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Introduction. It is well-known that to every biholomorphic equivalence class of

homogeneous bounded domains in C , there naturally corresponds bijectively an

isomorphism class of normal y-algebras of dimension In. On the base of normal

y-algebras, curvature properties of the Bergman metric on a homogeneous bounded

domain were discussed in [4], [5], [6], [7], [8], [9].

In this paper we first define the notion of a "strong y-ideal" of a normal y-algebra

such that the decomposition of a normal y-algebra into simple strong y-ideals is precisely

related to the decomposition of the corresponding homogeneous bounded domain into

irreducible ones as Riemannian manifolds with respect to the Bergman metrics (Lemma

1.4).

Let (g,y) be a normal y'-algebra with n = [g, g] and α be the orthogonal complement

of n. Let

9 = Σ nab + ΣjKab + Σ Παoo

be the root space decomposition of g with respect to the adjoint representation of α on

n. Let ^ = Σnαί» ^ = ΣnΛoo F ° Γ *eJSf, we define two endomorphisms of Jί? by

A(x) = 2~ί((ad#jx) + (2id2>jx)t), D(x) = 2~1((ad^jx) — (ad^yx)'), and an endomorphism

of °U by φ(x) = {adyjx) + (ad%jx)t. For x,ye^9 let x-y = A(x)y. Then, (J^, •) is a com-

mutative distributive algebra over R. If (JSf, ) is a Jordan algebra, the corresponding

homogeneous bounded domain is said to be quasi-symmetric in the sense of Satake

[16] (cf. [11]). We consider the following conditions on (g,j):

(J) (j£f, ) is a Jordan algebra.

(D) For every xe&9 D(x) is a derivation of (JSP, •).

(M) For each simple strong y-ideal g of (g,y), all root spaces nab a§(a<b) are of

the same dimension and so are all naoo <=g.

(A) 2φ(x'y) = φ(x)°φ(y) + φ(y)°φ(x) on % for all c, ye&.

The main purpose of the present paper is to show that (J), (D), and (M) are mutually
equivalent, that (M) implies (A), and that if (g,y) is simple with tylΦ {0}, then (A) implies
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(M) (Theorems 2.7 and 3.7). Parts of these assertions are well-known; the equivalence
of (J) and (M) was first proved by DΆtri and Miatello [9], and the equivalence of (A)
and (J) was proved by Dorfmeister [11]. Their original proofs are based on other concepts
representing homogeneous bounded domains, than normal y-algebras. Our proofs are
based only on the theory of normal /-algebras.

In the final section, we establish a formula giving the holomorphic sectional
curvature of the Bergman metric on any homogeneous bounded domain in terms of
the corresponding normal y-algebra (Theorem 4.9). As a corollary, employing results
in preceding sections, we obtain Zelow's formula [21], [22] of the holomorphic sectional
curvature on any quasi-symmetric bounded domain.

ACKNOWLEDGEMENT. The author would like to express his gratitude to Professors
Soji. Kaneyuki and Akio Kodama for valuable discussions and suggestions during the
preparation of the present paper. The author would also like to thank the referee for
several comments. Especially, the simple proof of Lemma 2.10, in which the curvature
tensor is used, is due to the referee.

1. Preliminary. Let D be a homogeneous bounded domain in Cn. Let G be a
maximal triangular analytic Lie subgroup of the group of all biholomorphic trans-
formations of D, and let g be its Lie algebra. Fix any point p in D. Then the mapping
Φ:G3f\-+f(p)eD becomes a diffeomorphism, and we get two /Minear isomorphisms
p: g 3 x ι-> xe G Tfi and Φ + : TeG -• T*D, where TeG and TfD are the tangent space at the
identity mapping eeG and the real tangent space at peD, respectively. Lety'eEnd(cj)
be the endomorphism induced from the complex structure of T*D via Φ^ ° p, and <, >
be the /-invariant inner product on g induced from the Bergman metric at T*D via
Φ* ° p. Let ωeg* be the Koszul form on g, i.e., ω(x) = 2~ί trace((ad/x) —/°(adx)), xeg.
Then it is known ([14]) that <x, y} = ω[jx, y\ The Lie algebra g over R with complex
structure / obtained in the above manner becomes a normal /-algebra (see [15]), that
is, (g,/) satisfies the following three conditions:

(jl) The algebra g is triangular, that is, it is solvable and every eigenvalue of adx
is real for any xeg.

(j2) Nijenhuis' condition holds, that is, [jxjy] =jljx, y] +j[x9J>] +1>, y] for all

(j3) The bilinear form <x, y} = ω{_jx9 y~\ defined from the Koszul form ω is a
/-invariant inner product on g.

Set n = [g, g], and α = n 1 . The dimension of α is called the rank of D. For any form
αeα* on α, set n(α) = {xen;[A,x]=α(fc)x for all he a}. Every element of the set
A = {α G α*; n(α) φ {0}} is called a root (under the adjoint representation of α on n). The
structure theorem of Pyatetskii-Shapiro [15] says the following:

(nl) The subspace α is a non-zero abelian subalgebra of g, and n has an orthogonal
decomposition
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(n2) There are R roots εl9 , εR such that ja is the direct sum of the 1-dimen-

sional root spaces n(εα), l ^ α ^ R , and that every other root is of one of the forms

(εa±εb)/2, εc/29 where a,b,ce{l, , R} with a<b.

(n3) /n((βα + β»)/2) = n((eβ-efc)/2) for a<b, and 7n(εfl/2) = n(εfl/2) for all α.

