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1. Introduction. There are many efforts to extend the decomposable operator
theory on a complex Banach space, which was introduced by Colojoara and Foias [3].
Bacalu [2] discovered S-decomposability for a restriction of a decomposable operator.
Subsequently, many authors studied the S-decomposable operator theory and obtained
many characterizations of bounded S-decomposable operators, which are similar to
those of decomposable operators. Hence, now, it seems a natural problem to seek
appropriate characterizations of a closed S-decomposable operators. (cf. Nagy [8], [10],
Wang [16] and Wang and Erdelyi [17].)

In this paper we obtain several characterizations of a closed S-decomposable
operator (Theorem 1), which generalize the results due to the author [12], [13] and-
Radjabalipour [11], etc.

After this, we consider the duality theorem. Vasilescu [15] proved that if T is a
densely defined closed S-decomposable operator, then 7T* is also an S-decomposable
operator. Conversely, Wang and Liu [18] proved that if the dual operator T* of
Te B(X ) is an S-decomposable operator, then T is also an S-decomposable operator.
Using Theorem 1, we prove the duality theorem of a closed S-decomposable operator
(Theorem 2) by a way similar to that of [18). We remark that Theorem 2 is partly
proved by Erdelyi and Wang [4], who proved the case S={o0}. (cf. Erdelyi and Wang
[5] and Lange [6]).

2. Preliminaries. Let X be a complex Banach space. Let C(X ) (resp. B(X)) be
the family of all closed (resp. bounded) linear operators on X. C is the complex plane
and C=Cu{oo} is its one-point compactification.

D(T) is the domain of Te C(X ) and ¢(T) is its extended spectrum, i.e., 6 (T)=a(T)
if Te B(X ) and o (T)=0(T)u {0}, otherwise. A closed subspace Y of X is an invariant
subspace of T if T(Y nD(T))< Y. I(T) is the family of all invariant subspaces of 7. T | Y
is the restriction of T to YeI(T) with domain D(T | Y)=YnD(T). T/Y is the quotient
operator induced by T on X/Y with domain D(T/Y)={%e X/Y|£nD(T)#J}, ie.,
(T/Y)X=(Tx)" for xeXnD(T), where £=x+ Ye X/Y is the coset of xe X. Q is the
maximal open set with the property that if w<Q; is open and if f: w—D(T) is an
analytic function such that (z—T)f(z)=0 for zewnC, then f(z)=0 for zew. Let
Sy=C\Rr. For a closed set Fc C, we denote by X,(F) the set of points xe X such
that there exists an analytic function f: C\ F—D(T) with (z— T)f(z)=x for ze C\ F.
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For any set Ee C, we denote by X,(E) the union of X (F) for all closed sets F = E. We
call X(F), X (E) spectral manifolds of X. We remark that X(E)= X {(E na(T)) for all
subsets Ee C. These definitions of spectral manifolds are due to Radjabalipour [11] and
different from those of [4], [7] and [14], etc. But if S; < E, then they are equivalent.

For a closed set F=C, let X(T, F) be an invariant subspace of T such that
€)) ae(T|X(7; F))cF and that (2) if Yel(T) satisfies ae(TlY)cF, then Yc X(T, F).
Naturally, X (7, F) may or may not exists, but if such an invariant subspace exists, then
it is obviously unique. We call X(T, F) a spectral maximal space of 7. SM(T) is the
family of all spectral maximal spaces of T.

Let ScC be a closed set. A family of open sets {G,," -, G,; Go} is called an
S-covering of ¢ (T) if o (T)uS<G,u---UG,UuG, and G;nS=¢ for i=1, - -, n.
Te C(X) is called an S-decomposable operator if for every S-covering {G, * - -, G,; Go}
of ¢ (T), there exists a family {X,, - - -, X,; X,} of spectral maximal spaces of T such
that (1) X=X, + -+ X,+ X, with X,, - -, X,=D(T) and that (2) (T |X)) =G, for
i=1,---,n0. If TeC(X) is S-decomposable, then T is Snao(T)-decomposable.
Hence we may assume Sca(T). If TeC(X) is S-decomposable and if oo ¢S, then
Te B(X).

