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Introduction. It is well-known that to every biholomorphic equivalence class of
homogeneous bounded domains in C”", there naturally corresponds bijectively an
isomorphism class of normal j-algebras of dimension 2n. On the base of normal
Jj-algebras, curvature properties of the Bergman metric on a homogeneous bounded
domain were discussed in [4], [5], [6], [7], [8], [9].

In this paper we first define the notion of a “strong j-ideal” of a normal j-algebra
such that the decomposition of a normal j-algebra into simple strong j-ideals is precisely
related to the decomposition of the corresponding homogeneous bounded domain into
irreducible ones as Riemannian manifolds with respect to the Bergman metrics (Lemma
1.4).

Let (g, /) be a normal j-algebra with n=[g, g] and a be the orthogonal complement
of n. Let

gzznab+2jnab+znaoo

be the root space decomposition of g with respect to the adjoint representation of a on
n. Let £=Yn,, % =Y n,,. For xe %, we define two endomorphisms of % by
A(x)=2"Y(ad g jx) + (ad »jx)"), D(x)=2"'((ad & jx)—(ad &jx)"), and an endomorphism
of % by ¢(x)=(adejx)+(adgjx)'. For x, ye &, let x-y= A(x)y. Then, (£, ‘) is a com-
mutative distributive algebra over R. If (&, -) is a Jordan algebra, the corresponding
homogeneous bounded domain is said to be quasi-symmetric in the sense of Satake
[16] (cf. [11]). We consider the following conditions on (g, j):
J) (&, -)is a Jordan algebra.

(D) For every xe &, D(x) is a derivation of (&, -).

(M) For each simple strong j-ideal § of (g, ), all root spaces n,, = § (a<b) are of
the same dimension and so are all n,, =g.

(A) 20(x-y)=¢(x)°@(y)+@(y)°e(x) on % for all x,ye .
The main purpose of the present paper is to show that (J), (D), and (M) are mutually
equivalent, that (M) implies (A), and that if (g, j) is simple with % # {0}, then (A) implies
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(M) (Theorems 2.7 and 3.7). Parts of these assertions are well-known; the equivalence
of (J) and (M) was first proved by D’Atri and Miatello [9], and the equivalence of (A)
and (J) was proved by Dorfmeister [11]. Their original proofs are based on other concepts
representing homogeneous bounded domains, than normal j-algebras. Our proofs are
based only on the theory of normal j-algebras.

In the final section, we establish a formula giving the holomorphic sectional
curvature of the Bergman metric on any homogeneous bounded domain in terms of
the corresponding normal j-algebra (Theorem 4.9). As a corollary, employing results
in preceding sections, we obtain Zelow’s formula [21], [22] of the holomorphic sectional
curvature on any quasi-symmetric bounded domain.
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preparation of the present paper. The author would also like to thank the referee for
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1. Preliminary. Let D be a homogeneous bounded domain in C". Let G be a
maximal triangular analytic Lie subgroup of the group of all biholomorphic trans-
formations of D, and let g be its Lie algebra. Fix any point p in D. Then the mapping
@ :Gafr—f(p)eD becomes a diffecomorphism, and we get two R-linear isomorphisms
p:g3x+x,eT,Gand &, :T,G —»TxD, where T,G and TRD are the tangent space at the
identity mapping e€ G and the real tangent space at p e D, respectively. Let je End(g)
be the endomorphism induced from the complex structure of TRDvia®,©p, and <, )
be the j-invariant inner product on g induced from the Bergman metric at THD via
@, °p. Let w e g* be the Koszul form on g, i.e., w(x)=2"" trace((ad jx) —j° (adx)), xe g.
Then it is known ([14]) that {x, y> =w[jx, y]. The Lie algebra g over R with complex
structure j obtained in the above manner becomes a normal j-algebra (see [15]), that
is, (g, j) satisfies the following three conditions:

(j1) The algebra g is triangular, that is, it is solvable and every eigenvalue of ad x
is real for any xeg.

(j2) Nijenhuis’ condition holds, that is, [jx, jy]1=j[jx, y]1+j[x,jy]1+[x, y] for all
X, yEQ.

(j3) The bilinear form <{x, y>=w[jx, y] defined from the Koszul form w is a
J-invariant inner product on g.

Set n=[g, g], and a=n<. The dimension of a is called the rank of D. For any form
a€a* on a, set n(a)={xen;[h, x]=a(h)x for all hea}. Every element of the set
A={aea*;n(x)#{0}} is called a root (under the adjoint representation of a on n). The
structure theorem of Pyatetskii-Shapiro [15] says the following:

(n1) The subspace a is a non-zero abelian subalgebra of g, and n has an orthogonal
decomposition Y, mn(a).
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(n2) There are R roots &, - - -, &g such that ja is the direct sum of the 1-dimen-
sional root spaces n(g,), 1<a<R, and that every other root is of one of the forms
(e.*&)/2, €,/2, where a, b, ce{l, - - -, R} with a<b.

n3) jn((e,+€)/2)=n((e,—&,)/2) for a<b, and jn(e,/2) =n(e,/2) for all a.

We fix some notations. Let r,en(g,) be unique elements such that ¢,(jr,)=4,, for
a,be{l, -+, R},and let r=YX_ r, We say that any root in 4o={e,, - - -, &g} is of type 0,
onein 4, :={(¢,+&,)/2€4;1<a<b=< R} of type 1,and onein 4,:={¢,/2e 4; 1<a<R}
of type 2. Put ;=3 _,n(@) (i=0,1), =Lo+%,and %=}, _, n(«). Thus, jL,=a,
g=Z+jL+U. If a,b,ce{l, ---, R} and a<b, then we set n,,=n((e,+¢,)/2), N =
n(e./2). We sometimes denote a set {a;, - - -, @} by {a, - - - a,} (Without commas), if it
causes no confusion. If @, be{l, - - -, R, 0} and (a, b)#(c0, o), then the symbol 1,y
stands for n,, when a<b, and n,, when a>b. Set

(1.1) nab=dim n(ab} .