We fix some notations. Let raen(εa) be unique elements such that εa(jrb) = δab for

a, b e {1, , R}, and let r = Σ f = 1rβ. We say that any root in Ao = {ε1? , εR} is of type 0,

onein J 1 : = {(εβ + ε 6)/2eJ; 1 ̂ a<b^R] of type 1, and one in Λ2: = {εβ/2eΛ; l g α ^ Λ }

of type 2. Put J?, = Σ ^ α ) (* = 0,1), JSP = JSP0 + ̂ i , and ^ = Xα e j 2n(α). Thus, yJSf 0 = α,

g = JSf+7'if+ Φ. If α, fc, ce{ l , , R) and α^fe, then we set nαfc = n((εΛ + εb)/2), nc o o =

n(εc/2). We sometimes denote a set {au , αfc} by {a1 «fc} (without commas), if it

causes no confusion. If a, bε{\, , R, oo} and (α, b)φ(oo, oo), then the symbol n{ab}

stands for nab when a^b, and nbα when α > 6 . Set

(1.1) A2flί, { }

We denote the cardinality of a set S by #S, For two sets {ab} and {cJ} with

#({ab}n{cd})=\, letting {βZ)}n{crf} = {βf}, {flA} = {flfe}, and {cd} = {gf}, we denote the

set {ef} by the symbol {βfe}^{crf}. For example, if aφb then {aa}~{ab} = {ab}.

It is well-known ([18], [4]) that ω(x) = 0 for j c e α + j ^ + ^ + f , and

(1-2) coa :=ω{ra)=\ + y Σ ^ Λ , ^ Λ

w α b + — «ααo

for «e{ l R}. For an endomorphism ^4€End(g) we denote by Ax the adjoint oper-
ator of A with respect to <, >. The following two facts are useful in our argument.

LEMMA 1.1 ([15; Theorem 2, p. 61]). Let l ^ α < 6 < c g o o . If xenab and yenbc,
then

<DX yl ljχ, y]> = <*, *><y, y>βωb, or

LEMMA 1.2. Le/ a<b<c^co, b<d^ao, and cφd. Ifxenab, yenbc, zen{cd}, and

wenad, then

<(adyw)ί(ad7»ίx, z> = <(ad7»ί(ad7vv>)'x, z> , or

PROOF. By Jacobi's identity we have (ad;wXad7»z = (ad7»(ad7*w)z, which im-

plies the first assertion. Since (adj'ljx, j/J^w = (ad^wyijx, y], [jx, y] = (adjy^x, and

7'w)ίx = (adjx)ίw, the second assertion follows.

The following definition and lemma are useful in our argument.

DEFINITION 1.3. A subspace § of a normal 7-algebra (9,7) is called a7-ideal of
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(ϋJ) if § is ay-invariant ideal of g, and it is called a strongy-ideal of (g,y) if g is a
non-zero y-ideal of (g,y) and satisfies (adxygczg for all xeg. If g possesses no
strong y-ideals except itself, (g,y) is said to be simple.

LEMMA 1.4. A normal j-algebra of rank R is simple if and only if the set {I R}
of integers is connected in the sense (cf Asano [2]) that for every pair a, b in {1 R}
there exists a sequence a = a0, , ak = b in {1 R] with na._ίaiΦ0, ί= 1, , k (see
(1.1)). Every normal j-algebra g is a direct sum of simple strong j-ideals g1 ? , gp, and
every simple strong j-ideal is one of the gs.

PROOF. Let g be a strong y-ideal of a normal y-algebra (g,y). Take an element
zeg —{0}, and express it in the form z = x+jy + u, where x,yeJ? and ue°U. Then,
§9[;r, Z]=XH-2" 1 M, §9 -j[jrjz]=jy + 2~1u9 and g9[yr,/y + 2~1u]=4~ V so that
x, jy, and u belong to g. Assume xφO or yφO, say xΦO. Write x = Σa^bxab> where
xabenab. Then, for each pair a, b in {1 R} with a<b, we have Qs[jrb, [yrfl>

χ]] =

4~xxab, so that all xab, a<b, and x' = ̂ f l f l belong to §. Furthermore, xaa = [jra9 x'] eg
for any a. If xabφ0 for some a<b then g9[;xαft, ^αJ = <xαft, xabyrJωal while if xα α^0
then rfl e g. Thus, we obtain the following:

(1.3) There exists an a such that r f leg.

A similar argument shows that the assumption uφO also implies the claim (1.3). We
shall show another claim:

(1.4) If ra e g, b φ a, and nab φ 0, then rb e g.

Indeed, let xen{ab} — {0}. Then, x = 2[jra, x]e$. If a>b then gB [yx, x] = <x, x}rb/ωb,
while if α<& then by the strongness of g we have gB(adyx/x = <x, xyrb/ωb. Thus, (1.4)
is proved. Now, if we assume {1 R} is connected in the prescribed sense, then by
(1.3) and (1.4) we see that all ra belong to g. It follows that g = g. Therefore, g is simple.
When (g,y) is arbitrary, we decompose the set {1 R} into connected components
Il9 - - , Ip in the prescribed sense. Since nm = {0} for all aels, belt with sΦt, if for
every s we set A$ = {εa;aeIs},Aψ = {(εa + εb)/2eA;a/beIs,aφb},A{ϊ) = {εa/2eA;aeIs},
j ^ ) = Σ{n(α); α e ^ u z l ? } , and ^ ( s ) = X{n(α); αezl(

2

s)}, then g5: = <£(s) +j&{s) + <%{s) are
simple strong y-ideals of (g,y) and g = g i + + g p (direct sum of subspaces). To
prove the last assertion of Lemma 1.4, let g be a simple strong y-ideal of (g,y).
Set I={ae{\ •••Λ};rfleg}, Ao = {εa;ael}, A ^ ^ + ε^/leA; a,bel,aφb}, J 2 =
{εJlsA ael}, J^ = X{n(α); αe J o u i i } , and $ = £{n(a); <xeA2}. Then, we see that
g = 3? +j3? + fyί. Since g is simple, / is connected so that /<=/s for some s. By (1.4) we
see I=IS, so that g = gs. The proof is completed.

