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Introduction. Let (X, Y) be a smooth projective compactification of C3, namely,
X is a smooth projective 3-fold and Y is a subvariety of X such that X — Y is analytically
isomorphic to C3. We will write simply as X — Y= C? if there is an algebraic isomorphism
of X— Y onto C3. Assume that Y is normal. Then X is a Fano 3-fold of index r(1 <r<4)
with the second Betti number b,(X)=1, and Y is a hyperplane section of X. Then, in
the paper [1], we have the following results:

() r=4=(X, Y)x=(P3, P?

(i) r=3=(X, Y)=(Q3, Q32), where Q3 is a smooth quadric hypersurface in P*

and Q3 is a quadric cone.

(i) r=2=(X, Y)=(Vs, Hs), where V5 is a Fano 3-fold of degree 5 in P® and

H, is a singular del Pezzo surface with exactly one rational double point of
A,-type.

(iv) r=1=(X, Y) is not completely determined (see also [2], [3], [9]).

These 3-folds P3, Q3, V5 are compactifications of C3. In the case of r=4, it is
clear that P®—{a hyperplane P?}=~C>. In the case of r=3, projecting @3 from the
vertex of Q3 to P3, one can see that 0% — Q2> C3. In the case of r=2, projecting Vs
from a line C in V5 through the singular point x of A4,-type of Hs, one can see that
Vs—Hy>C3. Moreover, let HZ be the ruled surface swept out by lines which intersect
the line C. Then H¢ is a non-normal hyperplane section of V5 such that Vs— HY ~C?
(see [1]). In particular, Hs, HS are members of the linear system | H—2x|:=| 0, (1)®
M % |, where His a member of | 0, (1) | and .#  is the maximal ideal of the local ring O, ,.

To see how many members of the linear system | H—2x| can be normal (or
non-normal) boundaries of C? in ¥V, we will study in this paper the double projection
from the singular point x of Hs. Consequently, we have a new construction of a
compactification of C? in the case of index r=2.

Our main result is the following:

THEOREM. (1) The set W:={x€e V; there is a unique line in Vs through the point
X} is not empty.

(2) Take a point xe W and a line C through x. Let : V's— Vs be the blowing up
of Vs at the point x, and put E:=0c"(x)= P>. Then there is a P'-bundle n: P(§)— P>
over P? (& is a locally free sheaf of rank 2 over P*) and a birational map p: V's—P(8),
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called a flip, such that the following (1)(iii) hold:
(1) there is a smooth rational curve f in P(&) such that V's— C, is isomorphic to
P(&)— f, where C; is the proper transform of C in V',
(i) Z:=p(E) is a rational section of n: P(&)— P?* with a rational double point q
of A,-type. In particular, ge f G X, and
(iii) there is a point pe P? such that n~'(p)s X and X —n"'(p) is isomorphic to
P?—{p}.
(3) The set Ly, :=n(f) is a line in P? through p, and H? :=0p '(n " Y(L)UZX) is
the ruled surface swept out by lines which intersect the line C. For any line L, (t# o)
through the point p, HS:=ap~'(n~ (L) U X) is a normal surface with a rational double
point of As-type. In particular, Vi— H? =~C?> and Vs— H5=C3.

COROLLARY. For each xeU,

{Hsel@v,(1)®-/”§|§ Vs—Hs=C>}={Hs},.cv{HF}.

ACKNOWLEDGEMENT. The authors would like to thank the Max-Planck-Institut
fir Mathematik in Bonn especially Professor Hirzebruch for hospitality and
encouragement.

1. Preliminaries. Let us recall some results in the paper [1]. Let (X, Y) be a
projective compactification of C3 such that Y is normal. Assume that the index r=2.
Then (X, Y)=~(Vs, Hs) (see the Introduction). Then the anti-canonical line bundle can
be written as follow:

—Ky=0y(I),

where I'is an elliptic curve not through the singularity of Y= Hs. Thusdeg Y=(I'?),=5.
In particular, the singular locus of Y consists of exactly one point {x}, which is of
A,-type. Let a: ¥— Y be the minimal resolution of singularity of ¥ and put

a ' x)=Lufiufpul;,

where [, f; (1 <i<2) are smooth rational curves with the self-intersction number equal
to —2 and the dual graph of the exceptional divisor « ~ *(x)is a linear tree (see Figure 1).

On the other hand, ¥ can be obtained from P? by the blowing up of four points
(infinitely near points allowed) on a smooth cubic curve I'y on P2. Let I be the proper
transform of I'y in ¥ (see Figure 1).