3. Main results. We always assume o,(T)#C in this paper. We need some
lemmas to prove Theorem 1. Lemma 1 is due to Nagy [8, Lemma 2].

LEMMA 1. Let Te C(X). If F=C is a closed set with Sy F and if X(F) is closed,
then X{(F)=X(T, F) and 6 (T | X (F))=Fna(T).

Lemma 2 is a modification of Nagy [10, Lemma, 3.1], but it plays an essential role
in this paper. Although [10, Lemma 3.1] used the assumption Y <= D(T), we can prove
Lemma 2 without this assumption.

LEMMA 2. Let Te C(X ) and YeI(T). Let 6 (T)uo (T |Y)#C. Let D=(D(T), || 1)
denote the linear manifold D(T) endowed with the graph norm | x| ;= |x|| + || Tx||. Then
D is a Banach space and Y n D(T) is closed in D. Moreover, T]Y is closed and (D(T/Y),
I llzyr)=D/AYnD(T)).

The proof of Lemma 3 is similar to that of [12, Lemma 2] by Lemma 2.

LEMMA 3. Let TeC(X), TeI(T) and xeX. If £€(X/Y)r(F) for a closed set
FcC, then xe Xy(Fuo (T|Y)uSy).

LeEMMA 4. Let Te C(X) and xe X(F) for some closed set F=C, i.e., there exists
an analytic function f:C\F—-D(T) such that (z—T)f(z)=x for ze C\F. Then
f(2)e XH{(F) for ze C\ F.

PrOOF. If z=o00, then f(z)=0 by the same argument as in the proof of Lemma
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3. The rest of the proof is similar to that of [14, Proposition 2.2]. q.e.d.
The proof of Lemma 5 is similar to that of [12, Lemma 3] by Lemma 4.

LEMMA 5. Let Te C(X ). If X({(H)=X(T, H) for all closed sets H with S< H, then
XH{(F)=X(T, F) for all closed sets F with FnS= (.

The proof of Lemma 6 is routine, but the formulation seems most general. (cf. [1].)

LEMMA 6. Let TeC(X). If F, and F, are disjoint closed sets, then
X{(F uF)=XF;)+X(F,).

THEOREM 1. Let Te C(X) and S = C be a closed set with oo € S. Then the following
assertions are equivalent.

(1) T is S-decomposable.

2) XAF)=X(T,F) for all closed sets F with ScF and X[{G,uGy)=
X (G,)+ X (G,) for all open sets G, G, with G,nS= and S<G,,.

B) X{F)=X(TF), T/X{(F) is closed and o (T/X{(F))c(C\F)uS for all
closed sets F with ScF. (F' is the interior of F.)

(4) For all open sets G with Sc G, there exists Ye I(T) such that ae(T| Y)<G, T/Y
is closed and o (T/Y)=(C\ G)uS.

ProoF. The proof of Theorem 1 is similar to that of [12]). We prove the implica-
tions (1)—=»(3)—=>(4)—-(2)—(1).

(1)>(3). Let T be S-decomposable and F be a closed set with S—F. Nagy [8]
proved that SrcS and X (F)=X(T,F). Since X{(F)=X{Fno/(T)), we obtain
0/T)uo (T |XHF))co(T)#C. Hence T/X(F) is closed by [9, Lemma 3].

The rest of the proof is similar to that of [12] by Lemma 4.

(3)—(4). Let Y=X(G).

(4)—(2). We can prove that S; =S by a similar argument as in [12].

