DUALITY OF CLOSED S-DECOMPOSABLE OPERATORS

Kôtarô Tanahashi

(Received March 4, 1988, revised September 30, 1988)

1. Introduction. There are many efforts to extend the decomposable operator theory on a complex Banach space, which was introduced by Colojoară and Foiaș [3]. Bacalu [2] discovered S-decomposability for a restriction of a decomposable operator. Subsequently, many authors studied the S-decomposable operator theory and obtained many characterizations of bounded S-decomposable operators, which are similar to those of decomposable operators. Hence, now, it seems a natural problem to seek appropriate characterizations of a closed S-decomposable operators. (cf. Nagy [8], [10], Wang [16] and Wang and Erdelyi [17].)

In this paper we obtain several characterizations of a closed S-decomposable operator (Theorem 1), which generalize the results due to the author [12], [13] and Radjabalipour [11], etc.

After this, we consider the duality theorem. Vasilescu [15] proved that if T is a densely defined closed S-decomposable operator, then T^* is also an S-decomposable operator. Conversely, Wang and Liu [18] proved that if the dual operator T^* of $T \in B(X)$ is an S-decomposable operator, then T is also an S-decomposable operator. Using Theorem 1, we prove the duality theorem of a closed S-decomposable operator (Theorem 2) by a way similar to that of [18]. We remark that Theorem 2 is partly proved by Erdelyi and Wang [4], who proved the case $S = \{\infty\}$. (cf. Erdelyi and Wang [5] and Lange [6]).

2. Preliminaries. Let X be a complex Banach space. Let C(X) (resp. B(X)) be the family of all closed (resp. bounded) linear operators on X. C is the complex plane and $\overline{C} = C \cup \{\infty\}$ is its one-point compactification.

D(T) is the domain of $T \in C(X)$ and $\sigma_e(T)$ is its extended spectrum, i.e., $\sigma_e(T) = \sigma(T)$ if $T \in B(X)$ and $\sigma_e(T) = \sigma(T) \cup \{\infty\}$, otherwise. A closed subspace Y of X is an invariant subspace of T if $T(Y \cap D(T)) \subset Y$. I(T) is the family of all invariant subspaces of T. $T \mid Y$ is the restriction of T to $Y \in I(T)$ with domain $D(T \mid Y) = Y \cap D(T)$. T/Y is the quotient operator induced by T on X/Y with domain $D(T/Y) = \{\hat{x} \in X/Y \mid \hat{x} \cap D(T) \neq \emptyset\}$, i.e., $(T/Y)\hat{x} = (Tx)^{\wedge}$ for $x \in \hat{x} \cap D(T)$, where $\hat{x} = x + Y \in X/Y$ is the coset of $x \in X$. Ω_T is the maximal open set with the property that if $\omega \subset \Omega_T$ is open and if $f: \omega \to D(T)$ is an analytic function such that (z - T)f(z) = 0 for $z \in \omega \cap C$, then f(z) = 0 for $z \in \omega$. Let $S_T = \overline{C} \setminus \Omega_T$. For a closed set $F \subset \overline{C}$, we denote by $X_T(F)$ the set of points $x \in X$ such that there exists an analytic function $f: \overline{C} \setminus F \to D(T)$ with (z - T)f(z) = x for $z \in C \setminus F$.

For any set $E \in \overline{C}$, we denote by $X_T(E)$ the union of $X_T(F)$ for all closed sets $F \subset E$. We call $X_T(F)$, $X_T(E)$ spectral manifolds of X. We remark that $X_T(E) = X_T(E \cap \sigma_e(T))$ for all subsets $E \in \overline{C}$. These definitions of spectral manifolds are due to Radjabalipour [11] and different from those of [4], [7] and [14], etc. But if $S_T \subset E$, then they are equivalent.

For a closed set $F \subset \overline{C}$, let X(T, F) be an invariant subspace of T such that (1) $\sigma_e(T \mid X(T, F)) \subset F$ and that (2) if $Y \in I(T)$ satisfies $\sigma_e(T \mid Y) \subset F$, then $Y \subset X(T, F)$. Naturally, X(T, F) may or may not exists, but if such an invariant subspace exists, then it is obviously unique. We call X(T, F) a spectral maximal space of T. SM(T) is the family of all spectral maximal spaces of T.