We denote by g x ga(x, y)\—•V^.j'eg the bilinear mapping induced from the
Levi-Civita connection of the Bergman metric on D v i a Φ ^ p . It is given by
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The mapping R(x, y) = [Vx, Vy] —V[JC>y] then corresponds to the Riemannian curvature
tensor of the Bergman metric on D via Φ^ ° p. Since the Bergman metric is Kahlerian,
we have Vx °j =j ° Vx, R(x, y) ° j =j ° R{x, y), and R{jx, jy) = JR(x, y). If x, y e if and u.
it is well-known ([4]) that V^JSfcJίf, Vjjί^%, Vxif cz/if, V ^ c ^ r , and

(1.5) VJX = ((adjx)-(adjxY)/2 on

(1.6) Vx=j°((adjx) + adjx)<)/2 on

(1.7) Vuv = [M, i;]/2 +;[>, i;]/2 e if +/JSP .

2. Quasi-symmetricity (1).

DEFINITION 2.1. For xs^,we define two endomorphisms 4(x) and D(x) of if by

where ad^jx = (adjx)|^ (see (1.5) and (1.6)).

The following is easily verified.

LEMMA 2.2 Let x e n{ah} cz S£ and y e n{cd} c= if.

(i) If {ab} n {erf} = 0 , ίλέw Λ(x)y = 0 and D(x)y = 0.
(ii) A{ra)y = 2 ~ \δac + δjy, and D(ra)y = 0.
Ciϋ)i If a<b, ae{cd), and bφ{cd}, then A(x)y = 2-1(zdjx)ty=-D{x)ye

{}

(iii)2 If a<b, aφ{cd}f and be{cd], then A(x)y = 2~1 (adjx)y = D(x)yen{ab}„{cd}

(iv) If a<b and (a, b) = (c, d), then

A(x)y = 2 " ' <x, y>(rfl/ωΛ + r,M) 6 if 0 ,

DEFINITION 2.3. For x, y e if, let xy = x y = ̂ 4(x)y. Then (J^9 ) is a commutative
distributive algebra over R. We call this the algebra induced from the connection of
(g,y), or simply, the connection algebra of (9,7) (cf. Vinberg [20]).

DEFINITION 2.4. A commutative distributive algebra C is called a Jordan algebra
if (xy)x2 = x( yx2) holds for all x,yeC.

It is well-known (Albert [1], Satake [17]) that if C is a Jordan algebra, then
\_A(x\ A( y)~] is a derivation of C for all x9yeC, where A(x) is the left (or right)
multiplication operator on C by x. It is also known (Vinberg [19]) that if the bilinear
form <x, y}t: = trace A(xy) (x, y e C) is non-degenerate, then the converse is true. As was
proved by Zelow [23], if {S£, •) is the connection algebra of a normal y'-algebra (9,7),
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then <, X is positive definite.

DEFINITION 2.5 (Dorfmeister [11]). A normaly'-algebra (9,7), or the correspond-

ing homogeneous bounded domain Z>, is said to be quasi-symmetric (in the sense of

Satake [16]) if the connection algebra (if, •) of (9,7) is a Jordan algebra.

DEFINITION 2.6. A normal 7-algebra (9,7), or the corresponding homogeneous

bounded domain Z>, is said to satisfy the multiplicity condition if for every simple strong

7-ideal § of (9,7), all roots of type 1 and type 2, respectively, corresponding to the

subalgebra (9,7) have the same multiplicities.

We can now formulate our main result of this section.

THEOREM 2.7. For a normal j-algebra (9,7), the following three conditions are

mutually equivalent:

(J) (9?7) ^ quasi-symmetric.

(D) For every xe&9 D(x) is a derivation of(J?9 •).

(M) (9,7) satisfies the multiplicity condition.

REMARK 2.8. D'Atri and Miatello [9] proved the equivalence (J)o(M)

on the base of the theory of Γ-algebras by Vinberg [20].

For the proof of Theorem 2.7 we need several lemmas. First, the argument

mentioned above yields the following.

LEMMA 2.9 ([1], [17], [19], [23]). For a normal j-algebra (9,7), the condition (J)

in Theorem 2.7 is equivalent to the following'.

(JD) [A(x), A(y)] is a derivation on (if, -)for any x,ye<£.

LEMMA 2.10. For a normal j-algebra (9,7), the condition (D) in Theorem

2.7 is equivalent to the condition (JD) in Lemma 2.9.

PROOF. By definition we see that R(x, y)\# = -\_A(x\ Λ(Yj] for x,ye&. As

equalities between elements in End(if) we have

[_A{x\ A(y)]= -R(x, y)= -R(jxjy)= -[VJJC,

From this we have the implication (D)=>(JD) and the following formula (since

D(ra) = 0 by Lemma 2.2): For xenab with a<b^R, [A(ra% A(xJ] = 2" 1D(x% which yields

the implication (JD)=>(D). The proof is completed.

LEMMA 2.11. For a normal j-algebra (9,7), the condition (D) in Theorem

2.7 is equivalent to the totality of the following three conditions'.

(dl) If xenabag>u yencha<£^ and aφc, then 4A(x)2y = ((x, x}/2ωb)y, or

y, y>/2ωb.
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(d2) If x € nab a <£γ, y G nac c JSPX, and bφc, then 4A(x)2y = «x , x>/2ωfl)>>, or

ad x)^) = <x, x>< y9 y)/2ωa.

(d3) Ifnabφ09thenωa = ωb.

To prove Lemma 2.11 it is convenient to employ the following definition and result.

DEFINITION 2.12. For xaeJ£, set

Φ i , *2> *s) = (D(x1)x2)x3 + (D(x1)x3)x2 -D(x 1 Xx 2 x 3 ),

<5(x1} x2, x3, x4) = < φ c 1 ? x2, x3), x4> = <D(x1)x2, x 3x 4> + <D(x1)x3, x 4x 2>

+ <D(x1)x4,x2x3> .

