A NEW CONSTRUCTION OF A COMPACTIFICATION OF C^3

Dedicated to Professor Friedrich Hirzebruch on his sixtieth birthday

MIKIO FURUSHIMA AND NOBORU NAKAYAMA

(Received April 12, 1988, revised November 24, 1988)

Introduction. Let (X, Y) be a smooth projective compactification of \mathbb{C}^3 , namely, X is a smooth projective 3-fold and Y is a subvariety of X such that X - Y is analytically isomorphic to \mathbb{C}^3 . We will write simply as $X - Y \cong \mathbb{C}^3$ if there is an algebraic isomorphism of X - Y onto \mathbb{C}^3 . Assume that Y is normal. Then X is a Fano 3-fold of index $r(1 \le r \le 4)$ with the second Betti number $b_2(X) = 1$, and Y is a hyperplane section of X. Then, in the paper [1], we have the following results:

- (i) $r=4 \Rightarrow (X, Y) \cong (\mathbf{P}^3, \mathbf{P}^2)$
- (ii) $r=3\Rightarrow (X, Y)\cong (Q^3, Q_0^2)$, where Q^3 is a smooth quadric hypersurface in P^4 and Q_0^2 is a quadric cone.
- (iii) $r=2\Rightarrow(X, Y)\cong(V_5, H_5)$, where V_5 is a Fano 3-fold of degree 5 in P^6 and H_5 is a singular del Pezzo surface with exactly one rational double point of A_4 -type.
- (iv) $r=1 \Rightarrow (X, Y)$ is not completely determined (see also [2], [3], [9]).

These 3-folds P^3 , Q^3 , V_5 are compactifications of C^3 . In the case of r=4, it is clear that $P^3 - \{a \text{ hyperplane } P^2\} \cong C^3$. In the case of r=3, projecting Q^3 from the vertex of Q_0^2 to P^3 , one can see that $Q^3 - Q_0^2 \cong C^3$. In the case of r=2, projecting V_5 from a line C in V_5 through the singular point X of A_4 -type of H_5 , one can see that $V_5 - H_5 \cong C^3$. Moreover, let H_5^{∞} be the ruled surface swept out by lines which intersect the line C. Then H_5^{∞} is a non-normal hyperplane section of V_5 such that $V_5 - H_5^{\infty} \cong C^3$ (see [1]). In particular, H_5 , H_5^{∞} are members of the linear system $|H-2X|:=|\mathcal{O}_{V_5}(1)\otimes \mathcal{M}_X^2|$, where H is a member of $|\mathcal{O}_{V_5}(1)|$ and \mathcal{M}_X is the maximal ideal of the local ring $\mathcal{O}_{V_5,X}$.

To see how many members of the linear system |H-2x| can be normal (or non-normal) boundaries of C^3 in V_5 , we will study in this paper the double projection from the singular point x of H_5 . Consequently, we have a new construction of a compactification of C^3 in the case of index r=2.

Our main result is the following:

THEOREM. (1) The set $\mathfrak{A} := \{x \in V_5; \text{ there is a unique line in } V_5 \text{ through the point } x\}$ is not empty.

(2) Take a point $x \in \mathfrak{A}$ and a line C through x. Let $\sigma: V'_5 \to V_5$ be the blowing up of V_5 at the point x, and put $E:=\sigma^{-1}(x) \cong \mathbf{P}^2$. Then there is a \mathbf{P}^1 -bundle $\pi: \mathbf{P}(\mathcal{E}) \to \mathbf{P}^2$ over \mathbf{P}^2 (& is a locally free sheaf of rank 2 over \mathbf{P}^2) and a birational map $\rho: V'_5 \to \mathbf{P}(\mathcal{E})$,

called a flip, such that the following (i)-(iii) hold:

- (i) there is a smooth rational curve f in $P(\mathcal{E})$ such that $V_5 C_1$ is isomorphic to $P(\mathcal{E}) f$, where C_1 is the proper transform of C in V_5 ,
- (ii) $\Sigma := \rho(E)$ is a rational section of $\pi : P(\mathcal{E}) \to P^2$ with a rational double point q of A_2 -type. In particular, $q \in f \subseteq \Sigma$, and
- (iii) there is a point $p \in \mathbb{P}^2$ such that $\pi^{-1}(p) \subseteq \Sigma$ and $\Sigma \pi^{-1}(p)$ is isomorphic to $\mathbb{P}^2 \{p\}$.
- (3) The set $L_{\infty} := \pi(f)$ is a line in \mathbf{P}^2 through p, and $H_5^{\infty} := \sigma \rho^{-1}(\pi^{-1}(L_{\infty}) \cup \Sigma)$ is the ruled surface swept out by lines which intersect the line C. For any line L_t $(t \neq \infty)$ through the point p, $H_5^t := \sigma \rho^{-1}(\pi^{-1}(L_t) \cup \Sigma)$ is a normal surface with a rational double point of A_4 -type. In particular, $V_5 H_5^{\infty} \cong C^3$ and $V_5 H_5^t \cong C^3$.

COROLLARY. For each $x \in \mathfrak{A}$,

$$\{H_5 \in |\mathcal{O}_{V_5}(1) \otimes \mathcal{M}_x^2|; V_5 - H_5 \cong C^3\} = \{H_5^t\}_{t \in C} \cup \{H_5^\infty\}.$$

ACKNOWLEDGEMENT. The authors would like to thank the Max-Planck-Institut für Mathematik in Bonn especially Professor Hirzebruch for hospitality and encouragement.

1. Preliminaries. Let us recall some results in the paper [1]. Let (X, Y) be a projective compactification of \mathbb{C}^3 such that Y is normal. Assume that the index r=2. Then $(X, Y) \cong (V_5, H_5)$ (see the Introduction). Then the anti-canonical line bundle can be written as follow:

$$-K_{\mathbf{v}} \cong \mathcal{O}_{\mathbf{v}}(\Gamma)$$
,

where Γ is an elliptic curve not through the singularity of $Y = H_5$. Thus deg $Y = (\Gamma^2)_Y = 5$. In particular, the singular locus of Y consists of exactly one point $\{x\}$, which is of A_4 -type. Let $\alpha : \tilde{Y} \to Y$ be the minimal resolution of singularity of Y and put

$$\alpha^{-1}(x) = \tilde{l}_2 \cup \tilde{f}_1 \cup \tilde{f}_2 \cup \tilde{l}_1$$
,

where \tilde{l}_i , \tilde{f}_i ($1 \le i \le 2$) are smooth rational curves with the self-intersction number equal to -2 and the dual graph of the exceptional divisor $\alpha^{-1}(x)$ is a linear tree (see Figure 1).

On the other hand, \tilde{Y} can be obtained from P^2 by the blowing up of four points (infinitely near points allowed) on a smooth cubic curve Γ_0 on P^2 . Let $\tilde{\Gamma}$ be the proper transform of Γ_0 in \tilde{Y} (see Figure 1).

In Figure 1, there exists an exceptional curve \tilde{C} of the first kind with $(\tilde{C} \cdot \tilde{\Gamma})_{\tilde{Y}} = 1$. We put $C = \alpha(\tilde{C})$ and $\Gamma = \alpha(\tilde{\Gamma})$. Let H be a general hyperplane section of $X := V_5$ such that $\mathcal{O}_Y(H) = \mathcal{O}_Y(\Gamma)$. Since

$$1 = (\tilde{\Gamma} \cdot \tilde{C})_{\tilde{Y}} = (\Gamma \cdot C)_{Y} = (H \cdot C)_{X},$$

C is a line on X. By [1, Proposition 15], C is a unique line in P^6 contained in $Y \subset X$.

FIGURE 1

Since the multiplicity $m(\mathcal{O}_{Y,x})$ of the local ring $\mathcal{O}_{Y,x}$ is equal to two, any line through the point x must be contained in Y. Therefore C is a unique line in X through the singularity x of $Y = H_5$. Thus we have:

LEMMA 1.1. Let $(X, Y) = (V_5, H_5)$ be a compactification of \mathbb{C}^3 such that $Y = H_5$ is normal. Then Y has exactly one singular point x of A_4 -type. Moreover, there exists a unique line C in X through the point x, which is contained in Y.