Let $S \subset \overline{C}$ be a closed set. A family of open sets $\{G_1, \dots, G_n; G_0\}$ is called an S-covering of $\sigma_e(T)$ if $\sigma_e(T) \cup S \subset G_1 \cup \dots \cup G_n \cup G_0$ and $\overline{G_i} \cap S = \emptyset$ for $i = 1, \dots, n$. $T \in C(X)$ is called an S-decomposable operator if for every S-covering $\{G_1, \dots, G_n; G_0\}$ of $\sigma_e(T)$, there exists a family $\{X_1, \dots, X_n; X_0\}$ of spectral maximal spaces of T such that (1) $X = X_1 + \dots + X_n + X_0$ with $X_1, \dots, X_n \subset D(T)$ and that (2) $\sigma_e(T \mid X_i) \subset G_i$ for $i = 1, \dots, n$, 0. If $T \in C(X)$ is S-decomposable, then T is $S \cap \sigma_e(T)$ -decomposable. Hence we may assume $S \subset \sigma_e(T)$. If $T \in C(X)$ is S-decomposable and if $\infty \notin S$, then $T \in B(X)$.

- 3. Main results. We always assume $\sigma_e(T) \neq \overline{C}$ in this paper. We need some lemmas to prove Theorem 1. Lemma 1 is due to Nagy [8, Lemma 2].
- LEMMA 1. Let $T \in C(X)$. If $F \subset \overline{C}$ is a closed set with $S_T \subset F$ and if $X_T(F)$ is closed, then $X_T(F) = X(T, F)$ and $\sigma_e(T \mid X_T(F)) \subset F \cap \sigma_e(T)$.
- Lemma 2 is a modification of Nagy [10, Lemma, 3.1], but it plays an essential role in this paper. Although [10, Lemma 3.1] used the assumption $Y \subset D(T)$, we can prove Lemma 2 without this assumption.
- LEMMA 2. Let $T \in C(X)$ and $Y \in I(T)$. Let $\sigma_e(T) \cup \sigma_e(T \mid Y) \neq \overline{C}$. Let $D = (D(T), \| \|_T)$ denote the linear manifold D(T) endowed with the graph norm $\|x\|_T = \|x\| + \|Tx\|$. Then D is a Banach space and $Y \cap D(T)$ is closed in D. Moreover, T/Y is closed and $(D(T/Y), \| \|_{T/Y}) \simeq D/(Y \cap D(T))$.

The proof of Lemma 3 is similar to that of [12, Lemma 2] by Lemma 2.

- LEMMA 3. Let $T \in C(X)$, $T \in I(T)$ and $x \in X$. If $\hat{x} \in (X/Y)_{T/Y}(F)$ for a closed set $F \subset \overline{C}$, then $x \in X_T(F \cup \sigma_e(T \mid Y) \cup S_T)$.
- LEMMA 4. Let $T \in C(X)$ and $x \in X_T(F)$ for some closed set $F \subset \overline{C}$, i.e., there exists an analytic function $f : \overline{C} \setminus F \to D(T)$ such that (z T)f(z) = x for $z \in C \setminus F$. Then $f(z) \in X_T(F)$ for $z \in \overline{C} \setminus F$.
 - PROOF. If $z = \infty$, then f(z) = 0 by the same argument as in the proof of Lemma

3. The rest of the proof is similar to that of [14, Proposition 2.2].

q.e.d.

The proof of Lemma 5 is similar to that of [12, Lemma 3] by Lemma 4.

LEMMA 5. Let $T \in C(X)$. If $X_T(H) = X(T, H)$ for all closed sets H with $S \subset H$, then $X_T(F) = X(T, F)$ for all closed sets F with $F \cap S = \emptyset$.

The proof of Lemma 6 is routine, but the formulation seems most general. (cf. [1].)

LEMMA 6. Let $T \in C(X)$. If F_1 and F_2 are disjoint closed sets, then $X_T(F_1 \cup F_2) = X_T(F_1) + X_T(F_2)$.