We denote the cardinality of a set S by #S, For two sets {ab} and {cd} with
#({ab} n{cd})=1, letting {ab} n{cd}={g}, {ab}={ge}, and {cd}={gf}, we denote the
set {ef} by the symbol {ab}~ {cd}. For example, if a#b then {aa} ~{ab} = {ab}.

It is well-known ([18], [4]) that w(x)=0 for xea+j ¥+ ¥, +%, and

1 1
(1.2) a)a:=a)(ra)=l+?Zb$a,b§Rnab+ Inaw

for ae{l --- R}. For an endomorphism A € End(g) we denote by 4' the adjoint oper-
ator of A with respect to {, ). The following two facts are useful in our argument.

LemMA 1.1 ([15; Theorem 2, p. 61]). Let 1<a<b<c=Zo. If xen,, and yen,,
then

<[jx’ y]’ [jx, J’]> = <x9 x>< y’ y>/2wb , or
(adjx)'(ad jx)y =({x, x3/2w,)y .

LeMMA 1.2. Let a<b<c= o, b<d= o, and c#d. If xeny, yen,, zen,,, and
wen,,, then

{(adjw)'(adjy)'x, z) =<(adjy)’(adjw)'x, z>, or
{(adj[jx, y])'w, z) =<(adjy)(ad jx)'w, z) .

ProoF. By Jacobi’s identity we have (adjw)adjy)z=(adjy)(adjw)z, which im-
plies the first assertion. Since (adj[jx, y])'w=(adjw)[jx, y], [jx, y]=(adjy)'x, and
(adjw)'x = (ad jx)'w, the second assertion follows.

The following definition and lemma are useful in our argument.

DEerFINITION 1.3. A subspace § of a normal j-algebra (g, j) is called a j-ideal of
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(g,j) if § is a j-invariant ideal of g, and it is called a strong j-ideal of (g,j) if § is a
non-zero j-ideal of (g,j) and satisfies (adx)’§ = § for all xed. If g possesses no
strong j-ideals except itself, (g, j) is said to be simple.

LEMMA 1.4. A normal j-algebra of rank R is simple if and only if the set {1 - - - R}
of integers is connected in the sense (cf. Asano [2]) that for every pair a, b in {1 - -- R}
there exists a sequence a=ay, ** -, @y=b in {1 --- R} with n,, , #0, i=1, -, k (see
(1.1)). Every normal j-algebra g is a direct sum of simple strong j-ideals g,, - - -, g,, and
every simple strong j-ideal is one of the g;.

ProoF. Let § be a strong j-ideal of a normal j-algebra (g,j). Take an element
ze§—{0}, and express it in the form z=x+jy+u, where x, ye ¥ and ue%. Then,
daljr, z]=x+2"tu, §3 —j[jr,jz]=jy+2 'u, and §a[jr,jy+2" 'u]=4"'u, so that
x, jy, and u belong to §. Assume x#0 or y#0, say x#0. Write x=),,X,,, Where
X €Ng,. Then, for each pair a,b in {1 --- R} with a<b, we have §3[jry, [jr, x]1=
4~ 'x,, so that all x,,, a<b, and x'=} x,, belong to §. Furthermore, x,,=[jr,, x']1€3
for any a. If x,, #0 for some a<b then §3[jx,,, X.5] =< Xz, Xap ¥/ 04; While if x,,#0
then r,e §. Thus, we obtain the following:

(1.3) There exists an a such that r,€§.

A similar argument shows that the assumption u#0 also implies the claim (1.3). We
shall show another claim:

(1.4) If r,ed, b#a, and n,,#0, then r,€g.

Indeed, let xen,—{0}. Then, x=2[jr,, x]€d. If a>b then §s[jx, x]={x, Xx)ry/w,,
while if a <b then by the strongness of § we have §3a(adjx)'x = (x, x)r,/w,. Thus, (1.4)
is proved. Now, if we assume {1 --- R} is connected in the prescribed sense, then by
(1.3) and (1.4) we see that all r, belong to §. It follows that §=g. Therefore, g is simple.
When (g, /) is arbitrary, we decompose the set {1 - -+ R} into connected components

-, I, in the prescribed sense. Since 1, ={0} for all ael, bel, with s#¢, if for
every s we set 4 ={e,; ael}, AP ={(e, +&y)/2€4;a, bel, a#b}, 49 ={¢c,/2€ 4; acl},
LO=Y{n(a); ae 4P u 4P}, and #90=Y {n(a); € 49}, then g,: =L+, L+ U are
simple strong j-ideals of (g,j) and g=g,+ ‘- - +g, (direct sum of subspaces). To
prove the last assertion of Lemma 1.4, let § be a simple strong j-ideal of (g, ).
Set I={ae{l --- R};r,ed}, Zo—{ea, ael}, Zl ={(e,+8)/2€4; a,bel,a#b}, 4,=
{ed/2€4; aeI} P=Y{n(a);aedyud,}, and %=y {n(x); xed,}. Then, we see that
=2+ ],‘Z +4/. Since § is simple, I is connected so that /< I, for some s. By (1.4) we
see I=1, so that §=g,. The proof is completed.

We denote by gxga(x,y)—V,yeg the bilinear mapping induced from the
Levi-Civita connection of the Bergman metric on Dvia @, p. It is given by

V,y=27'(x, y]—(ad x)'y —(ad y)'x) .
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The mapping R(x, y)=[V,, V,]—V|,,,; then corresponds to the Riemannian curvature
tensor of the Bergman metric on D via @, ° p. Since the Bergman metric is Kéhlerian,
wehaveV oj=joV,, R(x, y)oj=jo R(x, y),and R(jx, jy)=R(x, y). If x, ye L and u, ve %,
it is well-known ([4]) that V; Y < ¥, V, U <U,V, ¥ cj¥,V, U <%, and

(1.5) == ((ad jx)—(adjx))/2 on L+U,
(1.6) V.=je°((adjx)+adjx)")/2 on £+,
1.7 Voo=[uvl2+jlju,v]2e L +;j&% .