2. Double projection from a point. We will study the double projection of $X = V_5$ from the singularity x of A_4 -type of $Y = H_5$. For this purpose, let us consider the linear system

$$|H-2x|=|\mathcal{O}_X(H)\otimes \mathcal{M}_x^2|$$
,

where H is a hyperplane section of X and $\mathcal{M}_x \subset \mathcal{O}_{X,x}$ is the maximal ideal of the local ring $\mathcal{O}_{X,x}$. Let $\delta_1: X_1 \to X$ be the blowing up of X at the point X and put $E_1:=\delta_1^{-1}(X) \cong P^2$. Let Y_1 and Y_2 be the proper transform Y and Y_2 respectively. Then we have:

LEMMA 2.1. $\dim |H-2x|=2$.

PROOF. Let us consider the exact sequences:

$$0 \longrightarrow \mathcal{O}_{X_1}(\delta_1^*H - E_1) \longrightarrow \mathcal{O}_{X_1}(\delta_1^*H) \longrightarrow \mathcal{O}_{E_1} \longrightarrow 0$$
$$0 \longrightarrow \mathcal{O}_{X_1}(\delta_1^*H - 2E_1) \longrightarrow \mathcal{O}_{X_1}(\delta_1^*H - E_1) \longrightarrow \mathcal{O}_{E_1}(1) \longrightarrow 0$$

Since dim $|H-x| = \dim H - 1$, we have

$$H^0(X_1, \mathcal{O}_{X_1}(\delta_1^*H - E_1)) \cong C^6$$
, and $H^1(X_1, \mathcal{O}_{X_1}(\delta_1^*H - E_1)) \cong 0$

Let $\mathcal{L} := \operatorname{Tr}_{E_1} |\delta_1^* H - E_1| \subseteq \mathcal{O}_{E_1}(1)|$ be the trace of the linear system $|\delta_1^* H - E_1|$ on E_1 . Since $|\delta_1^* H - E_1|$ has no fixed component and no base point on X_1 , neither does \mathcal{L} on E_1 . Therefore $\mathcal{L} = |\mathcal{O}_{E_1}(1)|$. Thus, we have a surjection

$$H^0(X_1, \mathcal{O}_{X_1}(\delta_1^*H - E_1)) \longrightarrow H^0(E_1, \mathcal{O}_{E_1}(1)) \cong \mathbb{C}^3$$
.

This means that

$$H^0(X_1, \mathcal{O}_{X_1}(\delta_1^*H - 2E_1)) \cong \mathbb{C}^3$$
, and $H^1(X_1, \mathcal{O}_{X_1}(\delta_1^*H - 2E_1)) \cong 0$. q.e.d.

By Lemma 2.1, we have rational maps

$$\Phi := \Phi_{|H-2x|}: X - - \to P^2$$
, and $\Phi^{(1)} := \Phi_{|\delta \uparrow H-2E_1|}: X_1 - - \to P^2$.

Since $(\delta_1^*H - 2E_1) \cdot C_1 = -1 < 0$, C_1 is a base curve of the linear system $|\delta_1^*H - 2E_1|$.

Next, we will study the singularities of Y_1 . Let Δ be a small neighborhood of x in X with a local coordinate system (z_1, z_2, z_3) . Since the singularity $x \in Y = H_5$ is of A_4 -type and C intersects the component f_2 of $\alpha^{-1}(x)$ in \tilde{Y} (see Figure 1), we may assume that

By an easy calculation, we find that Y_1 has exactly one singular point x_1 of A_2 -type. Then there exists a birational morphism $\mu_1: \tilde{Y} \to Y_1$ such that

$$\mu_1^{-1}(x_1) = \tilde{f}_1 \cup \tilde{f}_2$$
, and $\tilde{Y} - (\tilde{f}_1 \cup \tilde{f}_2) \stackrel{\mu_1}{\cong} Y_1 - \{x_1\}$ (isomorphic).

We put $l_i^{(1)} := \mu_1(\tilde{l_i})$ $(1 \le i \le 2)$ and $C_1 = \mu_1(\tilde{C})$. Then we have

(2.2)
$$E_1 \cdot Y_1 = l_1^{(1)} + l_2^{(1)}.$$

In particular, $l_1^{(1)}$, $l_2^{(1)}$ are two distinct lines on $E_1 \cong P^2$ and C_1 is the proper transform of C in X_1 .

Since $Y_1 \in |\delta_1^* H - 2E_1|$, by (2.2), we have

$$\mathcal{O}_{Y_1}(Y_1) = \mathcal{O}_{Y_1}(\delta_1^*H - 2E_1) = \mathcal{O}_{Y_1}(\Gamma^{(1)} - 2l_1^{(1)} - 2l_2^{(1)}),$$

where $\Gamma^{(1)} = \delta_1^*(Y|_H) = \mu_1(\tilde{\Gamma})$. We have

$$(2.3) \qquad \mu_1^* \mathcal{O}_{Y_1}(\Gamma^{(1)} - 2l_1^{(1)} - 2l_2^{(1)}) \cong \mathcal{O}_{\tilde{Y}}(\tilde{\Gamma} - 2\tilde{f}_1 - 2\tilde{f}_2 - 2\tilde{l}_1 - 2\tilde{l}_2) \cong \mathcal{O}_{\tilde{Y}}(\tilde{\Gamma} - 2Z) ,$$

where $Z = \tilde{f}_1 + \tilde{f}_2 + \tilde{l}_1 + \tilde{l}_2$ is the fundamental cycle of the singularity x associated with the resolution (\tilde{Y}, α) . From the exact sequence

$$(2.4) 0 \longrightarrow \mathcal{O}_{X_1} \longrightarrow \mathcal{O}_{X_1}(Y_1) \longrightarrow \mathcal{O}_{Y_1}(Y_1) \longrightarrow 0,$$

we have

$$H^0(Y_1, \mathcal{O}_{Y_1}(Y_1)) \cong H^0(\widetilde{Y}, \mathcal{O}_{\widetilde{Y}}(\widetilde{\Gamma} - 2Z)) \cong \mathbb{C}^2$$
,

since $H^0(X_1, \mathcal{O}_{X_1}(Y_1)) \cong \mathbb{C}^3$ by Lemma 2.1. Let $\{\psi_0, \psi_1\}$ be a basis of $H^0(\tilde{Y}, \mathcal{O}_{\tilde{Y}}(\tilde{\Gamma} - 2Z))$ such that

(2.5)
$$(\psi_0) = 3\tilde{C} + 2\tilde{f}_2 + \tilde{f}_1 + \tilde{f}_0$$

$$(\psi_1) = 5\tilde{C} + 4\tilde{f}_2 + 2\tilde{f}_1 + \tilde{f}_1 ,$$

where \tilde{f}_0 is a smooth rational curve in \tilde{Y} such that $(\tilde{f}_0^2)_{\tilde{Y}} = 0$ and $(\tilde{f}_0 \cdot \tilde{l}_2)_{\tilde{Y}} = 1$ (in fact, \tilde{Y} can be regarded as a ruled surface over a smooth rational curve, which has \tilde{f}_0 as a fiber \tilde{l}_2 as a section). Since

$$(\psi_0) \cap (\psi_1) = \tilde{C} \cup \tilde{f}_1 \cup \tilde{f}_2$$
,

we have the base locus

Bs
$$|\mathcal{O}_{Y_1}(Y_1)| = C_1 \ni x_1$$
.

By (2.4), since $H^1(X_1, \mathcal{O}_{X_1}) = 0$, we have the base locus

Bs
$$|\mathcal{O}_{X_1}(Y_1)| = C_1 \ni x_1$$
.

Since Pic $X \cong \mathbb{Z}\mathcal{O}_X(H)$, |H-2x| has no fixed component, hence neither does $|\delta_1^*H-2E_1|$. Thus we have the following:

LEMMA 2.2. The linear system $|\delta_1^*H - 2E_1|$ on X_1 has no fixed component, but has the base locus

Bs
$$|\delta_1^*H - 2E_1| = C_1 \ni x_1$$
.