In Figure 1, there exists an exceptional curve C of the first kind with (C-IMp=1.
We put C=a(C) and I'=a(I"). Let H be a general hyperplane section of X: =V such
that Oy(H)=0y(T). Since

1=(F-8)y=(T-C)y=(H Oy,

C is a line on X. By [1, Proposition 15], C is a unique line in P% contained in Yc X.
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FIGURE 1

Since the multiplicity m(0Oy ,) of the local ring Oy , is equal to two, any line through
the point x must be contained in Y. Therefore C is a unique line in X through the
singularity x of Y= H,. Thus we have:

LeMMa 1.1. Let (X, Y)=(Vs, Hs) be a compactification of C® such that Y =Hj is
normal. Then Y has exactly one singular point x of A,-type. Moreover, there exists a
unique line C in X through the point x, which is contained in Y.

2. Double projection from a point. We will study the double projection of X=V

from the singularity x of A,-type of Y= Hs. For this purpose, let us consider the linear
system

|H—2x|=|Ox(H)® 3],

where H is a hyperplane section of X and ., c 0y , is the maximal ideal of the local
ring Oy . Let 8, : X, — X be the blowing up of X at the point x and put E, : =8 *(x)= P2
Let Y, and C, be the proper transform Y and C, respectively. Then we have:

LemMMA 2.1. dim| H—2x|=2.
ProOOF. Let us consider the exact sequences:
0—— 0x,(0¥H—E;) — Oy (01H) — O, — 0
0— Ox,(0YH—-2E,) — Ox,(61H—E;) — O, (1) — 0

Since dim | H—x|=dim H—1, we have

H(X,, Oy (6*H—E,)=C®, and H'(Xy, Ox ,(6tH—E,))=0
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Let & :=Trg,|6¥H—E, |0 (1)] be the trace of the linear system |§fH—E, | on E,.
Since |6 ¥H —E, | has no fixed component and no base point on X, neither does £ on
E,. Therefore # =|0g,(1)|. Thus, we have a surjection

HO(XI, Ox,(0¥H~E,))— H%(E, 05 (1))=C>.
This means that
H(X,, Ox (6¥H—2E,))=C?*, and H'(X,, Ox(0tTH—2E,))=0. q.ed.
By Lemma 2.1, we have rational maps
O:=Py 5, X—P?, and OV:= ;4 50,1 X, ———> P2,
Since (0¥H —2E,)- C,=—1<0, C, isa base curve of the linear system | 6 f H — 2E, |.

Next, we will study the singularities of Y. Let 4 be a small neighborhood of x in
X with a local coordinate system (z,, z,, z3). Since the singularity xe Y= H is of A,-type
and C intersects the component f> of a~!(x) in ¥ (see Figure 1), we may assume that
AnY={z,-z,=z3} s 4  with x=(0,0,0),
2.1
AnC={z,=z%,z,=z3} 5 4.

By an easy calculation, we find that Y, has exactly one singular point x; of 4,-type.
Then there exists a birational morphism y, : ¥— Y, such that

~ u . .
pilx)=fivf, and ¥—(f; uf'z);} Y, —{x,} (isomorphic) .
We put /V:=pu,(7) (1<i<?2) and C; = u,(C). Then we have
2.2) E Y, =IO+

In particular, /{V, /%" are two distinct lines on E; = P?* and C, is the proper transform
of Cin X;.
Since Y, €|6fH—2E, |, by (2.2), we have

Oy (Y))=0y,(0tH—2E )= 0y (I'V" =21V -21%)),
where I'V=5%(Y|y)=p,(I"). We have
(2.3) POy ('Y =210 -2 = O (-2 f, —2f, -2, —2L)= O ([ —-2Z),

where Z=f, +f,+ I, +1, is the fundamental cycle of the singularity x associated with
the resolution (¥, a). From the exact sequence

(2.4) 0—— Ox,— Ox (Y) — Oy (Y;)—0,
we have

HO(Y,, Oy, (Y )= HO(Y, 0((F—22))~C?,
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since H(X,, Oy (Y,))=C? by Lemma 2.1. Let {{/,,, ¢, } be a basis of H(Y, 0 (" —22))
such that

Wo)=3C+2f,+fi+fo
W) =5C+4f,+2f, +1,

where f; is a smooth rational curve in ¥ such that (f,?)y=0 and (f;-%,)y=1 (in fact,
¥ can be regarded as a ruled surface over a smooth rational curve, which has i;, as a
fiber [, as a section). Since

(2.5)

(‘//o)n(‘/’1)=c~uf1 ufa,

we have the base locus

Bs|Oy,(Y)|=Cy2x, .
By (2.4), since H'(X,, Ox,)=0, we have the base locus
BSI0X1(Y1)'=C1 axl .