THEOREM 1. Let $T \in C(X)$ and $S \subset \overline{C}$ be a closed set with $\infty \in S$. Then the following assertions are equivalent.

- (1) T is S-decomposable.
- (2) $X_T(F) = X(T, F)$ for all closed sets F with $S \subset F$ and $X_T(G_1 \cup G_0) = X_T(G_1) + X_T(G_0)$ for all open sets G_1 , G_0 with $\overline{G}_1 \cap S = \emptyset$ and $S \subset G_0$.
- (3) $X_T(F) = X(T, F)$, $T/X_T(F)$ is closed and $\sigma_e(T/X_T(F)) \subset (\overline{C} \setminus F^i) \cup S$ for all closed sets F with $S \subset F$. (F^i) is the interior of F.)
- (4) For all open sets G with $S \subset G$, there exists $Y \in I(T)$ such that $\sigma_e(T \mid Y) \subset \overline{G}$, T/Y is closed and $\sigma_e(T/Y) \subset (\overline{C} \setminus G) \cup S$.

PROOF. The proof of Theorem 1 is similar to that of [12]. We prove the implications $(1) \rightarrow (3) \rightarrow (4) \rightarrow (2) \rightarrow (1)$.

(1) \rightarrow (3). Let T be S-decomposable and F be a closed set with $S \subset F$. Nagy [8] proved that $S_T \subset S$ and $X_T(F) = X(T, F)$. Since $X_T(F) = X_T(F \cap \sigma_e(T))$, we obtain $\sigma_e(T) \cup \sigma_e(T \mid X_T(F)) \subset \sigma_e(T) \neq \overline{C}$. Hence $T/X_T(F)$ is closed by [9, Lemma 3].

The rest of the proof is similar to that of [12] by Lemma 4.

- $(3) \rightarrow (4)$. Let $Y = X_T(\overline{G})$.
- (4) \rightarrow (2). We can prove that $S_T \subset S$ by a similar argument as in [12].

Next we prove that $X_T(F) = X(T, F)$ for all closed sets F with $S \subset F$. By Lemma 1, we have only to prove that $X_T(F)$ is closed. Let G be any open set with $F \subset G$. Then there exists $Y \in I(T)$ such that $\sigma_e(T \mid Y) \subset \overline{G}$, T/Y is closed and $\sigma_e(T/Y) \subset (\overline{C} \setminus G) \cup S$. Since $S \subset G$, we can write $X/Y = Z_1 \oplus Z_0$ where $Z_1, Z_0 \in I(T/Y), \sigma_e((T/Y) \mid Z_1) = \sigma_e(T/Y) \cap (\overline{C} \setminus G) \subset (\overline{C} \setminus G)$ and $\sigma_e((T/Y) \mid Z_0) = \sigma_e(T/Y) \cap S \subset S$. Let P_i be the projection of X/Y onto Z_i along Z_j for $i \neq j$. Let $x \in X_T(F)$. Then there exists an analytic function $f: \overline{C} \setminus F \to D(T)$ such that (z - T) f(z) = x for $z \in C \setminus F$. Since P_i commutes with T/Y, we obtain $P_i \widehat{f(z)} \in D(T/Y)$ for i = 1, 0. Then we can write

$$(z-T/Y)\widehat{f(z)} = (z-U_1)g_1(z) \oplus (z-U_0)g_0(z) = \hat{x}_1 \oplus \hat{x}_0 = \hat{x}$$

for $z \in C \setminus F$ where $U_i = (T/Y) \mid Z_i$, $g_i(z) = P_i \widehat{f(z)}$ and $\hat{x}_i = P_i \hat{x}$ for i = 1, 0. Then $\hat{x}_1 \in Z_{1U_1}(F) = Z_{1U_1}(F \cap \sigma_e(U_1)) = Z_{1U_1}(\emptyset) = \{\hat{0}\}$. Hence $\hat{x} = \hat{x}_0 \in Z_0$. Hence $X_T(F) \subset \Pi^{-1}(Z_0)$ where $\Pi: X \to X/Y$ is the canonical mapping. Since $\sigma_e((T/Y) \mid Z_0) \subset S$, we obtain $Z_0 \subset X/Y_{T/Y}(S)$, and hence $\Pi^{-1}Z_0 \subset X_T(S \cup \sigma_e(T \mid Y) \cup S_T) \subset X_T(\overline{G})$ by Lemma 3. Since G