3. Resolution of indeterminancy. The indeterminancy of the rational map $\Phi^{(1)}: X_1 \longrightarrow P^2$ can be resolved as follows: First, let us consider the blowing up $\delta_2: X_2 \longrightarrow X_1$ of X_1 along $C_1 \cong P^1$. Then $C_1' = \delta_2^{-1}(C_1) \cong F_2$. Next, let us consider the blowing up $\delta_3: X_3 \longrightarrow X_2$ of X_2 along the negative section C_2 of $C_1' \cong F_2$. Then $C_2' := \delta_3^{-1}(C_2) \cong F_2$. Finally, let us consider the blowing up $\delta_4: X_4 \longrightarrow X_3$ of X_3 along the negative section C_3 of $C_2' \cong F_2$. Then, we have a morphism $\bar{\Phi}: X_4 \longrightarrow P^2$ and the following diagram:

where $\delta := \delta_2 \circ \delta_3 \circ \delta_4$. This is a desired resolution of the indeterminancy of the rational map $\Phi^{(1)}: X_1 - \cdots P^2$.

NOTATION.

 \bar{C}'_j : the proper transform of C'_j in X_4 $(1 \le j \le 2)$.

 $f_{i}^{(j+1)}$: a fiber of the ruled surface C_{i} .

 C_{j+1} : a section of C'_{j} .

 K_{X_j} : a canonical divisor on X_j . $N_{C_j|X_j}$: the normal bundle of C_j in X_j . Y_{j+1} : the proper transform of Y_j in X_{j+1} .

 E_{j+1} : the proper transform of E_j in X_{j+1} . $l_i^{(j+1)}$ (i=1,2): the proper transform of $l_i^{(j)}$ in X_{j+1} .

 x_i : the singular point of $Y_i (1 \le j \le 2)$.

 Δ_j : a neighborhood of x_j in X_j with a local coordinate system $(z_1, z_2, z_3) = (z_1^j, z_2^j, z_3^j).$

For the proof, we need the following:

LEMMA 3.1 (Morrison [7]). Let S be a surface with only one singularity x of A_n -type in a smooth projective 3-fold X. Let $E \subset S \subset X$ be a smooth rational curve in X. Let $\mu \colon \widetilde{S} \to S$ be the minimal resolution of the singularity of S and put

$$\mu^{-1}(x) = \bigcup_{j=1}^{n+1} C_j$$
,

where C_i 's $(1 \le j \le n+1)$ are smooth rational curve with

$$(C_j^2)_{\tilde{S}} = -2$$
 $(1 \le j \le n+1)$,
 $(C_i \cdot C_{i+1})_{\tilde{S}} = 1$ $(1 \le j \le n)$,

$$(C_i \cdot C_i)_{\tilde{S}} = 0$$
 if $|i-j| \ge 2$.

Let \tilde{E} be the proper transform of E in \tilde{S} . Assume that

- (i) $N_{\tilde{E}|\tilde{S}} \cong \mathcal{O}_{\tilde{E}}(-1)$, where $N_{\tilde{E}|\tilde{S}}$ is the normal bundle of \tilde{E} in \tilde{S} , and
- (ii) deg $N_{E|X} = -2$, where $N_{E|X}$ is the normal bundle of E in X.

Then we have

- (1) $N_{E|X} \cong \mathcal{O}_E \oplus \mathcal{O}_E(-2)$ if $x \in E$ and $(C_j \cdot \tilde{E})_{\tilde{S}} = 1$ for j = 1 or n + 1, or
- (2) $N_{E+X} \cong \mathcal{O}_E(-1) \oplus \mathcal{O}_E(-1)$ if $x \notin E$.

PROOF. In the proof of Theorem 3.2 in Morrison [7], we have only to replace the conormal bundle $\tilde{N}_{\tilde{E}|\tilde{S}}^* = \mathcal{O}_{\tilde{E}}(2)$ by $N_{\tilde{E}|\tilde{S}}^* = \mathcal{O}_{\tilde{E}}(1)$.

(Step I). Since $(K_{X_1} \cdot C_1) = 0$, we have deg $N_{C|X_1} = -2$. Since $X_1 \in C_1$ and the normal bundle $N_{\tilde{C}|\tilde{Y}} \cong \mathcal{O}_{\tilde{C}}(-1)$ (see §2), by Lemma 3.1, we have

$$(3.1) N_{C_1|X_1} \cong \mathcal{O}_{C_1} \oplus \mathcal{O}_{C_1}(-2) .$$

Since the singularity x_1 of Y_1 is of A_2 -type and $(\tilde{C} \cdot \tilde{f}_2)_{\tilde{Y}} = 1$, we may assume that

(3.2)
$$\Delta_1 \cap Y_1 = \{z_1 z_2 = z_3^2\} \subseteq \Delta_1$$

$$\Delta_1 \cap C_1 = \{z_1 = z_3, z_2 = z_3^2\} \subseteq \Delta_1 .$$

(Step II). Let $\delta_2: X_2 \to X_1$ be the blowing up of X_1 along $C_1 \cong P^1$. By (3.1), we have $\delta_2^{-1}(C_1) =: C_1' \cong F_2$. By (3.2), we find that Y_2 has exactly one singularity x_2 of A_1 -type. Then there exists a birational morphism $\mu_2: \widetilde{Y} \to Y_2$ such that $\mu_2^{-1}(x_2) = \widetilde{f}_2$ and $\widetilde{Y} - \widetilde{f}_2 \cong Y_2 - \{x_2\}$. Furthermore, we have

- (i) $C_2 = \mu_2(\tilde{C})$ is the negative section of $C'_1 \cong F_2$,
- (ii) $Y_2 \cdot C'_1 = f_1^{(2)} + C_2$,
- (iii) $f_1^{(2)} = \mu_2(f_1) \subseteq Y_2 \cap E_2 \cap C_1$ and $l_i^{(2)} = \mu_2(\tilde{l_i}) \subseteq Y_2 \cap E_2(1 \le i \le 2)$,
- (iv) $(l_i^{(2)} \cdot l_i^{(2)})_{E_2} = 0 (1 \le i \le 2)$ and $(f_1^{(2)} \cdot f_1^{(2)})_{E_2} = -1$.

Since $K_{X_2} = \delta_2^* K_{X_1} + C_1'$, we have $(K_{X_2} \cdot C_2) = 0$. Hence deg $N_{C_2 \mid X_2} = -2$. Since $X_2 \in C_2$, by Lemma 3.1, we have

$$(3.3) N_{C_2|X_2} \cong \mathcal{O}_{C_2} \oplus \mathcal{O}_{C_2}(-2).$$

Furthermore, we may assume that

(3.4)
$$\Delta_2 \cap Y_2 = \{z_1 z_2 = z_3^2\} \subseteq \Delta_2 ,$$

$$\Delta_2 \cap C_2 = \{z_1 = z_2 = z_3\} \subseteq \Delta_2 .$$

(Step III). Let $\delta_3: X_3 \to X_2$ be the blowing up of X_2 along C_2 . By (3.3), we have $\delta_3^{-1}(C_2) =: C_2' \cong F_2$. By (3.4), we find that Y_3 is a smooth surface. Then there exists an isomorphism $\mu_3: \widetilde{Y} \longrightarrow Y_3$. Furthermore, we have:

- (i) $C_3 = \mu_3(\tilde{C})$ is the negative section of $C_2 \cong F_2$,
- (ii) $Y_3 \cdot C_2' = f_2^{(3)} + C_3$,
- (iii) $f_1^{(3)} = \mu_3(\tilde{f}_1) \subseteq Y_3 \cap \bar{C}_1' \cap E_3$, $f_2^{(3)} = \mu_3(\tilde{f}_2) \subseteq Y_3 \cap C_2' \cap E_3$, and $l_1^{(3)} = \mu_3(\tilde{l}_i) \subseteq Y_3 \cap E_3(1 \le i \le 2)$,

(iv)
$$(l_1^{(3)} \cdot l_1^{(3)})_{E_3} = (f_2^{(3)} \cdot f_2^{(3)})_{E_3} = -1$$
, $(l_2^{(3)} \cdot l_2^{(3)})_{E_3} = 0$, $(C_3 \cdot l_1^{(3)})_{Y_3} = 0$, $(C_3 \cdot f_2^{(3)})_{Y_3} = 1$.