Since Pic X~ ZOy(H), | H—2x| has no fixed component, hence neither ‘does
|0¥H—2E,|. Thus we have the following:

LEMMA 2.2. The linear system |6¥H—2E,| on X, has no fixed component, but
has the base locus

Bs|0*H —2E,|=C,5x, .

3. Resolution of indeterminancy. The indeterminancy of the rational map
@M X, ——- P? can be resolved as follows: First, let us consider the blowing up 6, :
X,-X, of X, along C,=P'. Then C,=6;'(C,)=F,. Next, let us consider the
blowing up d5: X3— X, of X, along the negative section C, of C,=F,. Then C,:=
87 1(C,)~F,. Finally, let us consider the blowing up d,: X,—X, of X, along the
negative ‘section C; of C,=~F,. Then, we have a morphism &: X,—P? and the fol-
lowing diagram:

X

where §:=8,°685,9,. This is a desired resolution of the indeterminancy of the rational
map &V X, ——— P2,
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NOTATION.
Cj: the proper transform of Cjin X, (1<j<2).
STV afiber of the ruled surface C}.
C;+1: asection of C}.
Ky,: a canonical divisor on Xj.
Nc,x,: the normal bundle of C; in Xj.
Y;,,: the proper transform of Y;in X;, .
E;.,: the proper transform of E;in X, ;.
19*1Y (j=1,2): the proper transform of /{ in X, .
x;: the singular point of Y;(1<j<2).
A;: a neighborhood of x; in X; with a local coordinate system

J
(219 22, Z3)=(Z'i’ 2129 z{&)
For the proof, we need the following:

LEMMA 3.1 (Morrison [7]). Let S be a surface with only one singularity x of A,-type
in a smooth projective 3-fold X. Let Ec ScX be a smooth rational curve in X. Let
u: §—8 be the minimal resolution of the singularity of S and put

n+1

i x)= _Lle G,

where C;'s (1<j<n+1) are smooth rational curve with

(CHs=-2 (1<j<n+1),
(Cj'Cj+1)§=1 (I<j<n),
(Ci'cj)§=0 if li—jl=2.

Let E be the proper transform of E in S. Assume that

(i) Nps=Ox—1), where Ng|5 is the normal bundle of Ein S, and

(i) deg Ngjx=—2, where Ng,x is the normal bundle of E in X.
Then we have

(1) Ngx=0g®0L(—2) if xeE and (C;-E)g=1 for j=1o0r n+1, or

(2 Ngix=0g(—1)@0(—1) if x¢ E.

PROOF. In the proof of Theorem 3.2 in Morrison [7], we have only to replace the
conormal bundle ﬁ},g=(95(2) by NE|5=@,;~(1). q.e.d.

(Step I). Since (Ky, C,)=0, we have deg N¢ x,=—2. Since x;€C, and the
normal bundle N¢|y=O(—1) (see §2), by Lemma 3.1, we have

3.1 Nex, 20c,®0¢,(-2) .

Since the singularity x, of Y, is of 4,-type and (C- f,)y=1, we may assume that
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(3.2) A1 n Y1={2122=Z§} (@Y A1

AnCi={z,=23,2,=23} G A,.

(Step II). Let 6,: X,—X, be the blowing up of X, along C,~P!. By (3.1), we
have 6, '(C,)=: C,=F,. By (3.2), we find that Y, has exactly one singularity x, of
A;-type. Then there exists a birational morphism u,: ¥— ¥, such that u; '(x,)=f,
and Y- f,=Y,—{x,}. Furthermore, we have

(i) C,=pu,(C) is the negative section of C), = F,,

(i) Y, Ci=fP+C,,

(i) fP=p(f)SY,nE;nCy and [P =p, (S Y, nEy(1<i<2),

(V) (P19, =0(1<i<2) and (fO- fP)p,= 1.