We note that for an x € <£?, the operator Z)(x) is a derivation on (if, ) if and only if
d(x, , ) = 0, or<5(x, , , ) = 0.

LEMMA 2.13. The trilinear operator d\S£z-+ϊ£ and the quartic form δon <£ are both

symmetric with respect to the prescribed variables.

We will prove Lemma 2.13 in §4.

PROOF OF LEMMA 2.11. Since D(ra) = 0, Lemma 2.13 implies that the condition (D)

is equivalent to

(2.1) (5(x1? x2, x3, x4) = 0 for all xί

Furthermore, (2.1) is equivalent to

(2.2) δ(xux2, x3, x4) = 0 for all xl9 , x4G^fx with (D(xι)x2, x 3 x 4 >

We now assume that

(2.3) X ! e n a b , x 2 e n c d , x 3 e n β / , x4€n^Λ with a<b, c<d, e<f, g<h.

By Lemma 2.2, D(x 1 )x 2 #0 (resp. x 3 x 4 # 0 ) implies {ab} n { c d } ^ 0 (resp. {ef}n

{gh}φ0}. Furthermore, #{{ab) n {cd}) = 2 (resp. = l) implies that xxx2 and D(x1)x2

belong to <£ 0 (resp. to J ^ ) . Therefore, if <D(xx)x2, x 3x 4> # 0 , then one of the following

two cases (a), (b) occurs: (a) # ({ab} n {cd}) = 2, §({ef}n{gh}) = 2, and {ab}n{ef}*0;

(b) #({ab}n{cd})=\, #({*/}n{flΛ}) = l, and {ab}~{cd} = {ef}~{gh}. It follows from

the symmetry of δ that (2.2) is equivalent to the following condition:

(2.4) If xί9 - , x 4 are as in (2.3), then δ(xl9 x2, x3, x 4) = 0 for each of the following

cases:

(i) (a9b) = (c,d) = (e9f) = (g,h).

Cϋ)i (α,i>) = (c,d), (e9f) = (g,h)9 and b = e.

(ii)2 (έi,fc) = (c,d), {e9f) = {g9h)9 b=f and

(ϋ)3 (a9b) = (c9d), {e9f) = (g9h)9 a = e and

(iii)i g = a9 b = c9 d = e9 f=h.
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(iii)2 g = a, b = c, d=f, e = h9 and b<e.

(iii)3 a = e, b = d, c = g, f=h, a<c, and b<f.

We shall examine the condition (2.4) separately in each case.

Case (i): By Lemma 2.2 we have

4(5(xl5 x2, x3, x4)

Thus, (2.4) in case (i) is equivalent to (d3).

Case (ii)x or (ii)2: By Lemma 2.2 we have

4<5(xl5 x2, x3, x4)

= - <x l 5 x2><x3> *4>M> + <L/Xi> *3]> D'X25

Thus, (2.4) in case (ii)2 is equivalent to (dl). On the other hand, (2.4) in case (iϊ)ί a

priori holds by Lemma 1.1.

Case (ii)3: By Lemma 2.2 we have

1 ? x2, x3, x4)

Thus, (2.4) in case (ii)3 is equivalent to (d2).

Case (iii)± or (iii)2: By Lemma 2.2 we have

4δ(xί9 x2, x3, x 4) = <[/χ l9 χ 2 ] , [jχ 4, χ 3 ]> - <(ad/x1yx4, L/x2, x 3]>

= <(adjx2)
ίx1, [;x4, x3]>-<(ad</x4) ίx1, [jx2, x3]> .

Thus, (2.4) in case (iii)! or (iii)2 a priori holds by Lemma 1.2.

Case (iii)3: By Lemma 2.2 we see

4<5(xί5 x2, x3, x4) = <[;x l 5 x 2 ] , | jx 3 , x 4]> - <(adjxjx3, (ad;x2)
fx4>

^ 3 ) ί x 1 , (ad;x2yx4> .

Thus, (2.4) in case (iii)3 is equivalent to >l(x3)>l(x2)x1=y4(x2)>4(x3)x1. On the other

hand, Lemma 1.1 asserts that A(x2)A(x3)y = A(x3)A(x2)y for all yenac, so that

^(x2)
2A(x3M(x2)x1=v4(x2)A(x3)yl(x2)

2x1. Observing (dl) and (d2) to the effect that

4Λ(x2)
2x1 = (<x2,x2>/2ω i,)x1, 4A(x2)

2>; = (<x2,x2>/2ωc)>; for all yenφ we see that

(2.4) in case (iii)3 is a consequence of (dl), (d2), and (d3). The proof of Lemma

2.11 is completed.

LEMMA 2.14. Assume that a normal j-algebra (9,7) is simple and satisfies the

conditions (dl) and (d2) in Lemma 2.11. Then nab = b12for all a, b with

PROOF. Let xenab — {0} with a<b^R. By (dl) as well as Lemma 1.1 we see that

for every ce{\ R} — {ab}, A(x) is an injection from n{bc} to n{αc}, so that nbc^nac.
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Similarly, by (d2) as well as Lemma 1.1 we see that for every ce {1 R} — {ab}, A(x)
is also an injection from n{ac} to n{bc}, so that nac^nbc. Thus, for every a, b in {1 R}
with aφb, if nabφ0 then nac = nbc for all ce{\ R} — {ab}. From this we see that for
distinct a, b, ce{\ R}, nabΦ0 and nbcΦ0 imply nac = nab = nbc. It follows from the
connectedness of {1 R} (Lemma 1.4) that nab = n12 for all a, b with a<b. Lemma
2.14 is proved.

