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A Cayley surface in affine space R3 is given as the graph of a cubic polynomial,
say, z = xy—y3β or z = xy — x3β. This ruled surface is an improper affine sphere which
is also one of the homogeneous nondegenerate affine surfaces (see [1, p. 243], also [2,
Chapter 12]).

One of the further properties of the surface is that its (nonzero) cubic form is parallel
relative to the induced affine connection. The purpose of this paper is to show that this
property alone characterizes the Cayley surface up to an equiaffine transformation in
R3. Namely, we prove the following

THEOREM. Let M2 be a nondegenerate surface in R3. Let V be the induced affine

FIGURE. Cayley surface.
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connection and let h be the fundamental form (affine metric). IfV2h = O but VΛ#O, then

M2 is congruent to (an open subset of) the Cay ley surface z = xy—y3β or xy — x3β by

an equiaffine transformation of R3.

We shall follow the terminology and notation in [3] and [4], which provide a

modern introduction to affine differential geometry. A quick review of the basic notions

and facts is provided in Section 1. In Section 2, we study the behavior of the cubic

form for dimension 2. In Section 3 we show that the assumption V2λ = 0 but VhφO

implies that the induced connection is flat and, consequently, the surface is the graph

of a certain function z = F(x, y) such that the Hessian determinant is ± 1. In Section 4

we discuss the reduction of the Hessian matrix to a simple form by an equiaffine change

of the corrdinates system x, y. This argument makes use of an inner product of signature

( —, + , . + ) in the space of symmetric 2 x 2 matrices. Once we obtain the function F

from the reduced Hessian matrix, our surface is shown to be equiaffinely congruent

to the standard Cayley surface.

1. Affine surfaces. Let / be an immersion of an ^-dimensional differentiable

manifold Mn into an (n+ l)-dimensional affine space Rn+1 with a fixed parallel volume

element ω. Choose any transversal vector field ξ on M. For vector fields X and Y, we

may write

, Y)ξ,

where V is the induced affine connection on Mn, the bilinear symmetric tensor h the

fundamental form, the (1, 1) tensor S the shape operator, and τ the transversal connection

form. We also introduce a volume element θ on Mn by setting

for any tangent vector Xu , Xn.

Whether h is degenerate or nondegenerate is independent of the choice of ξ. When

h is nondegenerate, we say that the hypersurface Mn is nondegenerate. It is a

fundamenental fact in classical affine differential geometry that if Mn is nondegenerate,

then we can choose ξ uniquely such that

(1) τ = 0, which implies that θ is parallel relative to V;

(2) the volume element for h coincides with θ.

The uniquely determined ξ is called the affine normal and the corresponding h the affine

metric. The induced connection V and the volume element θ together define an equiaffine

structure on Mn.

The covariant differential C=VΛ is called the cubic form of Mn. It is related to

the difference tensor # between the induced connection V and the Levi-Civita connection

V for the affine metric. If KXY= VXY-V*Y, then we have
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h{KxY, Z)= C{X, Y, Z) for any tangent vectors X, Y, Z .

Thus C=0 if and only if V and V coincide.
Because of Condition (2) above, we have apolarity: trace Kx = 0. If we express h

and C by their components relative to any basis in the tangent space or any local
coordinate system, apolarity can be expressed by

ΣhijCijk = 0 , where

It is a classical theorem due to Pick and Berwald that a nondegenerate hypersurface
with vanishing cubic form is a quadric. This result has been extended. See [5] for the
proof including the classical case.

2. Cubic form on an affine surface. We now consider exclusively nondegenerate
affine surfaces M in R3. We wish to study the behavior of the cubic form in more detail.
Some of the information given below appears in [6].

Let V be a 2-dimensional real vector space with a nondegenerate inner product h.
Let C be a nonzero cubic form, namely, a 3-linear symmetric function on VxVxV,
which satisfies the apolarity condition relative to h. By a null direction of C, we mean
a direction of a vector XφO such that C{X, X, X) = 0.