Since Ky,=d3Ky, +C}, we have (Ky,"C,)=0. Hence deg N¢, x,= —2. Since x,€C,,
by Lemma 3.1, we have

(3.3) chlngcocz®(9€2(—2) .
Furthermore, we may assume that

(3.4) AnY,={z,z,=23} s A,,

AnCy={z,=2,=23} G A,.
(Step III). Let d5: X3 X, be the blowing up of X, along C,. By (3.3), we have
05 Y(C,)=: C,=F,. By (3.4), we find that Y, is a smooth surface. Then there exists an
isomorphism p;: ¥ -~ Y;. Furthermore, we have:
(i) C,=u;(C) is the negative section of C,~F,,
(i) Yy Co=fP+Cs,
(i) [P =ps()SYnCinE,s, [ =ps(f,)SY3nCynE;, and
I =py(l) S Y3n E5(1<i<2),
() (1, =(f [P, =1, (919)E,=0,(C3:1{)y,=0,
(Cs 'f(23))yg =1.
Since (Ky,- C3)=0, we have deg N, x,= —2. Since Y; is smooth, by Lemma 3.1,
we have

(3.5) Neyix:Z0c,(— D@ 0,(—1).
(Step IV). Let d,: X,—X; be the blowing up of X; along C;=P*. By (3.5), we
have §;'(Cy)=: C3=P' x P'. Since Y, is smooth, we also have an isomorphism

ta: ¥ =5 Y,. We identify ¥ and Y, via the isomorphism u,, and put, for simplicity,
Fir=pa(F), Ti=pa(0) (1 <i<2), Ii=p (I and C:=p,(C). Then we have

() fiSYuinE,, LSY,nE(1<i<2), f:=fP<CinE,,
(i) C:=C, is a section of C;~P* x P! with (C’-(:’)C;=O ,
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(i) Y, C3=C,
) ¢ ‘11)E4= -1, (12'12)124:0 s (71 ']1)154:(/72‘/72)54: -2, (ii')E4= —1.
Thus we have Figure 2 (see also Pagoda (5.8) in Reid [10]).

FIGURE 2
f‘\
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)}/
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(-2|%
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(=2)
E,
FiGure 3

Now, since Y;,; =6} ,Y;— C(1<j<3), we have
Y,=030%0%50TH—2636%03E—3C5—2C,—C .
Therefore we have
Oy (Yo)=0y(F=2Z~ [, =2/, =30)= 0y, (J((= 0+ [o)) ,

where Z=I, +1,+ f, + f» (see (2.3)). Since f; is a general fiber of the rational ruled
surface ¥=Y,, |0y (fo)| has no fixed component and no base point. Thus, it defines
a morphism ¢:=¢,0, 7, : Y4—P'. Then Y,-2» P! is a ruled surface over P! with
exactly one singular fiber 2C + 2, + 2, +1,. In particular, , is a section. Let us consider
the following exact sequence:

0—*@X4_>0X4—-—)@Y4(Y4)—’0 .
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Since H'(X,, Ox,)=0 and the linear system | Oy (Y,)| has no fixed component and no
base point, neigher does |Y,|:=|0x,/(Y,)|. Therefore, it defines a morphism
@:=y, : X,—»P? of X, onto P? such that #*Up(1)= 0y (Y,). Thus, we have the
following:

PROPOSITION 3.2. There exists a morphism ®: X,—»P?* of X, onto P? with

D*Opa(1)= 0y (Y,), which is a resolution of the indeterminancy of the rational map
oW X, —— P2,

4. Structure of V5. Let X,, Y,, and C5= P! x P! be as in §3. Since
NC;;IX;;g@C;(_ 1)(_'3@(:3(— 1) s

by Corollary 5.6 in [10], there exists a birational morphism ¢: X,—V of X, onto a
smooth 3-fold ¥ with the second Betti number b,(V)=2, and a morphism n: V— P2
of ¥ onto P2, and a birational map p: X; —~ V which is called a flip such that
p=¢°6 ! and ®=mn-¢. Thus we have the diagram (*):

In particular, f:=¢(C;uC,uC}%) is a smooth rational curve in ¥, and
. ¢ p
@.1) X,—(CLuCHuCl)—~.V—f > X, —C,.

We put 4:=¢(Y,) and X :=¢(E,). Then,
4.2) —K,=24+23 .
4.3) Oy(A)=1*0p(1).