2. Quasi-symmetricity (1).
DErFINITION 2.1.  For xe %, we define two endomorphisms A(x) and D(x) of ¥ by
A(x)=—j° V| =2"(adgjx)+(ad £ jx)) ,
D(x)=V|o=2""(ad g jx)—(ad£jx)) ,
where ad & jx=(ad jx)|¢ (see (1.5) and (1.6)).
The following is easily verified.

LeEMMA 2.2 Let xeng, =% and yen,cZ.
(i) If {ab}n{cd}=F, then A(x)y=0 and D(x)y=0.
(i)  A(r)y=2""(0s+ 94y, and D(r,)y=0.
(ii); If a<b, ae{cd}, and b¢{cd}, then A(x)y=2"'(adjx)y=—D(x)ye
Niapy~ ey © L 1-
(i), If a<b, a¢{cd}, and be {cd}, then A(x)y=2""'(adjx)y=D(x)y € Nigp)~ (c) <
gl-
(iv) Ifa<b and (a, b)=(c, d), then
A(X)y = 2_ 1<xa y>(ra/wa + rb/wb) € go s
D(x)y=2"1x, yX(ri/aw,—ry/w) € L, .

DEeFINITION 2.3. For x, ye %, let xy=x-y=A(x)y. Then (%, -) is a commutative
distributive algebra over R. We call this the algebra induced from the connection of
(g, j), or simply, the connection algebra of (g, j) (cf. Vinberg [20]).

DEFINITION 2.4. A commutative distributive algebra C is called a Jordan algebra
if (xy)x? =x( yx?) holds for all x, yeC.

It is well-known (Albert [1], Satake [17]) that if C is a Jordan algebra, then
[A(x), A(y)] is a derivation of C for all x, yeC, where A(x) is the left (or right)
multiplication operator on C by x. It is also known (Vinberg [19]) that if the bilinear
form (x, y),: =trace A(xy) (x, y € C) is non-degenerate, then the converse is true. As was
proved by Zelow [23], if (&, ) is the connection algebra of a normal j-algebra (g, j),
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then {, ), is positive definite.

DEeFINITION 2.5 (Dorfmeister [11]). A normal j-algebra (g, j), or the correspond-
ing homogeneous bounded domain D, is said to be quasi-symmetric (in the sense of
Satake [16]) if the connection algebra (%, -) of (g, j) is a Jordan algebra.

DEFINITION 2.6. A normal j-algebra (g,j), or the corresponding homogeneous
bounded domain D, is said to satisfy the multiplicity condition if for every simple strong
Jj-ideal § of (g,j), all roots of type 1 and type 2, respectively, corresponding to the
subalgebra (g, j) have the same multiplicities.

We can now formulate our main result of this section.

THEOREM 2.7. For a normal j-algebra (g,j), the following three conditions are
mutually equivalent:
) (a,)) is quasi-symmetric.
(D) For every xe &, D(x) is a derivation of (¥, *).
M) (a,j) satisfies the multiplicity condition.

REMARK 2.8. D’Atri and Miatello [9] proved the equivalence (J)<>(M)
on the base of the theory of T-algebras by Vinberg [20].

For the proof of Theorem 2.7 we need several lemmas. First, the argument
mentioned above yields the following.

Lemma 2.9 ([1], [17], [19], [23]). For a normal j-algebra (g, j), the condition (J)
in Theorem 2.7 is equivalent to the following:
(JD) [A(x), A(y)] is a derivation on (¥, -) for any x,ye Z.

LemMmA 2.10. For a normal j-algebra (g,j), the condition (D) in Theorem
2.7 is equivalent to the condition (JD) in Lemma 2.9.

Proor. By definition we see that R(x, y) | o= —[A(x), A(Y)] for x,ye . As
equalities between elements in End(.%) we have

[A(x), A(y)]= —R(x, y)= — R(jx, jy)= — [V}, Visd+ Vitixp+ jix.in
= —[D(x), D(y)]1+ D(Ljx, y])+ D([x, jy]) -
From this we have the implication (D)=(JD) and the following formula (since
D(r,)=0 by Lemma 2.2): For x e n,, with a<b <R, [A(r,), A(x)]= 2~ 'D(x), which yields
the implication (JD)=(D). The proof is completed.

LemMA 2.11. For a normal j-algebra (g,j), the condition (D) in Theorem
2.7 is equivalent to the totality of the following three conditions:

@dn If xengpc,, yenyc¥,, and a#c, then 4A(x)*y=({x,x)/2w,)y, or
<Lixyds Lix, y1D =<{x, x>y, y>/2,.
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d2) If xengyp,c ¥y, yen,c¥,, and b#c, then 4A(x)*y=({x, x>/2w,)y, or
{(adjx)'y, (adjx)'y) =<x, x){ ¥, y>/2w,.

(d3) If n,, #0, then w,=w,.
To prove Lemma 2.11 it is convenient to employ the following definition and result.
DEeFINITION 2.12. For x,€ &, set

d(x 1, X2, X3)=(D(x1)x3)x3 + (D(x)x3)x2 — D(x (x;X3) ,

O(X 1, X2, X35 Xg) = (X1, X2, X3), X540 =<{D(x1)X5, X3%4D + {D(X1)X3, X4%2)

+ {D(x1)x4, X3X3) .

We note that for an xe %, the operator D(x) is a derivation on (%, -) if and only if
d(x, -, -)=0, or &(x, -, -, -)=0.

LEMMA 2.13.  The trilinear operator d: 3 — % and the quartic form & on & are both
symmetric with respect to the prescribed variables.

We will prove Lemma 2.13 in §4.