LEMMA 1. If h is elliptic {that is, positive-definite), then C has three distinct null

directions.

PROOF. Take a basis {eue2} such that hιl = h22 = \, h12 = h21=0. By apolarity
we have Cllί + C22ί=0 and C112 + C222 = O. Setting a = Clxl and b = C112, we have
for x = x1e1+x2e2

C{x, x,x) = φc 1 ) 3 + 36(X1)2JC2 - 3ax\x2)2 - b{x2f .

Case where b = 0. Then

C(x, x, x) = ax1l(xί)2-3(x2)2^

so that (0, 1), (V 3 , 1), and (V 3 , — 1) give three distinct null directions.

Case where bφQ. Writing t = x2/x1 and c = a/b, solving the equation C(x, x, x) = 0
is reduced to solving

One can show that this equation has three distinct roots by checking the values of /
at two critical points:

/ ( - c - ( c 2 + l) 1 / 2)>0 and / ( - c + (c2 + l ) 1 / 2 )<0. D

LEMMA. 2. Ifh is hyperbolic {that is, indefinite), then C has either
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(a) one null direction of multiplicity 1 and C can be written in the form

C(x, x, x) = μ(x)g(x, x), where μ is a \-form and g is a definite inner product on V, each

unique up to a scalar, or

(b) a null direction of multiplicity 3, in which case there is a nonzero x in V such

that h(x, x) = 0 andC(x, y9 z) = Ofor ally, z in V. The direction ofx is uniquely determined.

We have case (b) if and only if Pick's invariant h(C, C) is 0.

PROOF. We use a null basis {el9 e2} so that h11=h22 = O and h12 = \. From apolari-

ty we get C 1 1 2 = C 1 2 2 = 0. Thus

Case (a). If C m Φ0 and C222φO, let α and β be their real cubic roots. Then

C(x, x, x) = (αx1 + β x ^ α V ) 2 - ocβx'x2 + β\x2)2)

We may define a 1-form μ by μ(x) = ocx1+βx2 and an inner product g by g(x, y) =

θL2x1yι-{\β)θίβ{x1y2 + x2yι) + β2x2y2. Clearly, g is positive definite and C has only

one null direction. The uniqueness assertion is also obvious.

Case (b). If C 1 1 1 = 0 , then X=(l, 0) is a null direction of multiplicity 3. Since

C(X, ei9 ej) = CUj = 0 for all /, j , we see that Zis in the kernel of C. Obviously, h(X9 X) = 0.

If ^222 = ̂ ? t n e n X=(Q, 1) is the vector. The uniqueness is easy to see.

The additional statement in Lemma 2 follows from

h(C, C) = Yβ'hWC^C^ = 2CltlC222

in terms of the same null basis {el9 e2} . •

REMARK. Each of the two cases in Lemma 2 is actually possible at a point of an

aίfine surface. For example, for the graph of z = xy + (x3+y3)/6 at the point (0, 0, 0)

the vector d/dx — d/dy gives the only null direction of the cubic form. On the other

hand, for the Cayley surface, the cubic form has a null direction of multiplicity 3 at

every point.

3. Consequence of VC=0, C φ 0. We prove

LEMMA 3. Let M be a nondegenerate surface in R3 such that the cubic form is

parallel but not 0. Then V is flat and M is the graph of a function z = F(x, y) defined on

a certain domain D of the (x, y)-plane and the Hessian determinant of F is+\.

PROOF. First assume that h is elliptic. Let p be a point of M and consider the

three distinct null directions at p that exist by Lemma 1. Since C is parallel, each linear

transformation φ belonging to the linear holonomy group of V based at p leaves the

three null directions invariant or permutes them. In the first case, φ must be a scalar

multiple of the identity transformation. But since there is a parallel volume element 0,

the determinant of φ is 1, which means that φ is the identity. Considering the possibility
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of permutations of the null directions, we conclude that the holonomy group is a finite
group. Hence V is flat, that is, the curvature tensor R is 0.