is any open set with $F \subset G$, we obtain $X_T(F) \subset \bigcap \Pi^{-1}(Z_0) \subset \bigcap \{X_T(G) \mid G \text{ is open and } F \subset G\} = X_T(F)$ because $S_T \subset S \subset F$. Hence $X_T(F) = \bigcap \Pi^{-1}Z_0$, and hence $X_T(F)$ is closed. The rest of the proof is similar to that of [12] by Lemmas 3 and 6.

 $(2)\rightarrow (1)$. The proof is similar to that of [12] by Lemma 5. q.e.d.

REMARK. Theorem 1 is proved partly by many authors. (See introduction.) We remark that Wang [16] proved the implication (1) \rightarrow (2) implicitly. Also [16] proved that if $T \in C(X)$ is S-decomposable and if G is an open set with $\overline{G} \cap S = \emptyset$, then $T/X_T(\overline{G})$ is closed and $\sigma_e(T/X_T(\overline{G})) \subset \overline{C} \setminus G$. (cf. [13].)

Next we prove the duality theorem of closed S-decomposability (Theorem 2). For the proof of Theorem 2, we need some lemmas. We assume some density conditions in the following, i.e.,

- (*) D(T) is dense,
- (**) D(T) and $D(T^*)$ are dense,
- (***) D(T), $D(T^*)$ and $D(T^{**})$ are dense,
- (****) D(T), $D(T^*)$, $D(T^{**})$ and $D(T^{***})$ are dense,
- (*****) D(T), $D(T^*)$, $D(T^{**})$, $D(T^{***})$ and $D(T^{****})$ are dense.

LEMMA 7. Let $T \in C(X)$ be an S-decomposable operator with (*). Then $X_T(G)^{\perp} = X_{T^*}^*(C \setminus G)$ for all open sets G with $S \subset G$ or $\overline{G} \cap S = \emptyset$.

PROOF. Vasilescu [15, Proposition 2.9] proved the case $\overline{G} \cap S = \emptyset$ implicitly. We prove the case G is an open set with $S \subset G$. We may assume $S \subset \sigma_e(T)$. If $\infty \notin S$, then $T \in B(X)$, and hence $X_T(G)^{\perp} = X_{T^*}^*(\overline{C} \setminus G)$ by [13]. Hence we may assume $\infty \in S$.

We prove $X_T(G)^{\perp} \subset X_{T^*}^*(\overline{C} \setminus G)$. Let $x^* \in X_T(G)^{\perp}$. We can write $G = \bigcup H_{\alpha}$ where H_{α} are the components of G. Let $S_{\alpha} = S \cap H_{\alpha}$. Then S_{α} is closed and $\{\alpha \mid S \cap H_{\alpha} \neq \emptyset\}$ is finite. We write

$$S = S_1 \cup \cdots \cup S_n \cup S_0$$
 where $S_k = \emptyset$ and $\infty \in S_0$.

Then there exist connected open sets H'_k , H''_k such that $S_k \subset H'_k$, $\overline{H'_k} \subset H''_k$. $\overline{H''_k} \subset H_k$ for $k=1,\cdots,n,0$. Let $G_0 = \bigcup H''_k$ and $G_1 = \bigcap (\overline{C} \setminus \overline{H_k})$. Then $\{G_1;G_0\}$ is an S-covering of $\sigma_e(T)$, and hence there exist $X_1, X_0 \in SM(T)$ such that $X = X_1 + X_0$, $X_1 \subset D(T)$ and $\sigma_e(T|X_i) \subset G_i$ for i=1,0. Let $x \in X$. Then we can write $x = x_1 + x_0$ for some $x_i \in X_i$ for i=1,0. Since $x_1 \in X_1 \subset X_T(\overline{G})$, there exists an analytic function $f:\bigcup H'_k \to D(T)$ such that $(z-T)f(z) = x_1$ for $z \in (\bigcup H'_k) \cap C$ because $S_T \subset S$ and H'_k is connected.