ProoF oF LEMMA 2.11.  Since D(r,)=0, Lemma 2.13 implies that the condition (D)
is equivalent to

2.1 O(Xys X2, X3, X4)=0 forall x,, - --,x,e%,.
Furthermore, (2.1) is equivalent to

(2.2) O(xy,x5, X3, X4)=0 for all x;, -, x,€%, with <{D(x;)x;, X3x4)%#0.
We now assume that

(2.3) x;en,, Xx,eny, Xz€n,, x4€n, with a<b, c<d, e<f, g<h.

By Lemma 2.2, D(x;)x,#0 (resp. x3x,#0) implies {ab}n{cd}#F (resp. {ef}n
{gh} # &}. Furthermore, #({ab}n{cd})=2 (resp.=1) implies that x,;x, and D(x,)x,
belong to & , (resp. to &£,). Therefore, if {(D(x,)x,, Xx3x4) #0, then one of the following
two cases (a), (b) occurs: (a) #({ab}n{cd})=2, #({ef} n{gh})=2, and {ab}n{ef}+# J;
(b) #({ab}n{cd})=1, #({ef}n{gh}) =1, and {ab} ~{cd}={ef} ~{gh}. It follows from
the symmetry of J that (2.2) is equivalent to the following condition:

24) If x,, -+, x, are as in (2.3), then d(x,, x,, X3, x,) =0 for each of the following
cases:
(1) (a’ b)=(C, d)=(e,f)=(g, h)
(i); (a,b)=(c,d), (e,f)=(g,h), and b=e.
(i), (a,b)=(cd), (e,f)=(g,h), b=f and a<e.
(i); (a,b)=(c,d), (e,f)=(g,h), a=e and b>f.
(i), g=a, b=c, d=e, f=h.
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(i), g=a, b=c, d=f, e=h, and b<e.
(ii); a=e, b=d, c=g, f=h, a<c, and b<f.

We shall examine the condition (2.4) separately in each case.
Case (i): By Lemma 2.2 we have
45(x 4, X3, X3, X4)
= (X1, X2 0{X3, X4 ) + X1, X3P Xy, XD + Xy, X4 D{X5, X3DNW, ' — 05 1) .
Thus, (2.4) in case (i) is equivalent to (d3).
Case (ii), or (ii),: By Lemma 2.2 we have
45(x 1, X5, X3, X4)
= — (xy, X2 9{X3, X4 D]+ {[jX1, X3, [jX2, X41> + <X 1> %41, [x2, X301 -
Thus, (2.4) in case (ii), is equivalent to (d1). On the other hand, (2.4) in case (ii); a
priori holds by Lemma 1.1.
Case (ii);: By Lemma 2.2 we have
46()(1, X2, X3, x4) :
= X1, X20{X3, X4/, —<(ad jix,)'x3, (ad jx,) x4 > — {(ad jx;) x4, (ad jx,)'x3) .
Thus, (2.4) in case (ii), is equivalent to (d2).
Case (iii), or (iii),: By Lemma 2.2 we have
40(x1, X2, X3, X4) =<[jx1, X1, [jX4, X31> — <(ad jix;)'xy, [jX,, x31>
={(adjx,)xy, [jx4, X31) —(adjx4)'xy, [X2, X31) .
Thus, (2.4) in case (iii), or (iii), a priori holds by Lemma 1.2.
Case (iii);: By Lemma 2.2 we see
40(x 1, x5, X3, X4) =<[jX1, X2, [Jjx3, X41> —<(adjx;)'x3, (ad jx;)'x,)
={[jxz %17, [jxa, x41> —(adjx3)'xy, (adjx2)'x4) .
Thus, (2.4) in case (iii); is equivalent to A(x3)A(x;)x; = A(x;)A(x3)x;. On the other
hand, Lemma 1.1 asserts that A(x,)A(x3)y=A(x;)A(x,)y for all yen,, so that
A(x,)? A(x3)A(x,5)x, = A(x,)A(x3)A(x,)*x,. Observing (d1) and (d2) to the effect that
4A(x,)%x, = (X4, X0 20p)x,, 4A(X;)%y=({x5, X,)/2w,)y for all yen,, we see that

(2.4) in case (iii); is a consequence of (d1), (d2), and (d3). The proof of Lemma
2.11 is completed.

LEMMA 2,14. Assume that a normal j-algebra (g,j) is simple and satisfies the
conditions (d1) and (d2) in Lemma 2.11. Then n,,=b,, for all a, b with a<b=<R.

Proor. Let xen,—{0} with a<b< R. By (d1) as well as Lemma 1.1 we see that
for every ce{l - -+ R} —{ab}, A(x) is an injection from 1y, to ., so that n, <n,.
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Similarly, by (d2) as well as Lemma 1.1 we see that for every ce {1 - - - R} —{ab}, A(x)
is also an injection from ny,, to 1, so that n,.<n,. Thus, for every a, bin {1 - - - R}
with a#b, if n,, #0 then n,.=n,, for all ce {1 --- R} —{ab}. From this we see that for
distinct a, b,ce{l - - - R}, n,,#0 and n,.#0 imply n,.=n,=n,,. It follows from the
connectedness of {1 - - - R} (Lemma 1.4) that n,,=n,, for all a, b with a<b. Lemma
2.14 is proved.

ProoF OF THEORM 2.7. If the rank R of (g,j) is one, then all three conditions
trivially hold. Thus, we assume R>2. The equivalence (J)<>(D) follows from Lemmas
2.9 and 2.10. To show the equivalence (D)<>(M), by Lemma 2.11 we may prove the
equivalence (d1) A (d2) A (d3)<>(M). Assume (d1), (d2), and (d3) hold, and take any
simple strong j-ideal § of (g, /) with I={ae {1 - -- R};r,€3}. Then by Lemma 2.14 we
see that n,, (a, be I, a#b) are constant. In view of (1.2), (d3) implies (M). To prove the
converse we assume that (M) is satisfied. Decompose g into simple strong j-ideals
81, * ", 8, With I;={ae{l --- R};r,eq,} (Lemma 1.4). If ael, bel, and s#1, then
na=0. It follows from (1.2) that (d3) holds. To show (d2), let a<b<c=<R, xen,,— {0},
yen,—{0}. By Lemma 1.1 we see that

(25) <[jx, Z]s [jxa Z]> = <x’ x)(z, Z>/2wb for ZEMy, .