Indeed, since —Ky, =20YH—2E,;=2Y,+2E, and Oy (Y,)=®*0p:(1), by (4.1), we
have (4.2), (4.3). We put /;:=¢()(1<i<?2) and Ly :=n(l,) 5 P*. Then I;’s are smooth
rational curves in ¥ and L, is a line in P2. In particular, nl 4. A— L, has a struc-
ture of the P'-boundle F, with /, a fiber and /, the negative section. Moreover, X has
only one singularity g of 4,-type. The rational curves /, /,, f, which are also contain-
ed in X, intersect only at the point g (see Figure 4).
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FIGURE 4

By construction, 6:=¢|g,: E,~ZX is the minimal resolution of the singularity of
Z with 67 (q)=f1u fs, and L=6([)(1<i<?), f=0(f) (see (i)—(iv) of Step IV and
Figure 4). We put A:=n|y: £—P2 Then

(4.4) (A2 0)(fyu foul)=Lo L, ={p} (a point),

where L :=n(f) is a line in P2.
For a general fiber F of the morphism n: ¥— P2, we have, by (4.2),

deg Kp=(Ky,-F)=—-2(2-F)<-2.
Hence, F~ P! and (2-F), =1, where K is a canonical divisor on F. Therefore 2 is a
meromorphic section of n: V— P2,

PROPOSITION 4.1. 7: V—>P? is a P'-bundle over P?* and X is a holomorphic
section on P*—{p}.

PrOOF. By censtruction,

3, p
C3ixXx— Y-~X,—(Y,UE))——V—(4u2).

In particular, n: V—(4AuZX)—>P2—L, is an affine morphism. Assume that there exists
an irreducible divisor D on ¥ such that n(D)={one point}. Then the one-dimensional
scheme D n X is contracted to one point, hence, Supp(DnX)=/,. Since ;S A=n"1(L,)
and n| 4: A—>L, is a P'-bundle, this is a contradiction. Thus = is equi-dimensional,
hence, 7 is a proper flat morphism. Let G be an arbitrary scheme-theoric fiber. Then
(Z-G)y=1. Since V—(4uZX)=C? contains no compact analytic curve, G must be
irreducible. Since (K, -G)= —2(2-G)= —2, we see that G is a smooth rational curve.
Therefore n: ¥— P2 isasmooth proper morphism. By the upper semicontinuity theorem,
we have that R'n, 0,(Z) =0 and n,0,(X) is a vector bundle of rank 2 over P2. Moreover,
for every point xe P2,

7,0y (Z)Q@ C(x)= HO(n ™ (%), 04(2)® O, 1) = HO(P', Ops(1)) = C? .

Thus the natural -homomorphism n*rn,0,(Z) 0}(2) is surjective and induces an
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isomorphism V= P(n,0,(X)) over P2. The rest is clear. q.e.d.
REMARK. 7 is the contraction of an extremal ray of the smooth projective 3-fold V.
Finally, we will study the vector bundle #,0,(Z) of rank 2 over P2.

LemMa 4.2. 0x(2)=0(—31))®0,(4).

ProoF. Since the singularity of X is a rational double point, we have 6*K;=
Kg,= —2f,— f,—31,, hence, K;= —3/,. On the other hand, since Ks=(Ky+2)|s=
—24|;—ZX|5, we have X|y=—24|;+3l,. Since A4|;=1I,+1,, we have Z|;=-3/, +
A|;, namely, Ox(2)=05(—31)@0,(A). g.e.d.

Let us consider the exact sequence

0—— Oy — Oy(Z) — O(Z) — 0.

Taking m,, we have

(4.5) 0

(OPZ—“’n*(OV(Z) 7'[*(0;(2)—>0 .
Taking ©* in (4.5), we have a diagram:

00— O — *1,0,(2) — 1*1,0,(Z) — 0

gt

0—— 0, — 0,(2) — 04(2) 0.

In particular, we have a surjection
| T*n, 05(2) — 05(2) .
Weput A:=n |,:Z—>P2. Taking A* in (4.5), we have a diagram:
0— Oy — *1,04(2) — A*1,042)— 0

U

0—— A —— 2*1,0,(2) ——— 04Z)— 0,

where " :=ker 1 is a line bundle, and the image of the global section 1 of (5 via map
Os— A" defines an effective Cartier divisor D with Supp D=/,.

ProPosITION 4.3. A*1,0,(2) is an extension of Ox(Z) by 0 (31,).

ProOF. We have only to prove that D=3/,. Since A*(det(n,0,(2)))=05(2)®
05(31,), we have (Z-1))z+(D-1,);=0. Since Ox(2)=04—31,)®0y(A) by Lemma 4.2,
we must have D=3/;, and also, by (4.3), we have det(n, 0, (2)) =0p(1). g.e.d.
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REMARK. We put j =A,05(—31;). Then # is an ideal locally generated by two
polynomials xy and y - x2 over C[x, y]. We put & : —n*(OV(E) Since 0x(2)=0x—31,)®
A*0p2(1), by (4.5), we have an exact sequence

00— 0p—— E—— F-0p:(1)— 0.
By Lemma 1.3.4 [8, p. 186—p. 187], & is a stable vector bundle of rank 2 over P2
Thus we have finally the following:

PROPOSITION 4.4. Let (X,, Y,), E;=P2, C, be as in §1. Then one can construct a
birational map p: X,—»P(&) of X, to a P'-bundle n: P(§)—P?* (& is a stable vector
bundle of rank two over P?) with the following properties:

(1) There is a smooth rational curve f contained in X :=p(E,) such that

X, —C, é P(&)— f (isomorphic).