Since $(K_{X_3} \cdot C_3) = 0$, we have deg $N_{C_3 \mid X_3} = -2$. Since Y_3 is smooth, by Lemma 3.1, we have

$$(3.5) N_{C_3|X_3} \cong \mathcal{O}_{C_3}(-1) \oplus \mathcal{O}_{C_3}(-1).$$

(Step IV). Let $\delta_4: X_4 \to X_3$ be the blowing up of X_3 along $C_3 \cong P^1$. By (3.5), we have $\delta_4^{-1}(C_3) =: C_3' \cong P^1 \times P^1$. Since Y_3 is smooth, we also have an isomorphism $\mu_4: \widetilde{Y} \xrightarrow{\sim} Y_4$. We identify \widetilde{Y} and Y_4 via the isomorphism μ_4 , and put, for simplicity, $\widetilde{f}_i := \mu_4(\widetilde{f}_i), \ \widetilde{f}_i := \mu_4(\widetilde{f}_i)(1 \le i \le 2), \ \widetilde{\Gamma} := \mu_4(\widetilde{\Gamma})$ and $\widetilde{C} := \mu_4(\widetilde{C})$. Then we have

- $({\rm i}) \quad \tilde{f}_{i} \subseteq Y_{4} \cap E_{4} \; , \quad \tilde{l}_{i} \subseteq Y_{4} \cap E_{4} (1 \leq i \leq 2) \; , \quad \tilde{f} := f_{3}^{(4)} \subseteq C_{3}' \cap E_{4} \; ,$
- (ii) $\tilde{C} := C_4$ is a section of $C'_3 \cong P^1 \times P^1$ with $(\tilde{C} \cdot \tilde{C})_{C'_3} = 0$,

(iii)
$$Y_4 \cdot C_3' = \tilde{C}$$
,

(iv) $(\tilde{l}_1 \cdot \tilde{l}_1)_{E_4} = -1$, $(\tilde{l}_2 \cdot \tilde{l}_2)_{E_4} = 0$, $(\tilde{f}_1 \cdot \tilde{f}_1)_{E_4} = (\tilde{f}_2 \cdot \tilde{f}_2)_{E_4} = -2$, $(\tilde{f} \cdot \tilde{f})_{E_4} = -1$. Thus we have Figure 2 (see also Pagoda (5.8) in Reid [10]).

FIGURE 2

Figure 3

Now, since $Y_{j+1} = \delta_{j+1}^* Y_j - C_j' (1 \le j \le 3)$, we have

$$Y_4 = \delta_4^* \delta_3^* \delta_2^* \delta_1^* H - 2\delta_4^* \delta_3^* \delta_2^* E - 3C_3' - 2\bar{C}_2' - \bar{C}_1'$$

Therefore we have

$$\mathcal{O}_{Y_4}(Y_4) = \mathcal{O}_{Y_4}(\widetilde{\Gamma} - 2Z - \widetilde{f}_1 - 2\widetilde{f}_2 - 3\widetilde{C}) = \mathcal{O}_{Y_4}(\widetilde{f}_0)(\cong \mathcal{O}_{\widetilde{Y}}(\widetilde{f}_0)) ,$$

where $Z = \tilde{l}_1 + \tilde{l}_2 + \tilde{f}_1 + \tilde{f}_2$ (see (2.3)). Since \tilde{f}_0 is a general fiber of the rational ruled surface $\tilde{Y} = Y_4$, $|\mathcal{O}_{Y_4}(\tilde{f}_0)|$ has no fixed component and no base point. Thus, it defines a morphism $\varphi := \varphi_{|\mathcal{O}_{Y_4}(\tilde{f}_0)|} \colon Y_4 \to P^1$. Then $Y_4 \xrightarrow{\varphi} P^1$ is a ruled surface over P^1 with exactly one singular fiber $2\tilde{C} + 2\tilde{f}_2 + 2\tilde{f}_1 + \tilde{l}_1$. In particular, \tilde{l}_2 is a section. Let us consider the following exact sequence:

$$0 \longrightarrow \mathcal{O}_{X_4} \longrightarrow \mathcal{O}_{X_4} \longrightarrow \mathcal{O}_{Y_4}(Y_4) \longrightarrow 0 \ .$$

Since $H^1(X_4, \mathcal{O}_{X_4}) = 0$ and the linear system $|\mathcal{O}_{Y_4}(Y_4)|$ has no fixed component and no base point, neigher does $|Y_4| := |\mathcal{O}_{X_4}(Y_4)|$. Therefore, it defines a morphism $\overline{\Phi} := \overline{\Phi}_{|Y_4|} : X_4 \to P^2$ of X_4 onto P^2 such that $\overline{\Phi}^*\mathcal{O}_{P^2}(1) = \mathcal{O}_{X_4}(Y_4)$. Thus, we have the following:

PROPOSITION 3.2. There exists a morphism $\bar{\Phi}: X_4 \to P^2$ of X_4 onto P^2 with $\bar{\Phi}*\mathcal{O}_{P^2}(1) = \mathcal{O}_{X_4}(Y_4)$, which is a resolution of the indeterminancy of the rational map $\Phi^{(1)}: X_1 - \to P^2$.

4. Structure of V_5 . Let X_4 , Y_4 , and $C_3 \cong P^1 \times P^1$ be as in §3. Since

$$N_{C_3|X_3} \cong \mathcal{O}_{C_3}(-1) \oplus \mathcal{O}_{C_3}(-1)$$
,

by Corollary 5.6 in [10], there exists a birational morphism $\phi: X_4 \to V$ of X_4 onto a smooth 3-fold V with the second Betti number $b_2(V) = 2$, and a morphism $\pi: V \to P^2$ of V onto P^2 , and a birational map $\rho: X_1 \longrightarrow V$ which is called a flip such that $\rho = \phi \circ \delta^{-1}$ and $\bar{\Phi} = \pi \circ \phi$. Thus we have the diagram (*):

In particular, $f := \phi(\overline{C}_1' \cup \overline{C}_2' \cup C_3')$ is a smooth rational curve in V, and

$$(4.1) X_4 - (\overline{C}_1' \cup \overline{C}_2' \cup C_3') \xrightarrow{\phi} V - f \xleftarrow{\rho} X_1 - C_1.$$

We put $A := \phi(Y_4)$ and $\Sigma := \phi(E_4)$. Then,

$$-K_{\nu}=2A+2\Sigma.$$

$$\mathcal{O}_{V}(A) = \pi * \mathcal{O}_{\mathbf{P}^{2}}(1) .$$

Indeed, since $-K_{X_1} = 2\delta_1^*H - 2E_1 = 2Y_1 + 2E_1$ and $\mathcal{O}_{X_4}(Y_4) = \overline{\Phi}^*\mathcal{O}_{\mathbf{P}^2}(1)$, by (4.1), we have (4.2), (4.3). We put $l_i := \phi(\tilde{l}_i)(1 \le i \le 2)$ and $L_0 := \pi(l_2) \subseteq \mathbf{P}^2$. Then l_i 's are smooth rational curves in V and L_0 is a line in \mathbf{P}^2 . In particular, $\pi|_A : A \to L_0$ has a structure of the \mathbf{P}^1 -boundle F_1 with l_1 a fiber and l_2 the negative section. Moreover, Σ has only one singularity q of A_2 -type. The rational curves l_1 , l_2 , f, which are also contained in Σ , intersect only at the point q (see Figure 4).

FIGURE 4

By construction, $\sigma:=\phi\mid_{E_4}: E_4\to \Sigma$ is the minimal resolution of the singularity of Σ with $\sigma^{-1}(q)=\widetilde{f}_1\cup\widetilde{f}_2$, and $l_i=\sigma(\widetilde{l}_i)(1\leq i\leq 2)$, $f=\sigma(\widetilde{f})$ (see (i)-(iv) of Step IV and Figure 4). We put $\lambda:=\pi\mid_{\Sigma}: \Sigma\to P^2$. Then

$$(4.4) (\lambda \circ \sigma)(\tilde{f}_1 \cup \tilde{f}_2 \cup \tilde{l}_1) = L_0 \cdot L_\infty = \{p\} \text{ (a point)},$$

where $L_{\infty} := \pi(f)$ is a line in \mathbb{P}^2 .

For a general fiber F of the morphism $\pi: V \to \mathbb{P}^2$, we have, by (4.2),

$$\deg K_F = (K_V \cdot F) = -2(\Sigma \cdot F) \le -2.$$

Hence, $F \cong P^1$ and $(\Sigma \cdot F)_V = 1$, where K_F is a canonical divisor on F. Therefore Σ is a meromorphic section of $\pi: V \to P^2$.