This means that (ad jx)|nbc:nbc—>nac is injective, so that it is an isomorphism by (M)
because a, b, c all belong to an 1. Take z,€en,, such that (adjx)z,=y. Then, by (2.5)
we see that {(adjx)'y, z) =<({x, x)/2w.)ze, z) for all zen,,. Thus

(@d jx) |n,. = (Kx, x>/20,M(@d jx) |, )",

so that once more (2.5) yields <(adjx)'y, (ad jx)'y) = {x, x){ y, y>/2w,; therefore by (d3)
we have (d2). Next, to show (d1), leta<c<b =R, and x e n,,— {0}. Similarly to the above
argument, instead of Lemma 1.1, (d2) implies that (ad jx)'|, :n,.—n, is an isomorphism
and that

Ngce

(adjx)

nep = (%, X)/20,)(@d %) [n,) ™"

which yields (d1) because w,=w,. The proof of Theorem 2.7 is completed.

3. Quasi-symmetricity (2). In this section we study a condition for a normal
Jj-algebra (g,j) to be quasi-symmetric, which is related to the subspace %, where
g=2+j¥ +U. We denote by End(%, j) the totality of all j-invariant endomorphisms of
. It is well-known (e.g., [17]) that the space End(%, j) endowed with the product

3.1 XY=(X°Y+Y°X)/2
is a Jordan algebra with the identity transformation as the unit.

DEerFINITION 3.1. For xe %, we define an endomorphism ¢(x) of % by
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(¢0) @(x)=—2j°V, |y =(adgjx) + (adq jx)
(see (1.6)). In fact, ¢(x)e End(Z, j).
The following is easily verified.

LemMa 3.2. Let uen,,.

(i) o(ru=0d,u for all ae{l --- R}.

(ii) For every xen,, with a<b<R, @(x)u=9d,(adjx)u+d,(adjx)ued,n,,+
5acnboo' ‘

We denote by V=V +iV the complexification of a real vector space V.

DerINITION 3.3 ([15]). For u,ve, we define F(u,v)e ¥° by 4F(u, v)=[ju, v]
+ilu, v].

We extend the inner product {,) on g to a unique complex symmetric bilinear
form on g° (cf. [13]).

LemMMmAa 3.4. For every xe ¥, o(x)eEnd(%) is characterized by the following
mutually equivalent conditions:

() (o, v)=<{x,[ju,v]> forall u,ve%.

(@2) <, [o(x)u, v]y=<x,[u,v]y forall uve.

(p3) <r, F(p(x)u, v))=<x, F(u,v)) forall u,ve.

ProOF. The equivalence (p0)<>(¢1) follows from
{((adjx) + (ad jx))u, v> =<[jx, ul, v> + <u, [jx, v1> =<[jx, u], v> + ju, Ljx, jo]>
=<x, Lju, v1)
We note that each condition (¢i) implies that ¢(x)°j=je° ¢(x), so that the equivalence

(p1)<(¢2) follows from the fact {r, [ju, v]) ={u,v), and the equivalence (¢2)<>(¢3)
follows from the definition of F and the extension of ¢, ).

DEerFINITION 3.5 ([16]). Let xe.¥. We say that ¢(x)e End(%, j) is associated to
A(x)e End(2) if they satisfy

(a0) 2A(x)F(u, v)=F(p(x)u, v)+ F(u, o(x)v) for all u,ve%.

Here we regard A(x) as a C-linear endomorphism of #°.

LEMMA 3.6. For xe %, the condition (20) is equivalent to each of the following seven
conditions:

(@0) 2A(x)[u, v]=[e@(x)u, v]+ [u, p(x)v] for all u,ve¥.

(@0)" (adjx)'[u, v]=[(adjx)u, v]+ [u, (ad jx)'v] for all u,ve%.

(@0)" jV [u, v]1=[jVu, v]+[u,jV, 0] for all u,ve%.

(@)  2¢(xy)=(x)° @(y)+ @(y)° @(x) on U for all ye &.
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(al)  o((adjx)y)=(adejx)° @(y)+ @(y)° (adejx) on U for all ye £ .
(@2)  2<xy, F(u, v)) =<r, F(o(x)u, o(y)v)+ F(p(y)u, (x)v)) for all ye £ and u,ve

(@2)  2<xy, [u, v]) =<r, [o(x)u, o(y)]+[@(y)u, o(x)v]) for all ye & and u, ve %.

We remark that (x1) means that ¢ is an algebra homomorphism from the connec-
tion algebra (%, -) to the Jordan algebra End(#, j) with the product (3.1).

PrOOF OF LEMMA 3.6. The equivalence (¢0)'<>(x1) follows from the equality

Qo(xy)u—p(x)p( y)u— @ y)o(x)u, vy =< y, 2A(x)Lju, v]—[ju, p(x)v] —[o(x)ju, v1> ,

which follows from (¢1). The equivalence (¢0)'<>(«2)’ follows from the equality

2AX)[u, v]—Lo(x)u, v]—[u, o(x)v], y>
= 2<[u’ U]’ x,V> - <ra [(P(x)u’ (P( y)l)] + [(P( y)u9 (P(X)U]> H

which follows from (¢2). The equivalences of the conditions («0), (x0), («0)”, (20)"’ are
easy to see, and so is the equivalence (x2)<>(x2)'. To prove the equivalence (x1)<>(x1)’,
it is sufficient to prove the following: ¢((adjx)'y)=(ad4jx)' ° @(y)+ ¢@(y)° (adgjx) on %.
Using (@1) we see this as follows:

{p((adjx)y)u—(adjx)o(y)u— @( y)adjx)u, v>
= < Vs [jx, [ju, U]] - [ju’ [jx’ v]] - [][]X, u]’ l)]>
= < Vs [ixa [ju’ U]] - [ju, [jx, U]] - [[jx’ju]’ U]> =0

for all u, ve#. The proof is completed.