PROOF OF THEORM 2.7. If the rank R of (g,y) is one, then all three conditions
trivially hold. Thus, we assume R^.2. The equivalence (J)o(D) follows from Lemmas
2.9 and 2.10. To show the equivalence (D)o(M), by Lemma 2.11 we may prove the
equivalence (dl)Λ(d2)Λ(d3)o(M). Assume (dl), (d2), and (d3) hold, and take any
simple strongy-ideal g of (g,/) with I={ae{\ R}; rae§}. Then by Lemma 2.14 we
see that nab (a, bel,aφb) are constant. In view of (1.2), (d3) implies (M). To prove the
converse we assume that (M) is satisfied. Decompose g into simple strong y-ideals
9i> ' ' •> 9P with Is={ae{\ R};rae$s} (Lemma 1.4). If αe/ s, belt, and sφt, then
nab = 0. It follows from (1.2) that (d3) holds. To show (d2), let a < b < c^R, xe nab- {0},
yenac — {0}. By Lemma 1.1 we see that

(2.5) <[;x, z ] , [jx, z]> = <x, x><z, z>/2ω b for zenbc.

This means that (adjx)\nbc:nbc^nac is injective, so that it is a n i somorphism by (M)

because a, b, c all belong to an Is. Take zoenbc such that (adjx)zo = y. Then, by (2.5)

we see t h a t <(ad7x) f^, z> = < « x , x>/2ω c)z 0, z> for all zenbc. T h u s

| n α c

so that once more (2.5) yields <(adjxyy, (adjx/y) = <x, x>< y, y>/2ωb; therefore by (d3)
we have (d2). Next, to show (dl), let a< c< b ̂  R, and xenab — {0}. Similarly to the above
argument, instead of Lemma 1.1, (d2) implies that (ad xy |Παc: nac-+ncb is an isomorphism
and that

(ad./x)L = «x,

which yields (dl) because ωa = ωb. The proof of Theorem 2.7 is completed.

3. Quasi-symmetricity (2). In this section we study a condition for a normal
7-algebra (Q,J) to be quasi-symmetric, which is related to the subspace ^ , where
g = & +j& + %. We denote by End(^r, j) the totality of ally-invariant endomorphisms of
%. It is well-known (e.g., [17]) that the space End(^,y') endowed with the product

(3.1)

is a Jordan algebra with the identity transformation as the unit.

DEFINITION 3.1. For xe j£f, we define an endomorphism φ(x) of °U by
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(φO) φ(x) = - 2; o V, \% = (ad^jx) + (ad^jxf

(see (1.6)). In fact, φ)eEnd(%,j).

The following is easily verified.

LEMMA 3.2. Let uencoo.

(i) φ(ra)u = δacufor aliae{1 R}.

(ii) For every x e n α b w/ίλ a<bfLR, φ(x)u = δbc(&djx)u + δac(adjxyueδbcnaa0 +

&acnb oo •

We denote by F c = V+iV the complexification of a real vector space V.

DEFINITION 3.3 ([15]). For u, ve%, we define F(u,v)e^c by 4F(u, v) = [ u, t;]

We extend the inner product <, > on g to a unique complex symmetric bilinear

form on gc (cf. [13]).

LEMMA 3.4. For every xeJ?, φ(x)eΈnd(^) is characterized by the following

mutually equivalent conditions:

(φl) (φ(x)u, v} = <x, Q'w, vj) for all u,ve°U.

(φ2) <r, [φ(x)u,ι;]> = <x, [M,Γ]> for all u,ve<%.

(φ3) <r, F(φ(x)w, I?)> = <x, F(u, v)} for all u,ve<%.

PROOF. The equivalence (φθ)o(φl) follows from

<((ad/x) + (adjx)>, v} = <[jx, II], ι;> + <M, [ X, I?]> = <[;x, ύ], v

We note that each condition (φϊ) implies that φ(x)oj=j°φ(x), so that the equivalence

(φl)o(φ2) follows from the fact <r, [ju, ^ ] > = <M, V}9 and the equivalence (φ2)o(φ3)

follows from the definition of F and the extension of <, >.

DEFINITION 3.5 ([16]). Let xe£f. We say that φ{x)eΈnd{ύUJ) is associated to

A(x)eΈnd(&) if they satisfy

(αO) 2A(x)F(u9 v) = F(φ(x)u, v) + F(u9 φ(x)v) for all u, v e %.

Here we regard Λ(x) as a C-linear endomorphism of J£?c.

LEMMA 3.6. For xeS£, the condition (αO) is equivalent to each of the following seven

conditions:

(αO)' 2Λ(x)[u, v\ = lφ(x)u, ύ] + [w, φ{x)v] for all u9ve<%.

(αθ)/r (adjxflu, υ] = [(ad x)^, ύ] + [M, (ad;x)fι;] for allu,veW.

(αO)'" /7,[κ, ϋ] = [ J V A I;] + [M,/V,I;] /or fl// II, i; e « .

(α 1) 2φ(xy) = φ(x) ° φ( y) + φ( >;) o φ(χ) o w tfl for
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(αl)' (p((3Ldjx)y) = (adyjx)o φ(y) + φ(y)o(adwjxy on % for

(α2) 2<xy, F(u, ι>)> = <r, F(φ(x)u, φ(y)v) + F(φ(y)u, φ(x)v)} for all ye^ and u9ve

((x2)' 2<xy, [w, v]> = <r, [φ(x)u, φ(y)i>] + [φ(y)u, φ(x)υ]>/or all y e <£ and

We remark that (αl) means that φ is an algebra homomorphism from the connec-

tion algebra (if, •) to the Jordan algebra End(^,j) with the product (3.1).

PROOF OF LEMMA 3.6. The equivalence (αθ)'o(αl) follows from the equality

<2φ{xy)u - φ{x)φ( y)u - φ( y)φ(x)u, v} = (y, 2A(x)tju, v] - [ w, φ{x)υ\ - [φ(x)ju, *>]> ,

which follows from (φl). The equivalence (αθ)/<^>(α2)/ follows from the equality

<2A(x)[u, v] - lφ(x)u, v] - [w, φ{x)v\ y)

= 2 < [ M , U], x>;> - <r, \_φ(x)u, φ(y)υ]

which follows from (φ2). The equivalences of the conditions (αO), (αθ)', (αθ)r/, (αθ)r/' are

easy to see, and so is the equivalence (<x2)o(<x2)'. To prove the equivalence (αl)o(αl) ' ,

it is sufficient to prove the following: φ^άjxjy) = (ad^/x)' ° φ( y) + φ( y) ° (ad^yx) on °U.