We define $(g(z))(x) = x^*(f(z))$ for $z \in \bigcup H'_k$. Then we can prove that $g(z) \in X^*$ for $z \in \bigcup H'_k$, and also $g(z)((z-T)x) = x^*(x)$ for $z \in (\bigcup H'_k) \cap C$ and for $x \in D(T)$ by an argument similar to that of [15, Proposition 2.9] by Lemma 4.

Also $g(\infty) = 0 \in D(T^*)$. This implies that $x^* \in X_{T^*}^*(\overline{C} \setminus (\bigcup H_k'))$, hence $x^* \in X_{T^*}^*(\overline{C} \setminus G)$. Thus $X_T(G)^{\perp} \subset X_{T^*}^*(\overline{C} \setminus G)$. The converse inclusion is easy. q.e.d.

Let $T \in C(X)$, $Y \in I(T)$ and $\Omega \subset \overline{C}$ be an open set. We say Y is Ω -analytically invariant

under T if $f(z) \in Y$ for $z \in \omega$ for all open sets $\omega \subset \Omega$ and for all analytic functions $f: \omega \to D(T)$ which satisfy $(z-T)f(z) \in Y$ for $z \in \omega \cap C$. We say T has Ω -svep if $\Omega \subset \Omega_T$. The proof of Lemma 8 is similar to that of [18, Proposition 2.1] by Lemma 2.

- LEMMA 8. Let $T \in C(X)$, $Y \in I(T)$ and $\sigma_e(T) \cup \sigma_e(T \mid Y) \neq \overline{C}$. Then Y is Ω -analytically invariant under T if and only if $T \mid Y$ has Ω -svep.
- Let $J: X \to X^{**}$ and $K: X^* \to X^{***}$ be the canonical embeddings. Then $X^{***} = KX^* \oplus (JX)^{\perp}$ (cf. [18].) Let P be the projection of X^{***} onto KX^* along $(JX)^{\perp}$.
- LEMMA 9. Let $T \in C(X)$ with (****) and let $\Omega \subset \overline{C}$ be an open set. If T^{****} has Ω -svep, then JX is Ω -analytically invariant under T^{**} .
- PROOF. [18, theorem 2.2] proved that $(X^{**}/JX)^* \simeq (JX)^{\perp} = N(P)$, $(X^{***}/KX^*)^* \simeq (KX^*)^{\perp} = N(P^*)$ and $X^{***}/KX^* \simeq (JX)^{\perp}$ where N(P) (resp. $N(P^*)$) denotes the null space of P (resp. P^*). Since P commutes with T^{***} by [4, Lemma 2.6], $T^{***} \mid N(P)$ is densely defined. Hence $(T^{**}/JX)^*$ is similar to $T^{***} \mid N(P)$ by [4, Lemma 2.2]. (We remark that the assumption $Y \subset D(T)$ in [4, Lemma 2.2] is unnecessary.) The rest of the proof is similar to that of [18, Corollary 2.3] by Lemma 8.
- LEMMA 10. Let $T \in C(X)$ with (****) and let $S \subset \overline{C}$ be a closed set. Let T^{****} have $(\overline{C} \setminus S)$ -svep and let F be a closed set with $S \subset F$ or $F \cap S = \emptyset$. Then $JX_T(F) = X_{T^{**}}^{***}(F) \cap JX$.
- PROOF. First we prove the case $S \subset F$. Let $x \in X$ and $Jx \in X_{T^{**}}^{**}(F) \cap JX$. Then there exists an analytic function $f \colon \overline{C} \setminus F \to D(T^{**})$ such that $(z T^{**})f(z) = Jx$ for $z \in C \setminus F$. We can write $\overline{C} \setminus F = \bigcup G_{\alpha}$ where G_{α} are the components of $\overline{C} \setminus F$. Then $G_{\alpha} \cap (\overline{C} \setminus S) \neq \emptyset$. Since $S_{T^{****}} \subset S$, JX is $(\overline{C} \setminus S)$ -analytically invariant under T^{**} by Lemma 9. Hence $f(z) \in JX \cap D(T^{**}) = JD(T)$ for $z \in C \setminus F$ by [4, Theorem 2.7]. The rest of the proof is similar to that of [18, Corollary 2.4].