We shall give an alternative proof of the following result of Dorfmeister [11] by
using the theory of normal j-algebras.

THEOREM 3.7 ((11]). If a normal j-algebra (g, j) is quasi-symmetric, then the fol-
lowing holds:

(A) For every xe &, ¢(x) is associated to A(x).
Furthermore, the condition (A) is equivalent to the quasi-symmetricity of (g,j), pro-
vided that every strong j-ideal § of (g, j) satisfies % # {0}, where §= P +jZ +U.

To prove Theorem 3.7 we need some lemmas.

LEMMA 3.8. For a normal j-algebra (g,j), the condition (A) in Theorem 3.7 is
equivalent to the totality of the following two conditions:

(al) If xen,, yen,, a<c<b=R, and uen,,, then @(y)p(x)u=2¢(xy)u, or
(adjx)u, (adjy)v) =<Ljx, y1, Lju, v]) for all ven,,. '

(@2) If xeny,, a<b=R, and uen,,, then o(x)*u=(x, x)2w)u, or {(adjx)u,
(ad jx)'v)> =<u, v)<{x, x)/2w, for all ven,.

Proor. By Lemma 3.6, (A) is equivalent to the following condition:
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(3.2 2¢0(xy)u=p(x)p(y)u+ @(y)p(x)u for all xen,, , yen,, and
uen,, witha<b<R,c<d<R,e<R.

We notice that (3.2) is symmetric in x and y. If a=b and x=r, then 2¢(xy)u=
(O +0,0)0( y)u. Since @(x)u=0d,u and @(yued. n;,+9;.1M.,, we see that (3.2) a
priori holds. If {ab} n {cd} =¥, then (3.2) holds trivially. We assume that a<b, c<d,
and #({ab} n{cd})=1. First suppose b=c. Then, 2xy=(ad jx)yen,,. If e¢{ad}, then
(3.2) trivially holds. If e=a, then (3.2) becomes (ad j[jx, y])'u=(ad jy)’(ad jx)'u, which
a priori holds (Lemma 1.2). If e=d, then (3.2) becomes [j[jx, y], u]l=Ljx, Liy, ull,
which also a priori holds (Lemma 1.2). Next, suppose a=c. Then, 2xy=(ad jx)'y € ny.
As in the first case, if e¢ {bd}, then (3.2) holds trivially. Assume ee {bd}, say e=b,
without loss of generality. Then, (3.2) becomes ¢((adjx)'y)u=(adjy)'(ad jx)u, or
(ad jx)'y, Lju, v]> =<o((ad jx)'yu, vy ={[jx, ul, [jy, v]> for all ven,, (by (¢l) in
Lemma 3.4), which a priori holds (Lemma 1.2). Therefore, we have proved that the
condition (3.2) for #({ab}n{cd})=1 is equivalent to (al). Finally, we assume that
(a, b)=(c, d) with a<b. Then,

20(xyyu=<x, y)(@(rJu/w, + o(ry)u/w,) ,

so that (3.2) with e=b a priori holds (Lemma 1.1), and that (3.2) for # ({ab} n{cd})=2
is equivalent to (a2). The proof is completed.

LemMa 3.9 ([8; item (4)]). If ny, #0, then n,=[n,,, W] for all a<b. More
precisely, ({u, u)/2mwy)x ={(ad jx)ju, u] for all xen,, and uen,.

ProOF OF THEOREM 3.7. In view of Theorem 2.7, we may assume that the condition
(M) holds. We may further assume that (g, j) is simple and that the rank R of (g, j) is
greater than one. Then, n,,=n,,>0foralla<b=<R,andn,  =n,, foralla< R, so that

3.3) w,=w, forall a<R.

We shall first derive (a2) in Lemma 3.8. To do so, let xen,, with a<b=< R. Observing
(3.3), by Lemma 1.1 we see that

(3.4 jx, v], [jx, v])=<x, x>{v,v)/2w, forall v, v en,,.

This means that (ad jx)|nm My — M, IS injective, so that it is an isomorphism. For
every uyen,,, take voen,, such that (adjx)vo=u,. Then, by (3.4) we see that
{(ad jx)uq, v) =<{({x, x)/2w,)vg, vy for all ven,,. Since (adjx)n,,<n,,, it follows
that

(@d jx) |, = (<%, x>/20,)(ad jx) |n,.) 7",

so that (3.3) yields (a2). To derive (al) in Lemma 3.8, let xen,,—{0}, yen,—{0},
a<c<b=R,and uen,,, ven,. Set u'=p(xuen,,, v'=@(y)ven,,. Since (a2) holds,
we have o(x)u’=({x, x)/2w)u, and @(y)'=({y, y)/2w,)v. Thus,
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Liu, v]=(4w1/<x, x>y, YD)Liolx)w', o(y)'] .
On the other hand, we see

Lo, o(yw'1=[jexW, Ljy, v11=Ljy, [je(xu'’,v]]  (Jacobi’s identity)
=[jlje(x)', v'], y].

By (d1) in Lemma 2.11, utilizing Theorem 2.7, we see

Lilje(xw', v'], v, Lix, y1> =<Lie0x)w, v'], x3{ y, y>/2w,

=LY, @', x3< y, 3201 =L p(xW, p(x)u'><{ y, y>/20, (Lemma 3.4 (¢1))

={x, x)u, v'){y, y>/Q2w,)* (Lemma 1.1).

Therefore, we get {[ju, v], [jx, y])={w/, v'), which is (al). Thus, by Lemma 3.8 we
conclude that (A) holds.