Using (φl) we see this as follows:

9 v}

= <y> DXIM vj] - [ju9 [jx, i?]] - UJxju], ι?]>=0

for all u,ve<%. The proof is completed.

We shall give an alternative proof of the following result of Dorfmeister [11] by

using the theory of normal 7-algebras.

THEOREM 3.7 ([11]). If a normal j-algebra (QJ) is quasi-symmetric, then the fol-

lowing holds:

(A) For every x e J£f, φ(x) is associated to A(x).

Furthermore, the condition (A) is equivalent to the quasi-symmetricity of (9,7), pro-

vided that every strong j-ideal § of($,j) satisfies <#^{0}, where a> = &'Λ-jS' + Φ.

To prove Theorem 3.7 we need some lemmas.

LEMMA 3.8. For a normal j-algebra (9,7), the condition (A) in Theorem 3.7 is

equivalent to the totality of the following two conditions:

(al) If xenab9 yencb, a<c<b^R, and uenao0, then φ(y)φ(x)u = 2φ(xy)u9 or

φLdjxfu, (μdjyfvy = <[jx, y], [ M, vj) for all venca0.

(a2) If xenab, a<b^R, and uenaao, then φ(x)2w = «x, x>/2ωα)u, or <(ad;x)'u,

(ad x)^) = <w, !?><*, x>/2ωα for all venfl00.

PROOF. By Lemma 3.6, (A) is equivalent to the following condition:
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(3.2) 2φ(xy)u = φ(x)φ( y)u + φ{ y)φ{x)u for all x e nab , y e ncd, and

ueneo0 with a^b^R

We notice that (3.2) is symmetric in x and y. If a = b and x = rα, then 2φ(xy)u =

{δac + δad)φ{y)u. Since φ(x)u = δaeu and φ(y)we<5cβn^+<5dencoo, we see that (3.2) a

priori holds. If {ab}n{cd} = 0, then (3.2) holds trivially. We assume that a<b, c<d,

and #({ab}n{cd})=\. First suppose ft = c. Then, 2xy = (dLdjx)yenad. If eφ{ad}, then

(3.2) trivially holds. If e = α, then (3.2) becomes (adj[jx, j;]yu = (ad^/(adjx/M, which

a priori holds (Lemma 1.2). If e = d9 then (3.2) becomes [j[jx, y], u] = [jx, \_jy, u]],

which also a priori holds (Lemma 1.2). Next, suppose a = c. Then, 2xy = (ad7x)ί)>en{M}.

As in the first case, if eφ{bd}, then (3.2) holds trivially. Assume ee{bd}9 say e = b,

without loss of generality. Then, (3.2) becomes φ((adjx)ίy)M = (adj^)ί(ad7x)M, or

<(adjx)^, Ljuiv']y = {φ((eidjx)ty)u,v} = {ljx,u], [jy,ύ]y for all vendoo (by (φl) in

Lemma 3.4), which a priori holds (Lemma 1.2). Therefore, we have proved that the

condition (3.2) for # ({ab} n {cd}) = 1 is equivalent to (al). Finally, we assume that

(a, b) = (c, d) with a < b. Then,

2φ(xy)u = <x, y}(φ(ra)u/ωa + φ(rb)u/ωb),

so that (3.2) with e = b a priori holds (Lemma 1.1), and that (3.2) for #{{ab) n {erf}) = 2

is equivalent to (a2). The proof is completed.

LEMMA 3.9 ([8; item (4)]). If nbaoφ0, then nab = [nao0, nbo0] for all a<b. More

precisely, «u , u}/2ωb)x = [(adjx^u, u] for all xenab and uenbaD.

PROOF OF THEOREM 3.7. In view of Theorem 2.7, we may assume that the condition

(M) holds. We may further assume that (9,7) is simple and that the rank R of (g,y) is

greater than one. Then, nab = n12>0 for all a < b ̂  R, and nao0 = nγ ^ for all a ̂  R, so that

(3.3) ωa = ωί for all a^

We shall first derive (a2) in Lemma 3.8. To do so, let xenab with a<b^R. Observing

(3.3), by Lemma 1.1 we see that

(3.4) <[;x, vl [ x, ι/]> = <x, x><t;, vfy/2ω1 for all v, v'enba0.

This means that (adjx)|nboo:nboo-^nαoo is injective, so that it is an isomorphism. For

every u0enaoD, take voenb(X) such that (adjx)vo = uo. Then, by (3.4) we see that

((adjx/uo, i;> = <«x, x>/2ω!)t;0, ι;> for all venbao. Since (ad x y n ^ c n ^ , it follows

that

|n α o o = «x, x>/2ωM*djx) \nb J " x ,

so that (3.3) yields (a2). To derive (al) in Lemma 3.8, let xenab — {0}, yencb — {0},

a<c<b^R, and wenβ00, ren c o o . Set ι/ = φ(x)uenboo, ί ̂ φ ί ^ e i t b ^ . Since (a2) holds,

we have φ(x)w/ = «x, x ^ ω j w , and φ(yK = «y, y^βω^v. Thus,
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[ju, v] = (4ω?/<x,

On the other hand, we see

[jφ(x)u\ φ( y)υ'] = \_jφ{x)u\ \Jy9 ι/]] = \Jy9 ίjφ(x)u\ v'J] (Jacobi's identity)

= DIM*)"'* v'~\, y] .