Next we prove the case $F \cap S = \emptyset$. We can prove that $f(z) \in JD(T) = JX \cap D(T^{**})$ for $z \in G_{\alpha} \cap (\overline{C} \setminus S)$ similarly as above, hence $f(z) \in JD(T)$ for $z \in G_{\alpha}$. The rest of the proof is similar to the case $S \subset F$.

- LEMMA 11. Let $T \in C(X)$ with (*****) and let $S \subset \overline{C}$ be a closed set. Let T^{*****} have $(\overline{C} \setminus S)$ -svep and let F be a closed set with $S \subset F$ or $F \subset S = \emptyset$. Then $KX_{T^{*}}^{**}(F) = PX_{T^{***}}^{****}(F)$.
- PROOF. Since P commutes with T^{***} by [4, Lemma 2.6], the proof of Lemma 11 is similar to that of [18, Corollary 2.5].

The proof of following lemma is similar to that of [18, Proposition 2.6].

LEMMA 12. Let $T \in C(X)$ with (*****) and let $S \subset \overline{C}$ be a closed set. Let T^* be S-decomposable and let F be a closed set with $S \subset F$ or $S \cap F = \emptyset$. Then $X_{T^*}^*(F)$ is closed in the w^* -topology.

THEOREM 2. Let $T \in C(x)$ with (*****) and let $S \subset \overline{C}$ be a closed set. If T^* is S-decomposable, then T is S-decomposable.

PROOF. We prove that T satisfies the condition (4) of Theorem 1. If $\infty \notin S$, then $T^* \in B(X^*)$ and T is S-decomposable by [18, Theorem 2.7]. Hence we may assume $\infty \in S$. Let G be an open set with $S \subset G$. Let $H = \overline{C} \setminus \overline{G}$ and let $Y = {}^{\perp} X_{T^*}^*(\overline{H}) = \{x \in X \mid x \perp X_{T^*}^*(\overline{H})\}$. Then $\overline{H} \cap S = \emptyset$ and $X_{T^*}^*(\overline{H}) = X^*(T^*, \overline{H}) \subset D(T^*)$ by Lemmas 1 and 5. Hence $Y \in I(T)$. Also $Y^{\perp} = X_{T^*}^*(\overline{H})$ and $Y^* = X^*/Y^{\perp} = X^*/X_{T^*}^*(\overline{H})$ by Lemma 12. First we prove that $\sigma_e(T \mid Y) \subset \overline{C} \setminus H = \overline{G}$. Let V be an open ball with $V \subset H$. Let $z \in V$. We prove that $z - T \mid Y$ is bijective. Since there exist open sets G_1 , G_0 such that $V \subset G_1$, $\overline{G} \subset H$, $\overline{V} \cap \overline{G}_0 = \emptyset$ and $\{G_1; G_0\}$ is an S-covering of $\sigma_e(T^*)$, we obtain $X^* = X_{T^*}^*(\overline{G}_1) + X_{T^*}^*(\overline{G}_0)$.

We prove that $z - T \mid Y$ is injective. Let $y \in Y \cap D(T)$ and $(z - T \mid Y)y = 0$. Let $x^* \in X^*$. Then we can write $x^* = x_1^* + x_0^*$ for some $x_i^* \in X_{T^*}^*(\overline{G}_i)$ for i = 1, 0. Since $X_{T^*}^*(\overline{G}_1) \subset X_{T^*}^*(\overline{H})$, we obtain

$$\langle y, x^* \rangle = \langle y, x_1^* + x_0^* \rangle = \langle y, x_0^* \rangle = \langle y, (z - T^*)(z - T^* | X_{T^*}^*(\overline{G}_0))^{-1} x_0^* \rangle$$

= $\langle (z - T)y, (z - T^* | X_{T^*}^*(\overline{G}_0))^{-1} x_0^* \rangle = 0$,

and hence y = 0.