To prove the second assertion of Theorem 3.7, we assume that every simple strong
j-ideal § of (g,) satisfies % # {0}, where §= 2 +j.Z + %, and assume that (A) holds, i.e.,
(al) and (a2) hold. By Lemma 1.4 we may assume that (g, ;) is simple. Then, % itself
is non-zero. By (a2) we see that if n,, #0 then n,,, =n, . It follows from the simplicity
of (g, /) and from the fact % # {0} that

3.5 Ny =Ny >0 forall a<R.

We shall derive (d1) and (d2) in Lemma 2.11. Let xen,, yen, with a<c<b=<R.
Observing (3.5), by Lemma 3.9 we can take uen,, and ven,, such that y=[u,jv].
Then, [jx, y]=[u,j[jx, v]]. It follows from (al) that

(3.6) {(ad jx)Ljx, v], @@d jyYuy=<[jx, y1, [iLix, v, ul> .

The right hand side of (3.6) becomes —<{[jx, y], [jx,y]). The left hand side of (3.6)
becomes

<@(x)*v, p(y)u) =< p(x?)v, (y)u) (by (A))
= (<%, XD/ 20,)<v, P(y)u) =({x, x>/20,)< y, [ju,v]>  (Lemma 3.4 (¢1))
= —<X, x){ Y, Y20,

Thus, (d1) is established. To derive (d2), let xen,,, yen, with a<c<b<R. Take
uen,, and ven,, such that y=[ju, v] (Lemma 3.9). Put z=(ad jx)'yen,. It follows
from (al) that

(3.7 {(ad jx)'u, (ad jz)'v) =<[jx, z], Lju, v]> .
The right hand side of (3.7) coincides with {z, z>. The left hand side of (3.7) becomes

p(x)u, p(2)v) =2{p(X)u, p(xy)v> = {p(x)u, p(x)p(y)v) (by (A))
= @(x)*u, p(y)v) = @(x*)u, p(y)v) (by (A))
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= (<%, X3/20,)<u, 9(y)0) = (<X, x3/20,)<y, Ljv, u]> (Lemma 3.4 (¢1))
=%, X)X, ¥)/200, -

Thus, (d2) is established. By Lemma 2.14 as well as (3.5) we conclude that (M) holds.
The proof of Theorem 3.7 is completed.

4. The holomorphic sectional curvature. In this section we consider the
holomorphic sectional curvature of the Bergman metric on any homogeneous bounded
domain D with the corresponding normal j-algebra (g, j).

DEFINITION 4.1 ([12]). We define a quartic form R(,,,) on g by
R(x1, X3, X3, X4) = (R(X3, X4)X5, X1
=V %2 Vi X1 = VX2 Vi X0 — <V[x3,:54]x2, X1
for x,eg (a=1, - - -, 4) (see §1).
In §3 we have extended the inner product {, ) to a unique complex symmetric
bilinear form on g°. We also extend [, ] and V (resp. R(, )) to complex bilinear mappings

from g° x g° to g° (resp. to End(g)). Similarly, we extend R(,,,) to a complex quartic
form on g°. We notice that

4.1) R(zy, 23,23, 24)=R(Z, 2_2, Z_3’ 2_4)
for z,eg® (a=1, -- -, 4).

DEFINITION 4.2.  We consider the holomorphic part "= {x € g°; jx =ix} of g°, which
corresponds to the holomorphic tangent space T,D at the point p via @, °p (see § 1),
and the natural mapping y from g onto g" given by x(x)=(x—ijx)/2, x€g.

NoOTATION 4.3. Set L=y(%), U=x(¥ ), Lsp=x("), and U,=yx(n,,). Thus, we
have direct sum decompositions

4.2) g'=L+U, L=Za§bL,,,,, u=)U,.

We notice that ¢, ) is an Hermitian inner product on g* satisfying {x(x), x(x)> =
{x,x>/2 for xeg, and that the decompositions (4.2) are orthogonal with respect to
{,7>. We note that R(x(x,), x(x2), 23, 24) =0, R(z3, 24, x(x1), x(x2))=0 for all x,, x,€g
and z3,z, €6

NotaTION 4.4. For x,eg (a=1, - -, 4) set
Ry zaxsma = RO(x 1), 2(x2)s 2(%3), x(X4)) -
One can easily see that

4.3) 4Rx,x7x3x'..=s(x1: X2, X3, X4) +i8(x 1, X3, X3, jX4)
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where S(x,, X, X3, X4) = R(x1, X, X3, X4) — R(x4, jX,, X3, jX4). We note that

(44) Rxlx_zxs;t: = Rx;?;x,x_4 = Rxlx_4x3x_2 *

We need the following result.

LemMa 4.5 ([4; Lemma 4.1]). For x,€ & and u,€ U, the following hold:

(LLIUU) Rxlﬁ:uE:O;
(LL | LU) R, =0,
(LU | uv) R, ixa =0

We have left Lemma 2.13 unproved and used it in § 2. Here, we shall prove both
Lemma 2.13 and the following lemma together.

LEMMA 4.6 For x,e %, it holds that
(LLI LL) 4R, zreums =X 1X2, X3X4) + X1 X4, X5X3) — (X1 X3, X2X4) + (X1, X3, X3, X4)
(see Definition 2.12).