(2) There is a point pe P? such that n~(p) X and
Z—n"{(p)=P>—{p}.

(3) Lo:=mn(A) is a line in P* through p, where A:=p(Y,). In particular,
n| 4 : A— Ly is a P -bundle over L,,.

@) X— Y2, (Y, UE)2P@&)—(1u2)

5. A construction and the proof of Theorem. Take any fixed line L in P? and
a point peL_. Let L(teC, t# o) be a line in P? through the point p. Let E, be a
rational surface obtained from P? by succession of three blowing ups at p (infinitely
near points allowed). Let u: E,—P? be the projection with u~'(p)=f,u ful;, where
G ee=—20<i<2), - L)g,= — 1, Gy e, =1, i e, =0, and (- [)g,=1. Let
f (resp.T,) be the proper transform of L. (resp. L,) in E,. Let ¢: E,—Z be the
contraction of the exceptional set f; U f,, and put f:=0(f), I;:=0() (i=1,2). Then
there is a birational morphism A: ¥—P? such that A({,)=p, A(,)=L,, A(f)=L,. Thus
we have the following diagram:

(see Figure 5).
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FIGURE 5
LEMMA 5.1. As Q-divisors, we have
~ 1 2
G*ll~011+—f1+_—-i'2
3 3
N ~ 2 1
(5.1) o 12~,,12+?j'1+?]2
. 1 2
g f~qf+—f1+—]2,
3 3
and the linear equivalences
L+ o+ fa~ly
(5.2) l~12+11~f‘+‘2ll

Kp,=0*Ks~0a*(—3D+ fi+2/,+3]; ,
where Ky, is a canonical divisor on E,, and |:=A*Op:(1).

PrOOF. Since (6*/,- f))=(c*l,- f)=(c*f-f)=0 for i=1,2, we have (5.1). By a
similar calculation, we have (5.2). q.ed.

Now, we will prove the existence of a vector bundle of rank 2 over P? which is
an extension of Oy(—3/, +1) by 0(31,).

LemMa 5.2. (1) Exti(Oy(—30, +1), 05(31)) = Exth (0*05(— 31, +1), a*0,(31,)).
(2) Ext ,134(0'*(9;( - 311 + l), 0'*(02(311)) — Exti(a*@;(— 311 + l)®@i;, 0'*(9;(311)@
Or) is surjective.
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(3) dim Ext }(Og(— 31, +1), 0431,))=3 and
‘ dim Ext7 (c*0y(— 31, + @0y, 6*0;(31,)Q07) =1.

PrOOF. (1) Exti(Oy(—3I,+1), 0;(31))= H'(Z, 056!, —1)) and Ext} (6*05(—3I,
+1), 6*0;(31)))= H'(E,, c*0x(6l,—1)), we have only to prove H'(Z, Ox(6l;—1)) =~
H'(E,, 6*05(6l, —1)), which is clear, since R'¢,0z,=0.

(2) We have only to prove that the morphism

H\(E,, 6*04(61, —1)) — H'(I}, 6*05(6], —)®0r)
is surjective. For this purpose, let us consider the exact sequence:
0 —— a*03(6l, — 1)@ O (—1}) —— a*05(6], — 1) — *Ox(6]; — )@ O, — 0 .
By Lemma 5.1, we have
0* 0561, — )= Og (6], +2f, +4f, —0*1) = O 2Ky, + 56*])
hence,
H(E,, 052Ky, + 50*1— 1)) = H(E,, Op (— K5, — 50*])
> HYE,, Og (—20*1— fi—2f,—21}))=0.
Therefore, we have a surjection
HY(E,, 6*Og (61, — 1)) — H'(I;, 0* 05 (61, —)®Ur,) .