Next we prove that X (F)=X(T, F) for all closed sets F with Sc F. By Lemma 1,
we have only to prove that X (F) is closed. Let G be any open set with F=G. Then
there exists YeI(T) such that ae(T|Y)cG, T/Y is closed and o (T/Y)=(C\ G)uUS.
Since ScG, we can writt X/Y=Z, @ Z, where Z,, Z,e(T/Y), c (T/Y)|Z,)=
o T/Y)n(C\G)=(C\G) and 6 (T/Y)| Z,)=0(T/Y)nS<S. Let P; be the projection
of X/Y onto Z; along Z; for i#j. Let xe X(F). Then there exists an analytic func-
tion f: C\F—D(T) such that (z—T)f(z)=x for ze C\\F. Since P; commutes with
T/Y, we obtain P-f(;)eD(T/ Y) for i=1, 0. Then we can write

@—T/Y)f@)=(z— U1)g,(2) ®(z—Uolgol) = %, ® %o =%

for ze C\\F where U,=(T/Y)|Z, gi(z)=P,.f(;) and %=P% for i=1,0. Then
£ €Z1y(F)=Zy,(FnoU)=Z,,,(&)={0}. Hence £=%,eZ,. Hence XF)c
I17%(Z,) where IT: X— X]Y is the canonical mapping. Since o ,(T/Y) | Z,)< S, we obtain
Zy<= X/Yry(S), and hence I17'Zy, = X(Suc(T|Y)uSy)= X (G) by Lemma 3. Since G
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is any open set with Fc G, we obtain XH(F)=[(I1~*(Z,)={XH{G)|G is open and
Fc G} =X(F) because Sy = S F. Hence X{F )= \I1"'Z,, and hence X(F) is closed.
The rest of the proof is similar to that of [12] by Lemmas 3 and 6.
(2)—>(1). The proof is similar to that of [12] by Lemma 5. q.e.d.

REMARK. Theorem 1 is proved partly by many authors. (See introduction.) We
remark that Wang [16] proved the implication (1)—(2) implicitly. Also [16] proved that
if Te C(X) is S-decomposable and if G is an open set with GnS= ¥, then T/X(G) is
closed and o (T/X {(G)) = C\G. (cf. [13].)

Next we prove the duality theorem of closed S-decomposability (Theorem 2). For
the proof of Theorem 2, we need some lemmas. We assume some density conditions
in the following, i.e.,

(*) D(T) is dense,
(*x) D(T) and D(T*) are dense,
(x*%) D(T), D(T*) and D(T**) are dense,
(*x*x) D(T), D(T*), D(T**) and D(T***) are dense,
(*x%%x) D(T), D(T*), D(T**), D(T***) and D(T****) are dense.

LemMa 7. Let Te((X) be an S-decomposable operator with (). Then
XH{G)*: =X3{C\G) for all open sets G with ScG or GnS=.

PrOOF. Vasilescu [15, Proposition 2.9] proved the case GnS= ¢ implicitly. We
prove the case G is an open set with ScG. We may assume Sco (7). If oo ¢S, then
Te B(X), and hence X(G)* =X +(C\\G) by [13]. Hence we may assume oo € S.

We prove X{(G)* = X3.(C\\G). Let x* € X{(G)*. We can write G=JH, where H,
are the components of G. Let S,=Sn H,. Then S, is closed and {a| Sn H,# ¥} is finite.
We write

§=S,u ---uS,uS, where S,=C and w®eS,.

Then there exist connected open sets H,, H,' such that S,c H;, H,c H;. H, < H, for
k=1,---,n,0. Let Go=|JHy and G, =()(C\ Hy). Then {G; G,} is an S-covering of
0.(T), and hence there exist X;, X, SM(T) such that X=X, +X,, X;<D(T) and
0T |X)<=G; for i=1,0. Let xe X. Then we can write x=x, +x, for some x;€ X; for
i=1, 0. Since x, € X; = X1(G), there exists an analytic function f: | JH;—D(T) such that
(z—T)f(z2)=x, for ze(|JH,)n C because S; =S and H, is connected.

We define (g(2))(x)=x*(f(z)) for ze|JH;. Then we can prove that g(z)e X* for
ze|JH,, and also g(z)(z— T)x)=x*(x) for ze(|JH;)n C and for xe D(T) by an argu-
ment similar to that of [15, Proposition 2.9] by Lemma 4.

Also g(0)=0eD(T*). This implies that x*eX(C\(|JH;), hence x*e
XX(C\\G). Thus X(G)' = X3«(C\\G). The converse inclusion is easy. q.e.d.

