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1. Introduction. In 1929, Nevanlinna [5] asked whether his defect relation remains
valid for mutually distinct meromorphic target functions gί9 , gq on C which grow
more slowly than a given meromorphic function / on C, that is, the Nevanlinna
characteristic functions of those functions satisfy Tg.(r) = o( Tf(r)) as r -> oo, (J'= 1, , q).
We say that g is a slow moving target function for / if Tg(r) = o(Tf(r)) as r->oo.

Nevanlinna [5] proved the conjecture for q = 3. Dufresnoy [3] proved a defect
relation with defect bound d+2 for polynomials of degree ^d as target functions.
Chuang [2] obtained a defect relation with bound p(l—δf(oo))+l for slow moving
target functions which span a vector space of dimension p over C. Thus Nevanlinna's
conjecture is valid for an entire function / on C. In 1986, Steinmetz [8] proved
Nevanlinna's conjecture with an elegant short proof. On the other hand, in higher
dimension, Shiftman [6], [7] proved Nevanlinna's conjecture for a meromorphic function
/ on Cn if

(*) rank{{/} u Φ} = 1 + rank Φ ,

where Φ is a set of slow moving target functions φj on Cn for / . If n= 1, then the
condition (*) implies that all elements of Φ are constant. Stoll [9] and Mori [4] discussed
the problem for holomorphic mappings of Cm into P\C). Stoll [10] proved an analogous
defect relation with a defect bound n(n+1) for holomorphic mappings of C into P"(C),
but this bound is much bigger than n +1 when n is large. We expect that the bound
n(n+ 1) is replaced by n+ 1. (cf. Mori [4])

In this note, we give a short proof of StolΓs theorem ([10, Theorem 6.19]).

2. Preliminaries. Let / : C^Pn(C) be a holomorphic mapping of C into the
H-dimensional complex projective space Pn(C), and (/0, -,/„): C-*Cπ+1-{0} a
reduced representation of/. Set \\f(z)\\2 = Yt

n

i=1\fi(z)\2. We define the characteristic
function Tf(r) of / by

2π Jo

This research was partially supported by the Grants-in-Aid for Scientific as well as Co-operative Research,

The Ministry of Education, Science and Culture, Japan.



620 S. MORI

This is well defined up to addition of constants. For a meromorphic function

φ(z): C->Cu{oo}, its characteristic function T(φ, r) is defined by

, r): = J- Γ
2π Jo

T(φ, r): = J - Γ log+| φ(reiθ) \dθ + N(φ, r),
2 J

where n(φ, i) is the number of poles of φ in \z\<t counting multiplicities,

N(φ9 r) = $r

on(φ, t)dt/t and log+x = max(logx, 0). Let © be a finite set of holomorphic

mappings h: C->PΠ(C)* with « + 2 ^ # : = *(5<oo. Here we say that h is a moving target.

Assume that

(Al) © is in general position. (cf. [10, p. 7])

This means that at least one point zoeC exists so that #®(z0) = q and that <5(z0) is in

general position. Let (/0, ••*,/„) and (Λo, , hn) be reduced representations of/ and

/z, respectively. Define NfJr): = N(l/F,r) and

J 2πJ0 |/

where F(z) = Yj

n

i=Qfi(z)'hi(z):φ§. Then it is known that

Tf(r) + Th(r) = Nf,h(r) + mf,h(r) + 0(1) (r-> oo).

If / or h is nonconstant, then Tj{r)+ 77

Λ(r)->oo (r^>oo) and the defect <5(/, Λ) for the

moving target h is defined by

):

r^ * 7>(r) + Th(r)

Assume that

(A2) TJr) = o(Tj{r)) (r-»oo), /or α//
Then the moving target # 7 is said to grow more slowly than / , and the defect δ(f, g3)

is written as

δtf, gj) = \im Mfmf **r)= 1 -lim sup Nf^r).
r-.αo Tf(r) r-αo Tj{r)

Let R© be the field generated by © over C, that is, the field generated by elements of

the form gji = g\lgj

Q (7=0, , n;j=0, , q) over C, where (gj

0, , gj

n) is a reduced

representation of # J . By the assumption (A2), Tψ(r) = o(Tf(r)) (r->oo) for any if eft©.