Now for an affine surface (or hypersurface), it is known that R = 0 implies that
the shape operator S is 0. Indeed, this follows easily from the Gauss equation:
R(X, Y)Z = h(Y, Z)SX-h(X, Z)SY, see [5]. From the second basic equation in Section
1 the affine normal ξ is parallel in R3. It follows that M is affinely equivalent to the
graph of a certain function z = F(x,y) on a domain D of the ( c, >>)-plane. Since the
affine normal ξ is thus identified with the vector (0, 0, 1) in the (x, y, z)-space, the Hessian
matrix of F expresses the fundamental form h relative to d/dx, d/dy. The condition that
θ coincides with the volume element of h is equivalent to the fact that the Hessian
determinant has absolute value 1. (For the detail, see the remark following (7) in [3].)
The components of C=VΛ are the third partial derivatives of F and those of VC=V2Λ
are the fourth partial derivatives of F. Hence VC = V2A = 0 means that each second
partial derivative of FΊs an affine function of the form ax + by + c.

Now consider the case where h is hyperbolic. Again, we show that V is flat and
hence M is the graph in the manner stated just above.

Since C is parallel, the behavior of C as in Lemma 2 remains the same for all
points. Namely, we have either case (a) at every point or case (b) at every point. In the
first case, we have a positive definite inner product g at each point. Since C is parallel,
the holonomy group of V at a point p leaves gp invariant up to a scalar. Since each
element φ has determinant 1, it must leave gp invariant, that is, it is a rotation. On the
other hand, φ leaves the only null direction invariant and cannot be a proper rotation.
Thus the holonomy group consists of the identity transformation and h is flat.

We now deal with the second case so we have at each point a vector X, unique up
to a scalar, such that h(X, X) = 0 and C(X, U,V) = 0 for all U and V. We may choose
locally two vector fields X and Y such that

(1) h(X,X) = 0; (2) h(X9Y)=l; (3) h(Y,Y) = 0;

(4) C(X, U,V) = 0 for all vectors U, V;

(5) c ( y , r , Y ) = i .

In the following we use the fact that (Vxh)(U, V) = C(X9 U,V) = 0 for all U and V and
(VyλXX, 17) = C(Y, X9U) = 0 for all U. Now taking Vx of (1) we obtain h(VxX, X) = 0,
which implies VxX=λXfoτ some function λ. From (5) we get C(VXY, Y, F) = 0, which
implies that VxY=vX. (We shall see in a moment that λ = v = 0.)

From (2) we get h(VxX, Y) + h(X, VxY) = 0. Since h(VxX, Y) = λ and h(X, VXY) =
h(X, vX) = 0, we get λ = 0. From (3) we get h(VxY, F) = 0, which implies v=0. We have
thus far shown V ^ = 0 and V x r = 0 .

From (1) we get h(VγX, X) = 0, which implies WγX=μXfoτ some function μ. From
(5) we get C(VyF, F, 7) = 0, which implies VγY=τX.

From (2) we get h(VγX, Y) + h(X,VYY) = 09 which implies μ = 0, that is, VYX=0.
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Finally, from (3) we get (Vγh)(Y, Y) + 2h(VγY, Y) = 0. By (5) and h(VγY, Y) =

h(τX, Y) = τ, we find τ = -1/2, namely, VYY= -(1/2)X

To summarize: WXX=VXY=VYX=O and V y 7= -(1/2)Z. We get [Z, Y]=0. Aso

we have R(X, Y)Y=R(X, Y)X = 0, that is, R = 0. Again, we have M as the graph of

a function z = F(x9 y) as before. D

4. Reduction of the Hessian matrix. We consider a differentiable function

x3 = F(x1, x2) defined on a domain D of the (x1, *2)-plane. We may assume that D

contains (0, 0). Denote the Hessian matrix by H=lF(j], where Fij = d2F/dxιdxj.

We assume that

(I) det [Fij] = ± 1 at all points;

(II) each Ftj is an affine function of x1 and x2. Not all Ftj are constant functions

(corresponding to the condition CΦϋ).