By (dl) in Lemma 2.11, utilizing Theorem 2.7, we see

<ίKjφ(Φ', <L y\ DX y\> = <Uφ(Φ\ *>']> x>< y9 y)/2ω1

= <ίjv\ φ(x)u'l x>< y9 y)/2ωί = <φ(x)ι/, φ(x)M;>< y,y}/2ω1 (Lemma 3.4

= <x, x><u', i/>< Λ y>/(2W l)
2 (Lemma 1.1).

Therefore, we get <|jw, t;], |jx, y]> = <Mr, t;'>, which is (al). Thus, by Lemma 3.8 we

conclude that (A) holds.

To prove the second assertion of Theorem 3.7, we assume that every simple strong

/-ideal g of (gj ) satisfies $ Φ {0}, where g = S£ +j& + <#, and assume that (A) holds, i.e.,

(al) and (a2) hold. By Lemma 1.4 we may assume that (g,y) is simple. Then,, % itself

is non-zero. By (a2) we see that if nabφ0 then naoo=nboo. It follows from the simplicity

of ( g j ) and from the fact %φ{0} that

(3.5) «αoo=«iαo>0 for all a^R.

We shall derive (dl) and (d2) in Lemma 2.11. Let xenab, ysncb with a<c<b^R.

Observing (3.5), by Lemma 3.9 we can take uencao and venboo such that y = {u,jυ~\.

Then, [jx, y] = [uJljx, vj]. It follows from (al) that

(3.6) <(adJXJΊJX, I;], (adjyfuy = <D'x, y]9 \J[ x, t;], iι]> .

The right hand side of (3.6) becomes — <|jx, y], [ jx^])- The left hand side of (3.6)
becomes

\ φ( y)u} = <φ(x2)t;, φ( y)u} (by (A))

= « x , xy/2ωb)<Ό9 φ(y)w> = «x, x>/2ωft)<>;, [ju, ι;]> (Lemma 3.4 (φl))

Thus, (dl) is established. To derive (d2), let xen f l b, yenac with a<c<b^R. Take

uenao0 and yGttC00 such that y = \_ju,v] (Lemma 3.9). Put z = (2iάjx)tyencb. It follows

from (al) that

(3.7) <(&djx)% (ad jzYυy = <[jx, z], [ M, I;]> .

The right hand side of (3.7) coincides with <z, z>. The left hand side of (3.7) becomes

φ(z)v} = 2<φ(x)u, φ(xy)v} = <φ(x)u, φ(x)φ( y)v> (by (A))
2 2)M, φ{ y)v} (by (A))
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= «x, x>/2ωβ)<u, φ ( ^ > = «x, x>/2ωaKy, \Jυ, u]> (Lemma 3.4 (φl))

Thus, (d2) is established. By Lemma 2.14 as well as (3.5) we conclude that (M) holds.

The proof of Theorem 3.7 is completed.

4. The holomorphίc sectional curvature. In this section we consider the

holomorphic sectional curvature of the Bergman metric on any homogeneous bounded

domain D with the corresponding normal j-algebra (g,j).

DEFINITION 4.1 ([12]). We define a quartic form R(, , ,) on g by

ί9 x2, x3, x4) =

forx f l eg(α=l, , 4) (see §1).

In § 3 we have extended the inner product < , > to a unique complex symmetric

bilinear form on gc. We also extend [, ] and V (resp. R{,)) to complex bilinear mappings

from gc x gc to gc (resp. to End(gc)) Similarly, we extend R(,,,) to a complex quartic

form on gc. We notice that

(4.1) R(zu z29 z39 z 4 ) = R(zί9 z2, 2^ z 4 )

for z a e t f (a = U •••,4).

DEFINITION 4.2. We consider the holomorphic part c$Λ = {x e gc; jx = /x} of gc, which

corresponds to the holomorphic tangent space T^D at the point p via Φ+ ° p (see § 1),

and the natural mapping χ from g onto gΛ given by χ(x) = (x —i/x)/2, xeg.

NOTATION 4.3. Set L = χ(^\ U=χ(<%\ Lab = χ(nabl and Ua = χ(naao). Thus, we

have direct sum decompositions

(4.2) 8* α ^ Λ

We notice that < , ~> is an Hermitian inner product on gΛ satisfying <χ(x), χ(x)> =

<x,x>/2 for xeg, and that the decompositions (4.2) are orthogonal with respect to

< , ~>. We note that R(γ^j9 χ(x^), z3, z4) = 0, R(z39 z4, χ(x^), χϊx^) = 0 for all xl9 x 2 eg

andz3,z4Gg c.

NOTATION 4.4. For xa e g (a = 1, , 4) set

One can easily see that

(4.3) 4RXίΊΓ2X-4 = S(xl9 x2, x3, x4) + i5(x1? x2, x3,;x4),
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where S(xί9 x2, x3, xA) = R(xl9 X2, * 3 , * 4 ) —R(x ί 9jx2, XsJ**)- We note that

We need the following result.

LEMMA 4.5 ([4; Lemma 4.1]). For xae££ and ube<%, the following hold:

(LL|UU) RXir2X3iΓ4 = 0;

(LL|LU) ^ , ^ 3 ^ = 0 ;

(LU|UU) K ^ = 0

We have left Lemma 2.13 unproved and used it in §2. Here, we shall prove both

Lemma 2.13 and the following lemma together.

LEMMA 4.6 For xa e S£, it holds that

( L L I L L ) 4RXlX-2X3X-4 = <XiX2, x 3 x 4 > + <XiX4, * 2 * 3 > - O i * 3 , *2*4> + S(xl9 x 2 , x 3 , * 4 )

(see Definition 2.12).