Assume that

(A3) / is linearly non-degenerate over ft© ,

that is,/ 0, ••-,/„ are linearly independent over ft©. Then Stoll proved the following

theorem.
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THEOREM ([10, Theorem 6.19]). Assume that (A1)~(A3) hold. Then

Σ

REMARK. The proof should be easily extend to meromorphic mappings

/ : CW->PΠ(C) by means of a result of Biancofiore-Stoll [1] or Vitter [11].

3. Proof of the theorem. We now give a short proof of this theorem.

We may assume that g j

0(z) # 0 (j = 1, , q) by a linear change L of Pn(C)* ^ P\C).

Set f=Lof and gj = LogJ ( / = 1 , •••,?). Then it follows that Γ/(r)=7)(r) + O(l),

Tgj(r) = T§fy) + 0(1) and NftβJr) = Λfa A'), so δ(f, gj) = δ(£ #0 (/= 1, ' ' *, ?). It is known

that

T{gjU r)- 0(1)S Tgj(r)^ £ T(gjh r
/=o

(i = 0, '-,n; 7 = 1 , ••-,?). This yields Γ(g j l,r) = o(Γ/(r)) (r->oo), (ί = 0, •••,«; 7 =

1, -,q). Let Fjfi^YH^gjίzyflz) 0 " = l , ' ' , ϊ ) . Then the assumption (A3) yields

Fy(z)^O. Let if(s) be the vector space over C spanned by the set

{Π1 ik}**9*{i Isβ a r e non-negative integers with £ x ^ j ύ q s β = s} ,

{*i, * * , 6jJ be a basis of Jίf(s) and {cl9 , q} a basis of JSP(J+ 1). Then it is evident

that JS?(s)c jS?(.s+1) and Jfc ̂ /.

Set

u , cjl9 , C!/B, , cjn)

and

J.: = ^ ( 6 ! ^ , , bkFp c j u ' - 9 c J l 9 ' - 9 cjn9 , c f / π ) ,

where ^(Λ l 5 * *, Am) denotes the Wronskian determinant of hu , hm. Then it is easy

to see that J—Jj (7= U *' S^) a n d 7 # 0 by the assumption (A3). At any zeC, the F/s

may be ordered as

S + 0 0 .

Since (5 is in general position, we can find a function C(z) independent of the arrangement

of Fl9 ' ,Fqso t h a t

and
f2π

(r->oo).
Γ 2 π

 +
log I

Jo
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Indeed, by (Al) we can write

where A^eSi® are rational functions of ̂ ,-'8(1 = 0, -9n;j= 1, , n+1). Hence we have

\\M\\ύyfi+ί max |/;.(z)|^v^Tϊj Σ "i: \Aij\\ - \Fn + 1(z)\ .
Oϊiϊn [i = 0j=l J

So we set

where the summation is taken over all Au corresponding to all combinations

Fh> '">Fjn+io{Fi>'">Fr T h e n w e s e e t h a t

Γπiog+|
Jo

Therefore we have

l o g ! Δ ϊ 7 F L

C(reiθ) \dθ = o(Tf(r)) (r->oo).

\Ji'"Jn

\Fs\
k-

^ -n/ log
n i

= log|Fπ

where

\Dj\ =

\k- Σ log I Dj\-nl log
7 = 1

Fj ' '

(W (el)'
h

h

' icJn)'

fn

fn
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and

Jo
log+\ Dj\dθ = o(Tf(r)) ( r - o o ) //, U=h'-,»)

The notation "//" means that the stated inequality holds outside an exceptional intervals
of finite total length. Hence we have

log \Fn

Integrating both sides along the circle {zeC| | z | = r}, we have

\J\

n 1 Γ2π n] Γ2π n 1 flπ

Σ ^ ~ log+\Dj\dθ + - \ log Hftdθ + —\ log+

j=i 2π J o 2π J o i = i 2π J o

\C\dθ

Thus we have

By Steinmentz' lemma (cf. [8, p. 138] or [10, Lemma 3.12]), lim i
we obtain

Σ δ(f,gj)^

^^1^=1. Therefore

q.e.d.
7 = 1
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