.

PROOF. Let Lo be non-closed. Then Lo = [Jieτo Lif with %τ0 > 1. Sup-
pose that Lio is a closed leaf. Note that LioςtLo by Lemma 3.2.

On M one can find leaves, Rxi0, ΛxO, Rxk0, π-related to L v Lo, Lko,
respectively, with LkodLo such that there is not any leaf π-related to
Lio between Rxi0 and Rxk0. Furthermore we can find a sequence of
deck-transformations εn with p2(εn(R x 0)) | k0. See Figure 3.

Since Lio is non-compact, εn(τ) must be as described in Figure 3 and

RXio

FIGURE 3
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applying ε~\ we see that εΰKRxio) lies between Rxi0 and Rxk0, which
is absurd.

THEOREM 3.3. Let (M, g, £f) be a complete non-compact Riemannian
two-manifold with a geodesic flow Jϊf but without compact leaves. If
there is some non-closed leaf, then any leaf is dense on M, i.e., L = M.

PROOF. If L^M, we can find Lά with J^ΓϊL,- = 0 . On M one can
find Rxit Rxj, Rxj', π-related to Li9 Ljf Ly, respectively, such that
Lj = Ly with i> j > f and without any leaf τr-related neither to any
leaf of Li nor to any leaf of L5 between Rxi and Rxj. Since there is
a sequence of deck-transformations εn with p2(εn(R x j')) T h we obtain a
contradiction as in Lemma 3.3.

Finally we observe that in the conditions of Theorem 3.3, any Killing
field X on M, induces, as is well known, X on M, with X = a(t)dx + φdt

and as no one leaf is closed we deduce from the proofs of Theorem
3.1 and Theorem 3.2, that α' = 0 everywhere, so we have:

THEOREM 3.4. Let (Af, g, Sf) be a complete non-compact Riemannian
two-manifold with a geodesic flow Sf but without compact leaves. If there
is some non-closed leaf, then any Killing field preserves

For complete non-compact Riemannian two-manifolds, it remains only
to consider the case whenever all the leaves are closed, but in this case
it is possible to have Killing fields not preserving the foliation. For in-
stance on R2 = RxR consider the standard flat metric and the foliation
{Rxt}teR, any non-parallel Killing field does not preserve this foliation.

4. Codimension-one foliations. In this section (M, g, J*f) denotes a
complete Riemannian ^-manifold, with a codimension-one totally geodesic
foliation J2P. We know that the universal covering (M, π) of M, is trivially
foliated as LxR, where L is the universal covering of any leaf of Sf
and the metric is of the form ds\ + f2df.

Any Killing field X on M can be written as 7 + φdt, where Y and <f>
satisfy the conditions of Proposition 1.1. In particular from (iii) of Propo-
sition 1.1, for any T tangent to & with [T, dt] = 0, we get

(C) T(φ)Γ = g(T,[Y,dt]).

We now prove that any Killing field preserves £f if M is compact.
At the same time we obtain some technical results which will be used
in §5.

LEMMA 4.1. For any Killing field X on M, [Y, dt] is tangent to £?
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everywhere and is a Killing field on each leaf.

PROOF. Locally Y = α ^ . , for a local frame {x19 , xn} in L. [Y, dt] =
—andx., which is tangent to £?. LίYtdt]ds\ = Lγ(Ldt(ds2

£)) — Ldt(Lγ(ds\)),
which is zero because ds\ does not depend on t and Γ is a Killing field
on (L, ώs|).

From now on X denotes a Killing field on M and X the Killing field
on M, π-related to X. Under certain hypothesis we shall prove that X
preserves Sf by proving that [Y, dt] = 0, which amounts (see Proposition
1.2) to proving that X preserves £f.

Recall that we may assume JZf to be transversally oriented, so the
field [Y, (l//)3t] can be projected to M. Since

[Y, d!f)dt] = Y(Xlf)dt + (1//)[Γ, dt]

and (1//)[F, dj is the ^-tangent component of [Y, (l//)3f], we see that
(l//)[Yr, at] can be projected to M.

PROPOSITION 4.1. // [Y, dt] vanishes at some point peM, then it
vanishes along the leaf through p.

PROOF. Let Tp be any vector in p tangent to & and let τ(ί) be the
geodesic verifying 7(0) = p, τ(0) = Tp. Let T = i.

One can extend T to a suitable neighborhood in such a way that
[Γ, dt] = 0. Since [Y, dt] is a Killing field on each leaf of & it is a Jacobi
field along 7. It is known that %g{f(, [Y, dt])) = 0 and we have ff("K0),
[Y, dt](p)) = 0. Thus 0(T, [F, 5J) = 0 along 7 and hence Γ(0) = 0 along 7
by (C).

Since Tp was arbitrary we have proved that φ is constant on this
leaf, so at any point of this leaf we have T{φ)p = 0 = g(T, [Y, dt]). Hence
[Y9 dt] = 0 on this leaf.