PROPOSITION 4.1. $\pi: V \to P^2$ is a P^1 -bundle over P^2 and Σ is a holomorphic section on $P^2 - \{p\}$.

PROOF. By construction,

$$C^3 \cong X - Y \stackrel{\delta_1}{\sim} X_1 - (Y_1 \cup E_1) \stackrel{\rho}{\sim} V - (A \cup \Sigma)$$
.

In particular, $\pi: V - (A \cup \Sigma) \rightarrow P^2 - L_0$ is an affine morphism. Assume that there exists an irreducible divisor D on V such that $\pi(D) = \{\text{one point}\}$. Then the one-dimensional scheme $D \cap \Sigma$ is contracted to one point, hence, $\operatorname{Supp}(D \cap \Sigma) = l_1$. Since $l_1 \subseteq A = \pi^{-1}(L_0)$ and $\pi|_A: A \rightarrow L_0$ is a P^1 -bundle, this is a contradiction. Thus π is equi-dimensional, hence, π is a proper flat morphism. Let G be an arbitrary scheme-theoric fiber. Then $(\Sigma \cdot G)_V = 1$. Since $V - (A \cup \Sigma) \cong C^3$ contains no compact analytic curve, G must be irreducible. Since $(K_V \cdot G) = -2(\Sigma \cdot G) = -2$, we see that G is a smooth rational curve. Therefore $\pi: V \rightarrow P^2$ is a smooth proper morphism. By the upper semicontinuity theorem, we have that $R^1\pi_*\mathcal{O}_V(\Sigma) = 0$ and $\pi_*\mathcal{O}_V(\Sigma)$ is a vector bundle of rank 2 over P^2 . Moreover, for every point $x \in P^2$,

$$\pi_*\mathcal{O}_V(\Sigma) \otimes \pmb{C}(x) \cong H^0(\pi^{-1}(x),\,\mathcal{O}_V(\Sigma) \otimes \mathcal{O}_{\pi^{-1}(x)}) \cong H^0(\pmb{P}^1,\,\mathcal{O}_{\pmb{P}^1}(1)) \cong \pmb{C}^2 \;.$$

Thus the natural homomorphism $\pi^*\pi_*\mathcal{O}_V(\Sigma) \to \mathcal{O}_V(\Sigma)$ is surjective and induces an

isomorphism $V \cong P(\pi_* \mathcal{O}_V(\Sigma))$ over P^2 . The rest is clear.

q.e.d.

REMARK. π is the contraction of an extremal ray of the smooth projective 3-fold V.

Finally, we will study the vector bundle $\pi_{\star}\mathcal{O}_{V}(\Sigma)$ of rank 2 over P^{2} .

LEMMA 4.2.
$$\mathcal{O}_{\Sigma}(\Sigma) = \mathcal{O}_{\Sigma}(-3l_1) \otimes \mathcal{O}_{V}(A)$$
.

PROOF. Since the singularity of Σ is a rational double point, we have $\sigma^*K_{\Sigma} = K_{E_4} = -2\tilde{f}_1 - \tilde{f}_2 - 3\tilde{l}_2$, hence, $K_{\Sigma} = -3l_2$. On the other hand, since $K_{\Sigma} = (K_V + \Sigma)|_{\Sigma} = -2A|_{\Sigma} - \Sigma|_{\Sigma}$, we have $\Sigma|_{\Sigma} = -2A|_{\Sigma} + 3l_2$. Since $A|_{\Sigma} = l_1 + l_2$, we have $\Sigma|_{\Sigma} = -3l_1 + A|_{\Sigma}$, namely, $\mathcal{O}_{\Sigma}(\Sigma) = \mathcal{O}_{\Sigma}(-3l_1) \otimes \mathcal{O}_{V}(A)$.

Let us consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{V} \longrightarrow \mathcal{O}_{V}(\Sigma) \longrightarrow \mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0.$$

Taking π_* , we have

$$(4.5) 0 \longrightarrow \mathcal{O}_{\mathbb{P}^2} \longrightarrow \pi_{\star} \mathcal{O}_{V}(\Sigma) \longrightarrow \pi_{\star} \mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0.$$

Taking π^* in (4.5), we have a diagram:

$$0 \longrightarrow \mathcal{O}_{V} \longrightarrow \pi^{*}\pi_{*}\mathcal{O}_{V}(\Sigma) \longrightarrow \pi^{*}\pi_{*}\mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{O}_{V} \longrightarrow \mathcal{O}_{V}(\Sigma) \longrightarrow \mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0.$$

In particular, we have a surjection

$$\pi^*\pi_*\mathcal{O}_{\mathfrak{r}}(\Sigma) \longrightarrow \mathcal{O}_{\mathfrak{r}}(\Sigma)$$
.

We put $\lambda := \pi |_{\Sigma} : \Sigma \to P^2$. Taking λ^* in (4.5), we have a diagram:

$$0 \longrightarrow \mathcal{O}_{\Sigma} \longrightarrow \lambda^* \pi_* \mathcal{O}_{V}(\Sigma) \longrightarrow \lambda^* \pi_* \mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{K} \longrightarrow \lambda^* \pi_* \mathcal{O}_{V}(\dot{\Sigma}) \stackrel{\tau}{\longrightarrow} \mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0$$

where $\mathcal{K} := \ker \dot{\tau}$ is a line bundle, and the image of the global section 1 of \mathcal{O}_{Σ} via map $\mathcal{O}_{\Sigma} \to \mathcal{K}$ defines an effective Cartier divisor D with Supp $D = l_1$.

Proposition 4.3. $\lambda^* \pi_* \mathcal{O}_V(\Sigma)$ is an extension of $\mathcal{O}_{\Sigma}(\Sigma)$ by $\mathcal{O}_{\Sigma}(3l_1)$.

PROOF. We have only to prove that $D=3l_1$. Since $\lambda^*(\det(\pi_*\mathcal{O}_V(\Sigma)))=\mathcal{O}_{\Sigma}(\Sigma)\otimes \mathcal{O}_{\Sigma}(3l_1)$, we have $(\Sigma \cdot l_1)_{\Sigma}+(D \cdot l_1)_{\Sigma}=0$. Since $\mathcal{O}_{\Sigma}(\Sigma)=\mathcal{O}_{\Sigma}(-3l_1)\otimes \mathcal{O}_{V}(A)$ by Lemma 4.2, we must have $D=3l_1$, and also, by (4.3), we have $\det(\pi_*\mathcal{O}_V(\Sigma))=\mathcal{O}_{\mathbf{P}^2}(1)$. q.e.d.

REMARK. We put $\mathscr{J} := \lambda_* \mathscr{O}_{\Sigma}(-3l_1)$. Then \mathscr{J} is an ideal locally generated by two polynomials xy and $y-x^2$ over $\mathbb{C}[x,y]$. We put $\mathscr{E} := \pi_* \mathscr{O}_V(\Sigma)$. Since $\mathscr{O}_{\Sigma}(\Sigma) = \mathscr{O}_{\Sigma}(-3l_1) \otimes \lambda^* \mathscr{O}_{\mathbb{P}^2}(1)$, by (4.5), we have an exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^2} \longrightarrow \mathscr{E} \longrightarrow \mathscr{J} \cdot \mathcal{O}_{\mathbf{P}^2}(1) \longrightarrow 0.$$

By Lemma 1.3.4 [8, p. 186-p. 187], & is a stable vector bundle of rank 2 over P^2 .