Let Te C(X), Ye I(T) and Q = C be an open set. We say Y is Q-analytically invariant
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under T if f(z)e Y for ze w for all open sets w = Q and for all analytic functions f: w—
D(T) which satisfy (z—T)f(z)e Y for zewnC. We say T has Q-svep if Qc Q. The
proof of Lemma 8 is similar to that of [18, Proposition 2.1] by Lemma 2.

LemMMmA 8. Let Te ((X), YeI(T) and 6 (T)uo (T | Y)#C. Then ¥ is Q-analytically
invariant under T if and only if T|Y has Q-svep.

Let J: X—> X** and K: X*—> X*** be the canonical embeddings. Then
X*** = KX* @ (JX)? (cf. [18].) Let P be the projection of X *** onto KX * along (JX)*.

LEMMA 9. Let Te C(X) with (xxx*) and let Q< C be an open set. If T**** has
Q-svep, then JX is Q-analytically invariant under T**.

ProOF. [18, theorem 2.2] proved that (X **/JX )*~(JX )* = N(P), (X ***/KX *)*~
(KX*)1=N(P*) and X***/KX*~(JX)' where N(P) (resp. N(P*)) denotes the null
space of P (resp. P*). Since P commutes with 7*** by [4, Lemma 2.6], T ***|N(P)
is densely defined. Hence (7**/JX)* is similar to T***]N(P) by [4, Lemma 2.2].
(We remark that the assumption Y = D(T) in [4, Lemma 2.2] is unnecessary.) The rest
of the proof is similar to that of [18, Corollary 2.3] by Lemma 8. q.e.d.

LEMMA 10. Let Te C(X) with (+**x) and let ScC be a closed set. Let T****
have (C\S)-svep and let F be a closed set with ScF or FnS=. Then JX{(F)
=XX(F)nJX.

Proor. First we prove the case Sc F. Let xe X and Jxe€ X f%(F)nJX. Then there
exists an analytic function f: C\ F - D(T**) such that (z— T**)f(z)=Jx for ze C\\ F.
We can writt C\F=|JG, where G, are the components of C\F. Then
G,n(C\S)#J. Since Spun<S, JX is (C\\S)-analytically invariant under T** by
Lemma 9. Hence f(z)e JX n D(T**)=JD(T) for ze C\\ F by [4, Theorem 2.7]. The rest
of the proof is similar to that of [18, Corollary 2.4].

Next we prove the case FnS=J. We can prove that f(z)e JD(T)=JX n D(T**)
for ze G,n(C\S) similarly as above, hence f(z)e JD(T) for zeG,. The rest of the
proof is similar to the case Sc F. q.ed.

LEMMA 11. Let Te C(X) with (xxx*x) and let S< C be a closed set. Let T*****
have (C\S)-svep and let F be a closed set with ScF or FcS=. Then
KXJ(F)=PXJ3XF).

PrOOF. Since P commutes with 7*** by [4, Lemma 2.6], the proof of Lemma 11
is similar to that of [18, Corollary 2.5]. q.e.d.

The proof of following lemma is similar to that of [18, Propbsition 2.6].

LEMMA 12. Let Te C(X) with (s+x+x) and let ScC be a closed set. Let T* be
S-decomposable and let F be a closed set with Sc F or Sn F= . Then X y{(F) is closed in
the w*-topology.
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THEOREM 2. Let TeC(x) with (***x%) and let S=C be a closed set. If T* is
S-decomposable, then T is S-decomposable.

ProOOF. We prove that T satisfies the condition (4) of Theorem 1. If oo ¢ S, then
T*e B(X*) and T is S-decomposable by [18, Theorem 2.7]. Hence we may assume
oeS. Let G be an open set with ScG. Let H=C\G and let Y="X}(H)=
{xeX|x L X}(H)}. Then HnS= & and X }.(H)= X *(T*, H)< D(T*) by Lemmas 1 and
5.Hence YeI(T). Also Y+ =X3(H)and Y*=X*/Y*=X*/X %(H) by Lemma 12. First
we prove that 6(T|Y)c C\ H=G. Let V be an open ball with V< H. Let ze V. We
prove that z—T | Y is bijective. Since there exist open sets G,, G, such that V<G,
GcH, VnGo= and {G,; G,} is an S-covering of ¢,(T*), we obtain X*=X7(G,)+
X2(G).