Now looking at the leaves where [Y, dt] Φ 0, we see that φ verifies
dφ 0 0. Since [Y, dt] is a Killing field and so a Jacobi field, the level
hypersurfaces of φ are totally geodesic and the Killing field (on the leaf)
[Y, dt] is orthogonal to them. Because of Theorem 1.1 any leaf, where
[Y, dt] Φ 0, is a warped product §x+L If s is the canonical parameter
of 7, then [Y, dt] — kd8 with k constant along the leaf.

LEMMA 4.2. Let δ be any deck-transformation of (M, π). For any
p of M, we have

ΛP)Φ(P) = ΛS(p))φ(δ(p)).

PROOF. Since X can be projected to M, we have δ(X) = X. Since
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δ preserves £f we see that δ{Y) = Y and δ(φdt) = φdt. We are done,
since δ is an isometry.

THEOREM 4.1. Let (M, g, Sf) be a compact Riemannian manifold
with a codimension-one totally geodesic foliation £f. Any Killing field
preserves J*f.

PROOF. We shall prove that X preserves «^.
Let p be a point of Lxt = SxL We may assume p = (y0, 0) and

φ(p) ̂  0; if φ < 0 at all the points of Lxt, replace X by - X Let 7 be
the geodesic with 7(0) = p, i(0) = [Y, dt] and let u be the parameter of
7. From (C) we have

(D) (dφ/du)f = g(i, [Y,dt]).

Since [Y, dt] is a Killing field on Lxt, we know that g(1f, [Y, dt])
remains constant along 7 and equal to ||[Γ, dt]\\${0) = h. Since (dφ/du) =
(l// )ff(^ [^ 3J) along 7, we get (fy/3tθ = iXIΓ)h ^ 0.

Then suppose there exists some sequence un —> °o with (l//(7(wj)2) -* 0.
Since ^ is strictly increasing, we get f{Ί{u^)φ{Ί{uJ) —> ©o, which is absurd,
because fφ can be projected to M and M is compact.

If (I//2) ^ (I/A;2) (as u -> oo) for some constant k, t h e n / ^ fe. In this
case from (D), φ goes to infinity as u->oo. Since [Y, (l//)3*] can be
projected to M, we have

(Λ//) = aif)g(lY,dt],'ϊ) = g([Y,a/f)dtlV ^ mm = l/Γ m (m = constant)

Since g([Yf dt], If) is constant along 7, we have / ^ Vh jm, along 7. Thus
/0 goes to infinity as u —> oo, which is also absurd.

REMARK. The arguments involved in the proof of Theorem 4.1, show
that if Lo is a compact leaf, [F, dt] vanishes on each leaf of π~\L0).

From Lemma 4.2 we see that if φ Φ 0 on some leaf of π~\L0) (Lo

compact), the same is true on all the leaves of π~\L0) and / remains
bounded on any-one of these leaves.

5. 3-dimensional case. Our purpose now is to prove the validity of
a result similar to Theorem 3.2 for three-manifolds.

THEOREM 5.1. Let (M, gf Sf) be a ^-dimensional complete Riemannian
manifold, with a codimension-one totally geodesic foliation J5f, such that
there exists at least one compact leaf. Then any Killing field preserves Jϊf.

PROOF. We know that the universal covering (M, π) is LxR and

g = ds\ + f2df. If X denotes the Killing field on M, ττ-related to X,
then X = Y + φdt.
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Recall (see (§4)) that if π(Lxt) is a compact leaf [Y, dt] vanishes on
Lxt; we prove that [Y, dt] is zero everywhere. In order to do so let
Lto = π(L x t0) be a non-compact leaf of Sf and Lo = π(L x 0) a compact
leaf with LoaLto; our claim now is [Y, 3j|fx*β = 0.

Indeed, suppose [F, at],£xtβ =£ 0. Since [Y, dt] does not vanish on Lxt0,
this leaf is a warped product SxψJ, where S — R and / is an interval,
a half-line or the whole R. Since g e Lto for any point qeL0, there is a
sequence pneLto, such that pn->q. Translating it to M we may assume
π(l, 0) = q and 7r(2TO, t0) — pn, t0 < 0, and there exists a sequence of deck-
transformations εn such that εn(zn, t0) = (i, ίj> with tn t 0. Since Lo is
compact we may also assume that LxO remains fixed by εn and without
loss of generality that εn = sn for some deck-transformation ε and there
is not any leaf π -related to Lo between Lxt0 and LxO.

We firstly observe that Loeπ(Lxt) for any leaf Lxt withίe[ί 0, 0).

LEMMA 5.1. f(zn, ίo)-»0, as n-+ oo.

PROOF. Since εn(L x 0) = L x 0 and εn preserves the curves orthogonal
to the foliation, we have εn(zn, 0) = (ϊ, 0).