Thus we have finally the following:

PROPOSITION 4.4. Let (X_1, Y_1) , $E_1 \cong P^2$, C_1 be as in §1. Then one can construct a birational map $\rho: X_1 \to P(\mathcal{E})$ of X_1 to a P^1 -bundle $\pi: P(\mathcal{E}) \to P^2$ (\mathcal{E} is a stable vector bundle of rank two over P^2) with the following properties:

- (1) There is a smooth rational curve f contained in $\Sigma := \rho(E_1)$ such that $X_1 C_1 \cong P(\mathcal{E}) f$ (isomorphic).
- (2) There is a point $p \in \mathbf{P}^2$ such that $\pi^{-1}(p) \subseteq \Sigma$ and $\Sigma \pi^{-1}(p) \cong \mathbf{P}^2 \{p\}.$
- (3) $L_0 := \pi(A)$ is a line in P^2 through p, where $A := \rho(Y_1)$. In particular, $\pi|_A : A \to L_0$ is a P^1 -bundle over L_0 .
- $(4) \quad X Y \stackrel{\delta_1}{\cong} X_1 (Y_1 \cup E_1) \stackrel{\rho}{\cong} \mathbf{P}(\mathscr{E}) (A \cup \Sigma).$
- 5. A construction and the proof of Theorem. Take any fixed line L_{∞} in P^2 and a point $p \in L_{\infty}$. Let $L_t(t \in C, t \neq \infty)$ be a line in P^2 through the point p. Let E_4 be a rational surface obtained from P^2 by succession of three blowing ups at p (infinitely near points allowed). Let $\mu: E_4 \to P^2$ be the projection with $\mu^{-1}(p) = \tilde{f}_1 \cup \tilde{f}_2 \cup \tilde{l}_1$, where $(\tilde{f}_i \cdot \tilde{f}_i)_{E_4} = -2(1 \le i \le 2), (\tilde{l}_1 \cdot \tilde{l}_1)_{E_4} = -1, (\tilde{f}_1 \cdot \tilde{f}_2)_{E_4} = 1, (\tilde{f}_1 \cdot \tilde{l}_1)_{E_4} = 0$, and $(\tilde{f}_2 \cdot \tilde{l}_1)_{E_4} = 1$. Let \tilde{f} (resp. \tilde{l}_2) be the proper transform of L_{∞} (resp. L_t) in E_4 . Let $\sigma: E_4 \to \Sigma$ be the contraction of the exceptional set $\tilde{f}_1 \cup \tilde{f}_2$, and put $f:=\sigma(\tilde{f}), l_i:=\sigma(\tilde{l}_i)$ (i=1,2). Then there is a birational morphism $\lambda: \Sigma \to P^2$ such that $\lambda(l_1) = p, \lambda(l_2) = L_t, \lambda(f) = L_{\infty}$. Thus we have the following diagram:

(see Figure 5).

FIGURE 5

LEMMA 5.1. As Q-divisors, we have

(5.1)
$$\sigma^* l_1 \sim_{\mathbf{Q}} \tilde{l}_1 + \frac{1}{3} \tilde{f}_1 + \frac{2}{3} \tilde{f}_2$$
$$\sigma^* l_2 \sim_{\mathbf{Q}} \tilde{l}_2 + \frac{2}{3} \tilde{f}_1 + \frac{1}{3} \tilde{f}_2$$
$$\sigma^* f \sim_{\mathbf{Q}} \tilde{f} + \frac{1}{3} \tilde{f}_1 + \frac{2}{3} \tilde{f}_2,$$

and the linear equivalences

(5.2)
$$\tilde{l}_{1} + \tilde{f}_{2} + \tilde{f}_{3} \sim \tilde{l}_{2}$$

$$l \sim l_{2} + l_{1} \sim f + 2l_{1}$$

$$K_{E_{A}} = \sigma^{*}K_{\Sigma} \sim \sigma^{*}(-3l) + \tilde{f}_{1} + 2\tilde{f}_{2} + 3\tilde{l}_{1},$$

where K_{E_4} is a canonical divisor on E_4 , and $l := \lambda^* \mathcal{O}_{\mathbf{P}^2}(1)$.

PROOF. Since $(\sigma^* l_1 \cdot \tilde{f_i}) = (\sigma^* l_2 \cdot \tilde{f_i}) = (\sigma^* f \cdot \tilde{f_i}) = 0$ for i = 1, 2, we have (5.1). By a similar calculation, we have (5.2).

Now, we will prove the existence of a vector bundle of rank 2 over P^2 which is an extension of $\mathcal{O}_{\Sigma}(-3l_1+l)$ by $\mathcal{O}_{\Sigma}(3l_1)$.

Lemma 5.2. (1) Ext $\frac{1}{\Sigma}(\mathcal{O}_{\Sigma}(-3l_1+l), \mathcal{O}_{\Sigma}(3l_1)) \cong \operatorname{Ext} \frac{1}{E_4}(\sigma^*\mathcal{O}_{\Sigma}(-3l_1+l), \sigma^*\mathcal{O}_{\Sigma}(3l_1))$. (2) Ext $\frac{1}{E_4}(\sigma^*\mathcal{O}_{\Sigma}(-3l_1+l), \sigma^*\mathcal{O}_{\Sigma}(3l_1)) \longrightarrow \operatorname{Ext} \frac{1}{I_1}(\sigma^*\mathcal{O}_{\Sigma}(-3l_1+l) \otimes \mathcal{O}_{\overline{I}_l}, \sigma^*\mathcal{O}_{\Sigma}(3l_1) \otimes \mathcal{O}_{\overline{I}_l})$ is surjective.

(3)
$$\dim \operatorname{Ext}_{\Sigma}^{1}(\mathcal{O}_{\Sigma}(-3l_{1}+l), \mathcal{O}_{\Sigma}(3l_{1})) = 3 \text{ and}$$
$$\dim \operatorname{Ext}_{I_{1}}^{1}(\sigma^{*}\mathcal{O}_{\Sigma}(-3l_{1}+l)\otimes\mathcal{O}_{I_{1}}, \sigma^{*}\mathcal{O}_{\Sigma}(3l_{1})\otimes\mathcal{O}_{I_{1}}) = 1.$$

PROOF. (1) Ext ${}_{\Sigma}^{1}(\mathcal{O}_{\Sigma}(-3l_{1}+l), \mathcal{O}_{\Sigma}(3l_{1})) \cong H^{1}(\Sigma, \mathcal{O}_{\Sigma}(6l_{1}-l))$ and Ext ${}_{E_{4}}^{1}(\sigma^{*}\mathcal{O}_{\Sigma}(-3l_{1}+l), \sigma^{*}\mathcal{O}_{\Sigma}(3l_{1})) \cong H^{1}(E_{4}, \sigma^{*}\mathcal{O}_{\Sigma}(6l_{1}-l))$, we have only to prove $H^{1}(\Sigma, \mathcal{O}_{\Sigma}(6l_{1}-l)) \xrightarrow{\sim} H^{1}(E_{4}, \sigma^{*}\mathcal{O}_{\Sigma}(6l_{1}-l))$, which is clear, since $R^{1}\sigma_{*}\mathcal{O}_{E_{4}}=0$.

(2) We have only to prove that the morphism

$$H^1(E_4,\sigma^*\mathcal{O}_{\Sigma}(6l_1-l)) \longrightarrow H^1(\tilde{l}_1,\sigma^*\mathcal{O}_{\Sigma}(6l_1-l)\otimes\mathcal{O}_{\tilde{l}_1})$$

is surjective. For this purpose, let us consider the exact sequence:

$$0 \longrightarrow \sigma^* \mathcal{O}_{\Sigma}(6l_1-l) \otimes \mathcal{O}_{E_4}(-\tilde{l_1}) \longrightarrow \sigma^* \mathcal{O}_{\Sigma}(6l_1-l) \longrightarrow \sigma^* \mathcal{O}_{\Sigma}(6l_1-l) \otimes \mathcal{O}_{\tilde{l_1}} \longrightarrow 0 \ .$$

By Lemma 5.1, we have

$$\sigma^* \mathcal{O}_{\Sigma}(6l_1 - l) \cong \mathcal{O}_{E_4}(6\tilde{l}_1 + 2\tilde{f}_1 + 4\tilde{f}_2 - \sigma^* l) \cong \mathcal{O}_{E_4}(2K_{E_4} + 5\sigma^* l)$$

hence,

$$\begin{split} H^2(E_4,\,\mathcal{O}_{E_4}(2K_{E_4}+5\sigma^*l-\tilde{l}_1)) &\cong H^0(E_4,\,\mathcal{O}_{E_4}(-K_{E_4}-5\sigma^*l)\\ &\cong H^0(E_4,\,\mathcal{O}_{E_4}(-2\sigma^*l-\tilde{f}_1-2\tilde{f}_2-2\tilde{l}_1)) \cong 0 \;. \end{split}$$