We prove that $z - T \mid Y$ is surjective. Let $y \in Y$. Let $x^* \in X^*$. Then we can write $x^* = x_1^* + x_0^*$ for some $x_i^* \in X_{T^*}^*(\overline{G}_i)$ for i = 1, 0. We define

$$(\varphi(z))(x^*) = \langle y, (z-T^*|X_{T^*}^*(\overline{G}))^{-1}x_0^* \rangle.$$

We prove that $\varphi(z) \in X^{**}$. If $x^* = x_1^* + x_0^* = a_1^* + a_0^*$ for some $a_i^* \in X_{T^*}^*(\overline{G}_i)$, then

$$x_1^*-a_1^*=a_0^*-x_0^*\in X_{T^*}^*(\overline{G}_1)\cap X_{T^*}^*(\overline{G}_0)=X_{T^*}^*(\overline{G}_1\cap \overline{G}_0)$$

because $S_{T^*} \subset S \subset G_0$. Hence there exists an analytic function $f: \overline{C} \setminus (\overline{G}_1 \cap \overline{G}_0) \to D(T^*)$ such that

$$(\lambda - T^*)f(\lambda) = x_1^* - a_1^* = a_0^* - x_0^*$$
 for $\lambda \in \mathbb{C} \setminus (\overline{G}_0 \cap \overline{G}_1)$.

Since

$$f(\lambda) \in X_{T^*}^*(\overline{G}_1 \cap \overline{G}_0) \subset X_{T^*}^*(\overline{H})$$
 for $\lambda \in \overline{C} \setminus (\overline{G}_1 \cap \overline{G}_0)$

by Lemma 4 and

$$f(\lambda) = (\lambda - T^* | X_{T^*}^*(\bar{G}_0))^{-1} (a_0^* - x_0^*) \quad \text{for} \quad \lambda \in C \setminus \bar{G}_0,$$

we obtain

$$(\lambda - T^* | X_{\tau^*}^*(\bar{G}_0))^{-1} (a_0^* - x_0^*) \in X_{\tau^*}^*(\bar{H})$$
 for $\lambda \in V$.

Hence,

$$\langle y, (z-T^* | X_{T^*}^*(\overline{G}_0))^{-1}(a_0^*-x_0^*) \rangle = 0,$$

and hence $\varphi(z)$ is well-defined. By Banach's theorem, there exists an M>0 such that $||x_0^*|| \le M||x^*||$ for all $x^* \in X^*$. Hence,

$$|x(z)(x^*)| = |\langle y, (z-T^*|X_{T^*}^*(\overline{G}_0))^{-1}x_0^*\rangle| \le ||y|| ||(z-T^*|X_{T^*}^*(\overline{G}_0))^{-1}||M||x^*||,$$

and hence $\varphi(z) \in X^{**}$. Let $x^* \in D(T^*)$. Then we can write $x^* = x_1^* + x_0^*$ for some $x_i^* \in X_{T^*}^*(\overline{G}_i)$ for i = 1, 0. Since $X_{T^*}^*(\overline{G}_1) \subset D(T^*)$, we obtain $x_0^* = x^* - x_1^* \in D(T^*)$. Then

$$\langle \varphi(z), (z-T^*)x^* \rangle = \langle y, x_0^* \rangle = \langle y, x_1^* + x_0^* \rangle = \langle y, x^* \rangle = \langle Jy, x^* \rangle.$$

Hence $\varphi(z) \in D(T^{**})$ and $(z-T^{**})\varphi(z) = Jy$. Since T^{**} is S-decomposable by [15, Theorem 2.10], T^{**} has $(\overline{C} \setminus S)$ -svep. Hence JX is $(\overline{C} \setminus S)$ -analytically invariant under T^{**} by Lemma 7, and hence $\varphi(z) \in JX \cap D(T^{**}) = JD(T)$ by [4, Theorem 2.7]. Hence $J^{-1}\varphi(z) \colon V \to D(T)$ is an analytic function such that $(z-T)J^{-1}\varphi(z) = y$ for $z \in V$. We can prove that $J^{-1}\varphi(z) \in Y$ by an argument similar to the proof of $\varphi(z) \in X^{**}$. This implies that $z-T \mid Y$ is surjective.