Recall that (l/f)[Y, dt] can be projected, hence εn((l//)[Γ, dt]) =
(ϊlf)[Y, 3*1» so that for any (r, tn+1) 6 L x ίn+1 = en+1(£xίβ)» we have

but as ε([Γ, 3J) is a Killing field on £xί n + 1 , f(ε~\r, tn+1))//(r, ίn+1) does not
depend on reL, thus it is equal to f(zlf tn)/f(l, ίn+1). Since

one sees that f(zlf tn)/f(l, tn+1) does not depend on n.
Let /0(tβ) = p(tn) = f(zly tn)lf(l, tn+1). We have f(zn, t.) = /(Z, tn) ρ(t0)\

By a continuity argument we have <o(ίβ) = f(z19 0)//(ϊ, 0), thus for any leaf
Lxt, te[t0, 0), with [Y, dt]\zxt Φ 0, we have p(t) = /(*,, 0)//(ϊ, 0) - ί>(ί0).

/(2n, ί)cίί is lower bounded away from zero, which

is absurd because this integral gives the length of the orthogonal curve
to £f from (zn, t0) to (znf ίx), but this length is preserved by εn so

f(zn, t)dt -> 0, as w -* °o, hence /t>(ίβ) < 1 and /(sn, tβ) -> 0.
to

REMARK. We deduce from the proof of this Lemma that φ must vanish
on LxO (in general on any leaf ^-related to a compact leaf), because if
^ 0 on this leaf (fφ)(zn, 0)->0, but as Lό is compact and fφ can be proj-
ected, φ must vanish at some point, recalling that φ is constant on such
a leaf we have φ = 0.
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One can obtain the same result by applying a Proposition due to
Oshikiri (see [9, p. 355]), where is proved that any flow-generating Killing
field maps a compact leaf in another one also compact obviously, so neces-
sarily φ = 0 on LxO.

LEMMA 5.2. The foliation S is dt-invariant at all the leaves L x t,
for all 16 [t0, 0).

PROOF. On any leaf Lxt, with [F, dt]\iχt ̂  0, we know that Lxt =
Sit)XftI{t). We may assume the sequence εn(zn, t) = {I, t'n), with tf

n] 0.
Let Ίn be a normalized minimal geodesic in L x t, from 7n(0) = (I, t) to

(zn, t). Recall that (l/f(zn, t))\\[Y, dt]\\ -> 0, as n -> <*>, and since /(sn, ί) -> 0,
we have ||[F, 3J||(f | l f ί, ->0, i.e., ft(zra, «)_-*<>, as n - * oo.

Since [F, 3J is a Killing field on L x ί and so a Jacobi field, 7Λ(0) goes
to a unit vector 7(0) on T{lit)(St). Since 7(0) does not depend on t, because
(zn, t) and so 7n can be defined for any t, St is 3Γinvariant and so is the
function ψt.

REMARK. From the above proof we see that S is also defined for
LxO.

LEMMA 5.3. Any deck-transformation preserving LxO must pre-
serve S.

PROOF. Since (l/f)[Y, dt] can be projected its direction is preserved
by any deck-transformation and so is its orthogonal distribution.

Since Lxt = SxψJ = Rx^I, for all te[t0, 0), we can take global
coordinates (x, y) and Y is of the form

Y=Xdx + μdy ,

with λ = λ(sc, y, t) and μ = μ(x, y, t). Since χdx is a Killing field for any
leaf of S, we have λ = \(y, t). Since [Y, dt] = rdy (r = constant, on jiny
leaf Lxt), we have λ = \(y) and JM = θ(x, y) — pit). Since LxO = Sxl
and Lo is compact, from Theorem 4.1 we have that Y preserves S on
LxO. Since YUtt) = Ya>0) — (p{t) — Pw)dy whose last term obviously pre-
serves S, we see that Y preserves S on Lxt, thus

[IT, 3J = 0 and [Y, (1/+)SJ = 0 f

and we obtain θ = θ(y), X = X0 = const, and -Xo(ψjψ2) - (VΨ)θt = °
If λ0 ^ 0, then ψjψ = ( — l/\0)θy = k = const., because the first term

depends only on a? and the second one only on y, thus θ(y) = (—Xok)y + μ0

and ^ = ψ\> exp(fe#). But A; ̂  0, because otherwise ψ — ψ0 = const., in
contradiction to ψ(zn, t0) —> 0.
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Thus k Φ 0 and Y = xodx + ((—Xok)y + μ0 — P(t))dy. Since Lo is com-
pact we have that | |Γ| | must be bounded on LxO, λ0 = 0 and we get
γ= -p{t)dy, with p(0) = 0. So we have F|L-XO = 0 and [Γ, 3t]|fx0.= £'(0) = 0.

As we pointed out at the remark to Lemma 5.1, φ — 0 on LxO, so
X vanishes on LxO and as p'(0) = 0, A* = Lx — Vj = 0, on LxO, so
that XΞΞ 0. Hence [Yf dt] Ξ 0 everywhere.
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