Therefore, we have a surjection

$$H^1(E_4, \sigma^*\mathcal{O}_{E_4}(6l_1-l)) \longrightarrow H^1(\tilde{l}_1, \sigma^*\mathcal{O}_{E_4}(6l_1-l) \otimes \mathcal{O}_{\tilde{l}_1}) \ .$$

(3) Since
$$(\sigma^*(-3l_1+l)\cdot \tilde{l}_1)_{E_4}=1$$
, $(\sigma^*(3l_1)\cdot \tilde{l}_1)_{E_4}=-1$, we have

$$\operatorname{Ext}_{\tilde{l}_1}^1(\sigma^*\mathcal{O}_{\Sigma}(-3l_1+l)\otimes\mathcal{O}_{\tilde{l}_1},\,\sigma^*\mathcal{O}_{\Sigma}(3l_1)\otimes\mathcal{O}_{\tilde{l}_1})\cong\operatorname{Ext}_{\mathbb{P}^1}^1(\mathcal{O}(1),\,\mathcal{O}(-1))\cong H^1(\mathbb{P}^1,\,\mathcal{O}(-2))\cong C.$$

Finally, we prove that $H^1(E_4, \mathcal{O}_{E_4}(2K_{E_4} + 5\sigma^* l)) \cong \mathbb{C}^3$. By Lemma 5.1, we have

$$2K_{E_4} + 5\sigma^* l = -\sigma^* l + 2\tilde{f}_1 + 4\tilde{f}_2 + 6\tilde{l}_1.$$

Since $\tilde{f}_1 \cup \tilde{f}_2 \cup \tilde{l}_1$ can be contracted to a smooth point, we have

$$H^0(E_4,\,\mathcal{O}_{E_4}(-\sigma*l+2\tilde{f}_1+4\tilde{f}_2+6\tilde{l}_1))=0\;,$$

$$H^2(E_4, \mathcal{O}_{E_4}(-\sigma^*l+2\tilde{f}_1+4\tilde{f}_2+6\tilde{l}_1)) \cong H^0(E_4, \mathcal{O}_{E_4}(-2\sigma^*l-\tilde{f}_1-2\tilde{f}_2-3\tilde{l}_1)) = 0$$
.

By the Riemann-Roch theorem, we have easily

dim
$$H^1(E_4, \mathcal{O}_{E_4}(-\sigma^*l+2\tilde{f}_1+4\tilde{f}_2+6\tilde{l}_1))=3$$
,

q.e.d.

hence,
$$H^1(E_4, \mathcal{O}_{E_4}(2K_{E_4} + 5\sigma^* l)) \cong \mathbb{C}^3$$
.

The following is well-known (cf. [8]):

LEMMA 5.3. Let $v: S \rightarrow T$ be the blowing up at the point p on a smooth surface T, and put $v^{-1}(p) = C$. Then a vector bundle $\mathscr E$ on S is the pull back of a vector bundle

on T if and only if

$$\mathscr{E}\mid_{\mathcal{C}}\cong\mathscr{O}_{\mathcal{C}}^{\otimes r}$$
,

where $r = \operatorname{rank} \mathscr{E}$.

Let $\mathscr{E} := \mathscr{E}_{\xi}$ be the vector bundle on E_4 determined by an element $\xi \in \operatorname{Ext}_{E_4}^1(\sigma^*\mathscr{O}_{\Sigma}(-3l_1+l), \sigma^*\mathscr{O}_{\Sigma}(3l_1))$, where the image of ξ by the surjection in Lemma 5.2, (2) is not zero. Then $\mathscr{E} \otimes \mathscr{O}_{\tilde{l}_1}$ induces a non-split exact sequence

$$0 \longrightarrow \mathcal{O}_{\tilde{l}_1}(-1) \longrightarrow \mathscr{E} \otimes \mathcal{O}_{\tilde{l}_1} \longrightarrow \mathcal{O}_{\tilde{l}_1}(1) \longrightarrow 0 ,$$

hence, $\mathscr{E} \otimes \mathscr{O}_{\tilde{l}_1} \cong \mathscr{O}_{\tilde{l}_1} \oplus \mathscr{O}_{\tilde{l}_1}$.

On the other hand, we have

$$\sigma^*\mathcal{O}_{\Sigma}(-3l_1+l)\otimes\mathcal{O}_{\tilde{l}_1}\cong\mathcal{O}_{\tilde{l}_2}, \sigma^*\mathcal{O}_{\Sigma}(3l_1)\otimes\mathcal{O}_{\tilde{l}_1}\cong\mathcal{O}_{\tilde{l}_2}$$

for i=1, 2. Thus $\mathscr{E} \otimes \mathscr{O}_{\tilde{f}_i} \cong \mathscr{O}_{\tilde{f}_i}^{\oplus 2}$ for i=1, 2.

By Lemma 5.3, there exists a vector bundle \mathscr{E} on P^2 such that $\mathscr{E} = \mu^* \mathscr{E}$, and then we have an exact sequence

$$(5.3) 0 \longrightarrow \sigma^* \mathcal{O}_{\Sigma}(3l_1) \longrightarrow \mu^* \mathscr{E} \longrightarrow \sigma^* \mathcal{O}_{\Sigma}(-3l_1+l) \longrightarrow 0.$$

Taking σ_* , we have an exact sequence

$$(5.4) 0 \longrightarrow \mathcal{O}_{\Sigma}(3l_1) \longrightarrow \lambda^* \mathscr{E} \longrightarrow \mathcal{O}_{\Sigma}(-3l_1+l) \longrightarrow 0.$$

Further, taking λ_* , we have an exact sequence

$$(5.5) 0 \longrightarrow \mathcal{O}_{\mathbf{P}^2} \longrightarrow \mathscr{E} \longrightarrow \lambda_{\star} \mathcal{O}_{\Sigma}(-3l_1) \otimes \mathcal{O}_{\mathbf{P}^2}(1) \longrightarrow 0,$$

since $R^1 \lambda_* \mathcal{O}_{\Sigma}(3l_1) = 0$ by the Grauert-Riemenschneider vanishing theorem.

We remark that $\lambda: \Sigma \to P^2$ is the blowing up of P^2 along the ideal $\mathscr{J}:=\lambda_*\mathcal{O}_{\Sigma}(-3l_1)$. By (5.4), we have a P^1 -bundle $V:=P(\mathscr{E}) \xrightarrow{\pi} P^2$ and a rational section $\Sigma \subseteq V$.

Lemma 5.4. $\mathscr{E} \otimes \mathscr{O}_{L_t} \cong \mathscr{O}_{L_t}(1) \oplus \mathscr{O}_{L_t}$.

PROOF. Let us consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{\Sigma}(3l_1) \otimes \mathcal{O}_{l_2} \longrightarrow \lambda^* \mathscr{E} \otimes \mathcal{O}_{l_2} \longrightarrow \mathcal{O}_{\Sigma}(-3l_1+l) \otimes \mathcal{O}_{l_2} \longrightarrow 0.$$

Since $(3l_1 \cdot l_2)_{\Sigma} = (l \cdot l_2)_{\Sigma} = 1$, we have an exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}^1}(1) \longrightarrow \lambda^* \mathscr{E} \otimes \mathcal{O}_{\mathbf{P}^1} \longrightarrow \mathcal{O}_{\mathbf{P}^1} \longrightarrow 0 \ .$$

Therefore, $\lambda^* \mathscr{E} \otimes \mathscr{O}_{l_2} \cong \mathscr{O}_{\mathbf{P}^1}(1) \oplus \mathscr{O}_{\mathbf{P}^1}$.

q.e.d.

COROLLARY 5.5. $\pi^{-1}(L_t) = : A \text{ is the } \mathbf{P}^1 \text{-bundle } \mathbf{F}_1 \text{ over } L_t \cong \mathbf{P}^1.$

Lemma 5.6. $N_{f|V} \cong \mathcal{O}_{\mathbf{P}^1}(-2) \oplus \mathcal{O}$, where $N_{f|V}$ is the normal bundle of $f(\varsigma \Sigma)$ in V.

PROOF. Let K_V be a canonical divisor on V. Then we have

$$K_V = \pi * (K_{\mathbb{P}^2} + \det \mathscr{E}) - 2\Sigma = -2A - 2\Sigma$$
.