We shall show that actually det[F i7] = 1 at all points and find an equiaffine change

of the coordinates (x1, x2) to (x, y) which reduces the Hessian matrix to the form

0 1 \ (ax \
or

\ βyj \l O

We begin by stating without proof

LEMMA 4. Consider a coordinate change of the form

xι=p\x1+p\x2

x2=p\x2+p2

2x
2

and think of the function F(xι,x2) as a function F{x1,x2). Then the Hessian matrix

/ f = [ F ί j ], where Fij = d2F/dxldxj, is related to the original Hessian matrix H=[Fi^\ by

H=tPHP, where P is the matrix whose (i,j)-component isp).

Next, we consider, in the vector space gl(2, /?), the inner product with signature

( - , - , +, + ) given by

The corresponding quadratic form is simply <̂ 4, A}= — det A. Let s(2) denote the

subspace of all symmetric matrices in gl(2, R). The restriction of the inner product to

s(2) has signature (—, +, +), that is, it is a Lorentzian inner product.

Now for any PeSL(2, R), the mapping

preserves the inner product and hence is a linear isometry. We may easily verify that

SL(2, R)/{±I2} is isomorphic to the rotation group of s(2). In other words, for any

linear isometry of 5(2) there is a suitable P which induces it in the manner above.
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We now consider the affine mapping given by the Hessian matrix

which we may write in the form

H{xx, x2) = xιA + x2B+C, with constant A, B, C in s(2).

If we set x ^ O , the determinant of x2B+C must be ± 1 . Thus -det(x 2 £+C) =
( x 2 5 + C x 2 5 + C ) = (5,5)(x 2 ) 2 + 2(β,C)x 2 + ( C , C > = i l . So we must have
<fl,B> = <fl,C> = 0 and <C,C>=±1. Similarly, we get <Λ, A) = (A, C> = 0. Now if
<C, C> = — 1, then 4̂ and 5 belong to the orthogonal complement of {C} on which the
inner product is positive definite. It follows that A = B=Q, contrary to the assumption
that H is not a constant map. Hence <C, C> = 1. We also get (A, B} = 0.

Since A and B are two null vectors in {Xe$(2); <X, C> =0} whose dimension is 2,
they are linearly dependent, say, A = kB. Thus //(x1, x2) = (kx1+x2)B + C. Now since
<£, JB> = <B, C> = 0 and <C, C> = 1, we can find an isometry X\-+ΨXP of s(2), with
PeSL(2, R) which takes 5 into £ x and C into C l 9 where

o\ /±i o\ /o
or and C\ =

± 1 / \0 0/ \10,
By using this matrix P, we consider an equiaffine change of the coordinate system from
(x1, x2) to, say, (x, y). By Lemma 4 we see that the Hessian of F relative to (x, y) is of
the form (oίx-\-βy)B1 + C1, i.e.

'0 1

ax + βyj V 1 0j

In the first case, the original function as a function of x, y is such that

Then Fyyx = oί. On the other hand, F w = 0. Hence α = 0 and Fyy = βy. In the second case,
we get β = 0 and Fxx = αx. We have thus proved the assertion in the beginning of this
section. Incidentally, we should remark that the affine metric of our surface turns out
to be hyperbolic. From the Hessian matrix in our hand we find

F(x,y) = βy3/6 + xy + ax + by + c or αx3/6 + xy + ax + by + c ,

where α, b, c are certain constants. By changing the coordinates from (x, y, z) to (x, y, z),
where x = x, y=>;, z — z—(αx + by + c), we can assume F(x, y) = j3y3/6 + xy or αx3/6 + xy.
Finally, it is easy to see that they are equiaffinely congruent to z = xy-y3/3 or xy — x3/3,
concluding the proof of the theorem.

We remark that the graph of z — xy—y3/3 is the orbit of the origin (0, 0, 0) by the
group G of equiaffine transformations
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G =

IX b 0 a \

0 1 0 b

b a 1 ab-b3/3

\0 0 0 1 /

a,beR

The orbit of any other point produces a translation (in the z-direction) of the surface.
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