We prove that z— T | Y is injective. Let ye Yn D(T) and (z— T| Y)y=0. Let x*e X'*.
Then we can write x* = x} + x for some x* € X7«(G,) for i=1, 0. Since X7.(G,) = XJ-(H),
we obtain

(3 x*Y =Ly, xF+ x5 =3, xE> =y, 2 — TNz — T* X 3(Go)) " 'x¥>
={(z=Ty, (z—T*| X :(G,)) " 'x¥>=0,
and hence y=0.
We prove that z—T [ Y is surjective. Let ye Y. Let x*e X*. Then we can write
x*=x¥+x¥ for some x}¥ e X (G, for i=1,0. We define
(@@)x*)=<y, z—T*X(G) " 'x¥) .
We prove that (z)e X**. If x* =x%+x¥ =a} +a} for some a}¥ € X1+(G)), then
xt—at=a}—x{e X;(G)n X(Go)=X7(G,nGy)
because S+ ScG,. Hence there exists an analytic function f: C\ (G, nGy)—D(T*)
such that
A=THf(A)=x¥—a*r=at—xt for 1eC\ (Gy,nG,).

Since
f(/l)eX;".(C_;lnGo)cX;,(ﬁ) for AeC\ (G,nGy)

by Lemma 4 and
fA=(A—T*| X 1(Gy) " (ad —x¥) for 1eC\ Gy,
we obtain
(A=T*| X}(Go)) " '(a —x¥) e X3(H) for AeV.
Hence,

<»,(z=T*| X7(Gy) "(a§ —x8)>=0,
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and hence ¢(z) is well-defined. By Banach’s theorem, there exists an M >0 such that
|l x¥|| <M |x*| for all x*eX*. Hence,

| X(2)x*) | =1 < s (2= T*| X 7+(Go)) x> < I Il [z — T*| X 7(Go) " IM Ix*]l,

and hence ¢(z)e X**. Let x*eD(T*). Then we can write x*=x}+x¥ for some
x} e X7(G)) for i=1, 0. Since X7.(G,) = D(T*), we obtain x§ =x*—x}t e D(T*). Then

$@(2), (2= T*)x*> =y, X8> =<y, xT+x8> =y, x*> =Ty, x*) .

Hence ¢(z) e D(T**) and (z — T**)¢p(z)=Jy. Since T** is S-decomposable by [15, Theo-
rem 2.10], T** has (C\ S)-svep. Hence JX is (C\ S)-analytically invariant under
T** by Lemma 7, and hence ¢(z)e JX nD(T**)=JD(T) by [4, Theorem 2.7]. Hence
J1¢(z): V-D(T) is an analytic function such that (z— T)J " ¢(z)=y for ze V. We can
prove that J~'¢(z)e Y by an argument similar to the proof of ¢(z)e X **. This implies
that z— T'|Y is surjective.

Since it is easy to prove the inclusion (T | Y) = 6,(T) because X Jo(H) = D(T*), T/Y is
closed by [9, Lemma 3].

Finally we prove that ¢ (T/Y)c C\ G. Since X;«(H)<D(T*) and T/Y is closed,
we can prove that

0 (T/N=0(T/V)*)=0(T*| Y )=0(T*| X (H))c H=C\G
similarly to the proof of [4, Lemma 2.2]. q.e.d.

REMARK. If T|Y is densely defined, ie., YnD(T)=Y, then o/(T|Y)=
0 (T| Y)*)=0(T*/X j:(H))= C\ H<G by [16, Theorem 2.6]. But we do not know
whether Yn D(T)=Y. Also we doubt whether the assumption (#***x) is necessary, but
it seems a difficult problem.
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