PROOF OF LEMMA 2.13 AND 4.6. It was proved in [4; Lemma 4.2 (i)] that

4Rx,χ-2X^=<*3*2> [7x4, ^i]> + <*i*2> D'^4, ̂ 3 ]> ~ <*&u (ad;x4)'x2>

It follows from the formulas (ad jx4) = ̂ (x 4) + D(x4) and (ad7x4y = ̂ 4(x4) —D(x4) that

(4.5) 4RXl-x-4 = {xίx2, x 3x 4> + <XiX4, x 2x 3> - <X!X3, x 2x 4> + <5(x4, xl9 x2, x3)

We shall show Lemma 2.13 on the base of formula (4.5). From the definition of d it

is trivial that d(xu x2, x3) = d(x1? x3, x2). By (4.5) we have

Since ΛJC2^χ4^ = ̂ x 2 ^χ 4 ϋ (bY ( 4 4)X ι t follows that <rf(x1,x2,x3

x4> for all x 4 e i f . Thus, φ c l 5 x 2 , x3) = d(x3, x2, xx). Therefore, the symmetricity of d

follows. It is seen by the definition of δ that <5(xl5 x2, x3, x 4 ) = δ(xl9 x2, x4, x 3). Com-

bining this with the assertion just proved, we get the symmetricity of δ. Lemma 2.13

is completely proved. Formula (LL|LL) in Lemma 4.6 is now obtained by (4.5) and

the symmetricity of δ.

LEMMA 4.7. For xae<£ and ube%, it holds that

(LUILU) 4 t f X l - U 3 - = -2<r, F(φ(xx)u^ φ(x2)u4)> + 4<xxx2, F(u3,

PROOF. By (4.4) as well as (4.3) we have

ιx2, vU4u3y-<yU4x2, v x i
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We have

2<V,, X2,VU 4K3> +
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X 2 Ϊ ["4,«3]> (by (1.7))

2> CM, u3])-Kx1x2, [w4, W 3]> (Definition 2.1)

= 4<xxx2, F(M3, U 4)> (Definition 3.3) .

We also obtain

2<VU4x2, VXlu3> + 2ί<;VU4x2, V X I M 3 > = 2<VX2w4, VXlu3> + 2i<jVX2w4, VXlu3>

= 2 ~ 1 < > ( X 2 ) M 4 , φ(x1)M3> + 2-1i<φ(x2)JM4, φ(x!)t/3>

= 2" 1 <x 1 , [;M3, φ(x2)u4]> + 2- 1i<x 1, [ > 3 , φ(x2);*M4]> (Lemma 3.4 (φl))

= 2<x1? F(w3, φ(x2)w4)> = 2<r, F(φ(x1)w3, φ(x2)u4)> (Lemma 3.4 (φ3)) .

Thus, we have the desired formula.

The following is well-known.

LEMMA 4.8 ([4; item (5.9)]). For uhe%, it holds that

(UUIUU) 4RU - u - = 8<F(w1? u2% F(u3, ι/4)> + 8<F(iι1, t/4), F(u3, u2)> .

For z e g —{0}, the holomorphic sectional curvature HSC(χ(z)) of the direction

χ(z)e$h — {0}, or the sectional curvature of spanR{z,7z}, is given by

) = R(zJz, z,jz)Kz9 z}(jzjz> = -/W<χ(z) , W)>2= "4K z^/<z, z>2

(see [13], [3]). Concerning this we shall show the following.

THEOREM 4.9. For z=x + jy + ue§ with x,ye& and us%, the following holds:

*R2-2ZZ = 4<* 2, y2y + <(x + >02, (x-y) 2 > + δ(x9 y) + 8<F(φ(x- ίy)u, φ(x - iy)u\ r>

+ 16«F(u, u\ x2> - <F(φ(x)M, φ(x)u), r » + 16«F(u, u\ y2}

-<F(φ(y)u, φ(y)u), r » + 16<F(w, u\ F(u9 ιι)> ,

(5(x, y) = ̂ (x, x, x, x) + 2<5(x, x, y, >;) + δ( y, y, y, y\ and φ(x + I»M = φ(x)u +jφ( y)u.

PROOF. By Lemma 4.5 we see

^Rzzzz = 4 ^ J C + jy χ + jy x + jy x + jy + 1 "^jc + jy x + jy u

Since RXί—X3~eR for all x f le <£?, we have

4 ^ x + jy x + j> x + J>JcTj

It follows from Lemma 4.6 that
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= «x 2, x2} + δ(x, x, x, x)) + « y\ y2> + δ(y, y, y, y))

+ 4«x 2 , y2> + δ(x, x, y,y))-2(2<xΛ xy>-<x 2 , )>2> + <5(x, x, y, y))

= <x2, x2> + 6<x2, y2) + < y2, y2> -4<xy, x>>> + <5(x, y)

By Lemma 4.7 we see

r> +4<F(w, u), x2>

-2{F(φ(y)u9 φ(y)u), r> + 4<F(M, M), y2>-4<ImF(φ(x)M, φ(y)u)9 r>

- iy)u, φ(x- iy)u\ r> + 4«F(M, W), x2> - <F(φ(x)u, φ{x)u\ r »

ii), y2>-<F(φ(y)u, φ(y)W), r » .

The last equality follows from the fact F(v— w, ι;-jw) = F(ϋ, υ) + F(w, w) —2 Im F(v, w)

for i ; , w e l Finally, by Lemma 4.8 we have 4RύihΛ= 16<F(M, M), F(M, M)>. This completes

the proof.

COROLLARY 4.10 (Zelow [21], [22]). If{§J) is quasi-symmetric, then for z = x+jy

+ u with x,yeS£ and ue%, it holds that

-I»M, φ{x-iy)u\ r>

PROOF. Assume (9,7) is quasi-symmetric. Then, Theorem 2.7 implies that D(x) is

a derivation of (if, •), so that δ(x, y) = 0 in the formula in Theorem 4.9. Furthermore,

Theorem 3.7 and Lemma 3.6 imply that <F(w, u), x2> = <F(φ(x)u, φ(x)w), r> etc. There-

fore, the desired formula follows from Theorem 4.9.
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