(3) Since (6*(—3l,+1)-I)g, =1, (6*(31,) [})g,= — 1, we have
Ext}l(a*@z(— 3L, +1)®0r,, 0*0(31))®0r1,) Ext 3:(0O(1), O(— 1)) = H'(P', O(-2))=C.
Finally, we prove that H(E,, Oy (2Kg,+ 5¢*1))~C>. By Lemma 5.1, we have

2Ky, +50* 1= —a*I+2f, +4f,+ 6l .
Since f; U f,ul; can be contracted to a smooth point, we have
HO(E,, Op (—0*1+2f, +4f,+6[))=0,

H*(E,, Og (—o*1+2f, +4f, +61)) = HY(E,, Og (—20*I— f, —2f,—31}))=0.

By the Riemann-Roch theorem, we have easily
dim HY(E,, Og (—o*1+2f, +4f,+61,)=3,

hence, H'(E,, Og,(2Kg, + 50*1)) = C>. q.ed.

The following is well-known (cf. [8]):

LEMMA 5.3. Let v: S—T be the blowing up at the point p on a smooth surface
T, and put v~ (p)=C. Then a vector bundle & on S is the pull back of a vector bundle
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on T if and only if
& |08,
where r=rank &.

Let &:=&; be the vector bundle on E, determined by an element
¢eExtg, (6*05(—31;+1), a*05(31,)), where the image of £ by the surjection in Lemma
5.2, (2) is not zero. Then £® 0, induces a non-split exact sequence

0— 01(—1) — EQ O, — O1.(1) — 0,

hence, 6@ 01, = 01, ®0y,.
On the other hand, we have

o*0y(—= 3L, +)®0;,= 05, a*05(31,))® 07, = 0y,

for i=1, 2. Thus @0 =05 for i=1, 2.
By Lemma 5.3, there exists a vector bundle & on P? such that & =pu*&, and then
we have an exact sequence

(5.3) 0—0*0;(3l)) — u*é — o*O0xy(—3l,+1)— 0.
Taking o, we have an exact sequence

5.4 0— 0;3l)) — A*E — Ox(=31, +1) — 0.
Further, taking 4,, we have an exact sequence

(5.5) 00— 0pr—— E —— 1, 05(=31))@0p:(1) — 0,

since R'A,05(3/,)=0 by the Grauert-Riemenschneider vanishing theorem.
We remark that 1: £— P2 is the blowing up of P? along the ideal ¢ : =1,0,(—31,).
By (5.4), we have a P!-bundle V:=P(€)-"» P? and a rational section ~ 5 V.

LeMMA 5.4. @0, =0, (1)®0,,.
ProoF. Let us consider the exact sequence
0— 0;31)®0, — A*¢®0,, — Ox(-3l, +)®O;,, — 0.
Since (3/,-1,);=(I-1,);=1, we have an exact sequence
00— 0pi(1) — A*¢R@0Op1 —— Opr —— 0 .
Therefore, A*¢®0,,= Op(1)@ Op1. q.e.d.
COROLLARY 5.5. n~Y(L,)=:A is the P'-bundle F, over L,=P".
LEMMA 5.6. Ng y=0p(—2)®0, where N,y is the normal bundle of f(c X)in V.

PrOOF. Let K, be a canonical divisor on V. Then we have
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Ky =n*(Kp.+det §)—2Z = —24—-2% .

Since Oy(2)=04(—3l,+1), we have (Ky-f)=(—4l+6l," f)s=—4+4=0. Thus, by
Lemma 3.1, we have the claim. q.ed.

LEMMA 5.7. V—(ZuA) is algebraically isomorphic to C>.

ProoF. Since X—n~!(p)— P>—{p} and peL, the morphism =|pe)—(su4:
P(€)—(ZuA)—»P*>—L, gives an algebraic C-bundle structure on P?>—L,~C2
Therefore, by Quillen [10], we have P(&)—(ZuA)=C>. q.e.d.

Let ¢,: V,—»V:=P(£) be the blowing up along f and put C;=¢ '(f). Then
C,=F, by Lemma 5.6. Let X, be the proper transform of X in ¥;. Then X, has the
singularity ¢, of 4,-type, and there exists a birational morphism v, : E,— 2 such that

Uy
vi(q)=/; and E,—f, = Z;—{q,}. We put f{":=v,(f}) and f©:=v,(f). Then
2 Ci=fP+ £V In particular, £ is a fiber and £ is the negative section of C; = F,.
Since ¢, /™ and (K- fM)=(Ky - f)=0, by Lemma 3.1, we have

Nywpy, 20@0(-2) .