Since it is easy to prove the inclusion $\sigma_e(T \mid Y) \subset \sigma_e(T)$ because $X_{T^*}^*(\bar{H}) \subset D(T^*)$, T/Y is closed by [9, Lemma 3].

Finally we prove that $\sigma_e(T/Y) \subset \overline{C} \setminus G$. Since $X_{T^*}^*(\overline{H}) \subset D(T^*)$ and T/Y is closed, we can prove that

$$\sigma_{\mathfrak{o}}(T/Y) = \sigma_{\mathfrak{o}}((T/Y)^*) = \sigma_{\mathfrak{o}}(T^* \mid Y^{\perp}) = \sigma_{\mathfrak{o}}(T^* \mid X^*_{T^*}(\bar{H})) \subset \bar{H} \subset \bar{C} \setminus G$$

similarly to the proof of [4, Lemma 2.2].

q.e.d.

REMARK. If $T \mid Y$ is densely defined, i.e., $\overline{Y \cap D(T)} = Y$, then $\sigma_e(T \mid Y) = \sigma_e((T \mid Y)^*) = \sigma_e(T^*/X_{T^*}^*(\overline{H})) \subset \overline{C} \setminus H \subset \overline{G}$ by [16, Theorem 2.6]. But we do not know whether $\overline{Y \cap D(T)} = Y$. Also we doubt whether the assumption (*****) is necessary, but it seems a difficult problem.

REFERENCES

- C. Apostol, Roots of decomposable operator-valued analytic functions, Rev. Roum. Math. Pures et Appl. 13 (1968), 433–438.
- [2] I. BACALU, On restrictions and quotients of decomposable operators, Rev. Roum. Math. Pures et Appl. 18 (1973), 809-813.
- [3] I. COLOJOARĂ AND C. FOIAȘ, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- [4] I. ERDELYI AND WANG SHENGWANG, A spectral duality theorem for closed operators, Pacific J. Math. 114 (1984), 73–93.
- [5] I. ERDELYI AND WANG SHENGWANG, Functional calculus and duality for closed operators, J. Math. Anal. Appl. 108 (1985), 438-446.
- [6] R. LANGE, Duality and asymptotic spectral decompositions, Pacific J. Math. 121 (1986), 93-108.
- [7] B. NAGY, On S-decomposable operators, J. Operator Theory 2 (1979), 277-286.
- [8] B. Nagy, Closed S-decomposable operators, Ann. Univ. Sci. Budapest Eotovos Sect. Math. 22–23 (1979–1980), 143–149.

- [9] B. NAGY, Semigroups of operators and decomposability, Studia Sci. Math. Hungary 15 (1980), 345-352.
- [10] B. NAGY, A spectral residuum for each closed operator, in "Topics in Modern Operator Theory: Advances and Applications", Vol. 2. Birkhauser, Basel, 1981.
- [11] M. RADJABALIPOUR, Decomposable operators, Bull. Iranian Math. Sci. 9 (1978), 1-49.
- [12] K. TANAHASHI, Characterizations of S-decomposable operators on a complex Banach space, Tôhoku Math. J. 35 (1983), 261–265.
- [13] K. Tanahashi, Spectral manifolds of bounded S-decomposable operators, Proc. Amer. Math. Soc. 102 (1988), 939-944.
- [14] F.-H. VASILESCU, Residually decomposable operators in Banach spaces, Tôhoku Math. J. 21 (1969), 509-522.
- [15] F-H. VASILESCU, On the residual decomposability in dual spaces, Rev. Roum. Math. Pures et Appl. 16 (1971), 1573-1587.
- [16] WANG SHENGWANG, On the spectral residuum of closed operators, Acta Sci. Math. 47 (1984), 117-129.
- [17] WANG SHENGWANG AND I. ERDELYI, On spectral decomposition of closed operators on Banach spaces, Illinois J. Math. 30 (1986), 676–688.
- [18] WANG SHENGWANG AND LIU GUANGYU, On the duality theorem of S-decomposable operators, J. Math. Anal. Appl. 99 (1984), 150–163.

DEPARTMENT OF MATHEMATICS TOHOKU COLLEGE OF PHARMACY KOMATSUSHIMA, SENDAI, 981 JAPAN