PrOOF OF LEMMA 2.13 AND 4.6. It was proved in [4; Lemma 4.2 (i)] that

AR, xyza= (X3X2, X4 X1 1D + (X1 X2, [jXas X31D — (X34, (ad jxa)'x2) -
It follows from the formulas (ad jx,)= A(x,)+ D(x,) and (ad jx,)'= A(x,)— D(x,) that
(4.5) AR, x5x,m = X1 X2, X3X4) + X1 X4, X3X3) — (X1 X3, X2X4) +0(xy, X1, X, X3) -
We shall show Lemma 2.13 on the base of formula (4.5). From the definition of d it
is trivial that d(x,, x,, x3)=d(x,, X3, X,). By (4.5) we have
AR, iz = {X2X3, X4X 1D + (XX 1, X3X4 ) — {XX4, X3%1 ) +{d(Xy, X2, X3), X4 -

Since R, ;.5 =Rysixas; (by (4.4)), it follows that {d(xy, X,, X3), X4 =<d(x3, X2, X,),
x4» for all x,e &. Thus, d(x,, x,, x3)=d(x3, x,, x;). Therefore, the symmetricity of d
follows. It is seen by the definition of & that d(x,, x,, x5, x4)= (x, X5, X4, X3). Com-
bining this with the assertion just proved, we get the symmetricity of 6. Lemma 2.13
is completely proved. Formula (LL|LL) in Lemma 4.6 is now obtained by (4.5) and
the symmetricity of é.

Lemma 4.7. For x,€ ¥ and u e, it holds that

(LU I LU) 4R, zruswa= — 2€1, F(@(x1)uz, p(x2)ug)) +4<x X5, F(u3, us)) -
Proor. By (4.4) as well as (4.3) we have
4R 4R

X1X2u3lUs U3X2X1Ug

= 2(<Vx|x2, Vu4u3> - <Vu4x2’ Vx|u3>) + 2i(<jvx,x2’ Vu4u3>
- <jVu4x29 Vx1u3>) .
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We have
2V, X, Vatty) + 2V, %0, Vats)
= (V%00 Lt 431>+ V0, Xz [k 431 (by (1.7))
={x1 X5, Ljhgs u3]) —i{x1X4, [tg, 31 (Definition 2.1)
=4(x,X,, F(u;, uy)) (Definition 3.3) .

We also obtain
2V, X3, Vi tts) + 20V, X5, Vi 3> =2{V g, Vi 3> +2ijV Uy, Vo us)
=2"1p(x)ug, P(x1)u3) +27 i @(x2)jthar P(x1)u3>
=271(xy, [juz, @(x2)us]> +27 1ikxy, [jus, 9(x,)jus]>  (Lemma 3.4 (¢1))
=2(xy, F(us, p(x2)us)) =2<r, F(p(x1)us, ¢(x2)uq)) (Lemma 3.4 (¢3)) .
Thus, we have the desired formula.
The following is well-known.
LemMmA 4.8 ([4; item (5.9)]). For u,e%, it holds that
(UU|UU) AR, sy = 8CFuy, ), Flus, ug)) +8CF(uy, ug), Flus, up)) .

For zeg— {0}, the holomorphic sectional curvature HSC(x(z)) of the direction
x(z)e g"—{0}, or the sectional curvature of spang{z, jz}, is given by

HSC(x(2)) = R(z, jz, 2, j2)/<2, 2)< j2z, jz) = — Rz3/<t(2), x(2))* = —4R55/<z, 2)*
(see [13], [3]). Concerning this we shall show the following.
THEOREM 4.9. For z=x+ jy+ueg with x,ye ¥ and u € U, the following holds:
4R.zz=4(x%, y*) +<(x + )%, (x—)*> +8(x, y) + 8<F(p(x —iy)u, o(x —iy)u), r
+16(CF(u, u), x*) — (F(@(x)u, p(x)u), r>)+ 16(CF(u, u), y*)
— (F(@(y)u, o(y)u), 1))+ 16<F(u, u), F(u, u)),
where 6(x, y)=d(x, X, x, X)+28(x, X, ¥, y)+ (¥, ¥, ¥, ¥), and @(x +iy)u=@(x)u+jo(y)u.

Proor. By Lemma 4.5 we see

4Rz§zf=4Rx+jyx+jyx+jyx_+ﬁ + 16Rx+jyijyu§ +4Ru§ui .

Since R, 5.5 €R for all x,e £, we have

AR, + jyxFiyx+ivxtiy =4Rizxx +4R 55+ 16R 55— 8R

yXYyX *

It follows from Lemma 4.6 that
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4Rx+iy;+_iyx+iyx—+5
=(x% x?) +8(x, x, x, X))+ (K y% y*> + (3, ¥, , )
+4(Kx%, y*) +(x, x, , y) — 22{xy, xy> —<{x%, y*> + 8(x, X, y, )
={x%, x*) +6<x%, y*) + {2, y?) —4xy, xy) +d(x, y)
=4(x%, y2) +(x+y)%, (x=y)*> +(x, y) .

By Lemma 4.7 we see

4Rx +jyx+jyuu— 4Rx§ui +4R5;+8 Imeiui

= — 2(F(o(x)u, p(x)u), r) +4<F(u, u), x*)
—2{F(@(y)u, p(y)u), ) +4<F(u, u), y* ) — 4<Tm F(p(x)u, ¢( y)u),
=2{F(p(x —iy)u, o(x—iy)u), r> + 4 F(u, u), x>y — F(p(x)u, p(x)u), r))
+4(CF(u, w), y*> — CF(@( y)u, o(y)u), 7)) .

The last equality follows from the fact F(v—jw, v—jw)= F(v, v)+ F(w, w)—2 Im F(v, w)
for v, we %. Finally, by Lemma 4.8 we have 4R ;= 16{F(u, u), F(u, u)). This completes
the proof.

COROLLARY 4.10 (Zelow [21], [22]). If (g, ]) is quasi-symmetric, then for z=Xx+jy
+u with x,ye ¥ and ue, it holds that

4R 7z =4(x% Y2y +L(x + )%, (x—y)*> + 8<F(p(x —iy)u, p(x —iy)u), )
+ 16{F(u, u), F(u, u)) .

PrROOF. Assume (g, j) is quasi-symmetric. Then, Theorem 2.7\implies that D(x) is
a derivation of (%, ), so that d(x, y)=0 in the formula in Theorem 4.9. Furthermore,
Theorem 3.7 and Lemma 3.6 imply that {F(u, u), x2) = (F(p(x)u, ¢(x)u), r> etc. There-
fore, the desired formula follows from Theorem 4.9.
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