Let ¢, : V,—V, be the blowing up along the curve f® and put C, =¢; }(f V)= F,.
Let X, be the proper transform of Z; in V,. Then Z, is a smooth surface and there is
an isomorphism v, : E,~» X,. We put f®:=0,(f) (i=1, 2) and f®=0,(f). Then we
have X, - Cy=fP + f®. In particular, f? is a fiber and f® is the negative section of
C,=F,. Since (K, f®)=(Ky," f*)=0 and Z, is smooth, by Lemma 3.1, we have

Nf(z)l,,z’;@(— 1)@(0(— 1) .

Let ¢,: V3>V, be the blowing up along f® and put Cy=¢;'(fP)x=P' x P'.
Let C be a fiber of the ruled surface ¢ |cy: C5— (@, and Z; be the proper transform
of X, in V5. Then X, is a smooth surface and there exists an isomorphism v;: E,—~» X;.
We put f;:=0,(f) (i=1, 2), f=v5(f), : =v5(}) (i=1, 2). Then, X, - C; = f. In particular,
(f'-f‘)c.3=0 and (f'-C~')C,3=1 (see Step IV and Figure 2 in §4).

Since Cy=P(O0—1)®0(—1)), by Corollary 5.6 in [10], C; can be blown down
along the fiber f. After step by step blowing down, we finally have a smooth 3-fold X,
with b,(X;) =2 and the contraction morphism é: V;—-X,;. Weput C, :=86(C5uC,uC)),
E,:=06(%3), and Y, :=08(4;), where C (j=1,2), A; are the proper transforms of C;
(j=1,2), A=n"1(L,) in V,, respectively. Then, by construction, one can easily see that
C, is a smooth rational curve in X; with C;cY,, E;~P? and Y, is a singular del
Pezzo surface with a singularity of A,-type. We put p':=(¢;°¢,°¢;) 5. Then p’
is a birational map of ¥ onto X; such that p’: V— f=~X;— C (isomorphic). Since
Ky=—24-2%, we have Ky, = —2Y, —2E,. Since E, - Y, =1V + 1), by the adjunction
formula, O, (E,)=0g,(—1{V) for j=1,2, where [{):=5() is a line in E; =~ P?. Thus
E, can be blown down to a point x of a smooth projective 3-fold X.
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Let J,: X; > X be the contraction morphism. Then Y:=4,(Y,) has a singularity
of A,-type at x=96,(E,). Since all the transformations above are performed on the
divisor X V, we have X— Y~V —(ZuA)=C? (by Lemma 5.7). Thus, (X, Y) is a
smooth projective compactification of C? such that Y is a singular del Pezzo surface
with a singularity of 4,-type. This implies that X is a Fano 3-fold of index 2 with
Pic X~ Z0,(Y). Since Y has a singularity of 4,-type, we have deg Ny=deg(—Ky)=S5,
where Ny:=[Y] |,, (resp. Ky) is the normal bundle of Y in X (resp. a canonical divisor
on Y). Thus, X is a Fano 3-fold V5 of degree 5 in P® by the anti-canonical embedding.
In particular, C:=4,(C,) is a unique line in X through the point x=4,(E,) on X. Thus
we have the following:

ProOPOSITION 5.8. (1) 6,(E)=:xeUA#J.
(2) There is a birational map p': P(§)——- V's=: X, such that

pr
P(&)— f — X, —C, (isomorphic) ,

where V's is the blowing up of Vs at the point 6,(E\)=x€ V.
3) HY:=6,(p'(Zun~Y(L,) is a singular del Pezzo surface with singularity of
Ay-type. In particular, Vs— Hs = C>.

By Propositions 4.4 and 5.8, we have the proof of the assertions (1), (2) and a half
part of (3) in our main theorem. The rest can be proved as follows:

For any fiber ™ '(p") (p#p’ € L), let 1, be the proper transform of ™ !(p’) 5 P(8)
in V5=X,. By construction, [,nC;#@, (l,-Y,)=1, and (/,-E;)=0. Thus
H?:=6,(p'(Zun~Y(L,)))isaruled variety swept out by lines which intersect the line C.

We also have Vs— H? =~ C3. By Lemma 1.1, H? cannot be normal. This completes
the proof of the theorem.

Finally, we will prove the corollary. Let L be any line in P? which does not pass
through the point pe P2. We put Hs:=38,(p'(Zun~'(L))). Then, Hs is a member of
the linear system | 0, (1)®.#2|. Thus, H contains a unique line C through the point
x. We can see that

1
Vi—Hg = Vi—87Y(Hs) % P(&)—(Zun—\(L)).
Since P(6)—(Zun~ (L)) is a C-bundle over C?>—{0}, Vs— H % C>. Therefore we have
the corollary.
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