Since $\mathcal{O}_{\Sigma}(\Sigma) = \mathcal{O}_{\Sigma}(-3l_1 + l)$, we have $(K_{V} \cdot f) = (-4l + 6l_1 \cdot f)_{\Sigma} = -4 + 4 = 0$. Thus, by Lemma 3.1, we have the claim.

LEMMA 5.7. $V-(\Sigma \cup A)$ is algebraically isomorphic to \mathbb{C}^3 .

PROOF. Since $\Sigma - \pi^{-1}(p) \longrightarrow P^2 - \{p\}$ and $p \in L_t$, the morphism $\pi \mid_{P(\mathscr{E}) - (\Sigma \cup A)} : P(\mathscr{E}) - (\Sigma \cup A) \to P^2 - L_t$ gives an algebraic C-bundle structure on $P^2 - L_t \cong C^2$. Therefore, by Quillen [10], we have $P(\mathscr{E}) - (\Sigma \cup A) \cong C^3$.

Let $\phi_1: V_1 \rightarrow V := \mathbf{P}(\mathscr{E})$ be the blowing up along f and put $C_1' = \phi_1^{-1}(f)$. Then $C_1' \cong \mathbf{F}_2$ by Lemma 5.6. Let Σ_1 be the proper transform of Σ in V_1 . Then Σ_1 has the singularity q_1 of A_1 -type, and there exists a birational morphism $v_1: E_4 \rightarrow \Sigma_1$ such that $v_1^{-1}(q_1) = \widetilde{f}_2$ and $E_4 - \widetilde{f}_2 \stackrel{v_1}{\cong} \Sigma_1 - \{q_1\}$. We put $f_1^{(1)} := v_1(\widetilde{f}_1)$ and $f^{(1)} := v_1(\widetilde{f})$. Then $\Sigma_1 \cdot C_1' = f_1^{(1)} + f^{(1)}$. In particular, $f_1^{(1)}$ is a fiber and $f^{(1)}$ is the negative section of $C_1' \cong \mathbf{F}_2$. Since $q_1 \in f^{(1)}$ and $(K_{V_1} \cdot f^{(1)}) = (K_V \cdot f) = 0$, by Lemma 3.1, we have

$$N_{f^{(1)}|V_1} \cong \mathcal{O} \oplus \mathcal{O}(-2)$$
.

Let $\phi_2: V_2 \to V_1$ be the blowing up along the curve $f^{(1)}$ and put $C_2' = \phi_2^{-1}(f^{(1)}) \cong F_2$. Let Σ_2 be the proper transform of Σ_1 in V_2 . Then Σ_2 is a smooth surface and there is an isomorphism $v_2: E_4 \xrightarrow{\sim} \Sigma_2$. We put $f_i^{(2)}:=v_2(\tilde{f_i})$ (i=1,2) and $f^{(2)}=v_2(\tilde{f_i})$. Then we have $\Sigma_2 \cdot C_2' = f_2^{(2)} + f_2^{(2)}$. In particular, $f_2^{(2)}$ is a fiber and $f_2^{(2)}$ is the negative section of $C_2' = F_2$. Since $(K_{V_2} \cdot f_2^{(2)}) = (K_{V_1} \cdot f_2^{(1)}) = 0$ and Σ_2 is smooth, by Lemma 3.1, we have

$$N_{f^{(2)}|V} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$$
.

Let $\phi_3: V_3 \rightarrow V_2$ be the blowing up along $f^{(2)}$ and put $C_3' = \phi_3^{-1}(f^{(2)}) \cong P^1 \times P^1$. Let \widetilde{C} be a fiber of the ruled surface $\phi_3|_{C_3'}: C_3' \rightarrow f^{(2)}$, and Σ_3 be the proper transform of Σ_2 in V_3 . Then Σ_3 is a smooth surface and there exists an isomorphism $v_3: E_4 \xrightarrow{\sim} \Sigma_3$. We put $\widetilde{f}_i:=v_3(\widetilde{f}_i)$ $(i=1,2),\widetilde{f}=v_3(\widetilde{f}), \widetilde{l}_i:=v_3(\widetilde{l}_i)$ (i=1,2). Then, $\Sigma_3\cdot C_3'=\widetilde{f}$. In particular, $(\widetilde{f}\cdot\widetilde{f})_{C_3'}=0$ and $(\widetilde{f}\cdot\widetilde{C})_{C_3'}=1$ (see Step IV and Figure 2 in §4).

Since $C_3' \cong P(\emptyset-1) \oplus \emptyset(-1)$), by Corollary 5.6 in [10], C_3' can be blown down along the fiber \tilde{f} . After step by step blowing down, we finally have a smooth 3-fold X_1 with $b_2(X_1) = 2$ and the contraction morphism $\delta \colon V_3 \to X_1$. We put $C_1 := \delta(C_3' \cup \overline{C}_2' \cup \overline{C}_1')$, $E_1 := \delta(\Sigma_3)$, and $Y_1 := \delta(A_3)$, where \overline{C}_j' (j=1,2), A_3 are the proper transforms of C_j' (j=1,2), $A=\pi^{-1}(L_i)$ in V_3 , respectively. Then, by construction, one can easily see that C_1 is a smooth rational curve in X_1 with $C_1 \subset Y_1$, $E_1 \cong P^2$, and Y_1 is a singular del Pezzo surface with a singularity of A_2 -type. We put $\rho' := (\phi_1 \circ \phi_2 \circ \phi_3)^{-1} \circ \delta$. Then ρ' is a birational map of V onto X_1 such that $\rho' : V - f \cong X_1 - C$ (isomorphic). Since $K_V = -2A - 2\Sigma$, we have $K_{X_1} = -2Y_1 - 2E_1$. Since $E_1 \cdot Y_1 = l_1^{(1)} + l_2^{(1)}$, by the adjunction formula, $\mathcal{O}_{E_1}(E_1) = \mathcal{O}_{E_1}(-l_j^{(1)})$ for j=1, 2, where $l_j^{(1)} := \delta(\tilde{l}_j)$ is a line in $E_1 \cong P^2$. Thus E_1 can be blown down to a point x of a smooth projective 3-fold X.

Let $\delta_1: X_1 \to X$ be the contraction morphism. Then $Y:=\delta_1(Y_1)$ has a singularity of A_4 -type at $x=\delta_1(E_1)$. Since all the transformations above are performed on the divisor $\Sigma \subseteq V$, we have $X-Y\simeq V-(\Sigma\cup A)\cong C^3$ (by Lemma 5.7). Thus, (X,Y) is a smooth projective compactification of C^3 such that Y is a singular del Pezzo surface with a singularity of A_4 -type. This implies that X is a Fano 3-fold of index 2 with Pic $X\cong Z\mathcal{O}_X(Y)$. Since Y has a singularity of A_4 -type, we have deg $N_Y=\deg(-K_Y)=5$, where $N_Y:=[Y]|_Y$ (resp. K_Y) is the normal bundle of Y in X (resp. a canonical divisor on Y). Thus, X is a Fano 3-fold V_5 of degree 5 in P^6 by the anti-canonical embedding. In particular, $C:=\delta_1(C_1)$ is a unique line in X through the point $x=\delta_1(E_1)$ on X. Thus we have the following:

Proposition 5.8. (1) $\delta_1(E_1) =: x \in \mathfrak{A} \neq \emptyset$.

(2) There is a birational map $\rho': \mathbf{P}(\mathscr{E}) \longrightarrow V'_5 = : X_1$ such that

$$P(\mathscr{E}) - f \xrightarrow{\rho'} X_1 - C_1 \text{ (isomorphic)},$$

where V_5' is the blowing up of V_5 at the point $\delta_1(E_1) = x \in V_5$.

(3) $H_5^t := \delta_1(\rho'(\Sigma \cup \pi^{-1}(L_t)))$ is a singular del Pezzo surface with singularity of A_4 -type. In particular, $V_5 - H_5^t \cong \mathbb{C}^3$.

By Propositions 4.4 and 5.8, we have the proof of the assertions (1), (2) and a half part of (3) in our main theorem. The rest can be proved as follows:

For any fiber $\pi^{-1}(p')$ $(p \neq p' \in L_{\infty})$, let l_p , be the proper transform of $\pi^{-1}(p') \subseteq P(\mathscr{E})$ in $V'_5 = X_1$. By construction, $l_{p'} \cap C_1 \neq \emptyset$, $(l_{p'} \cdot Y_1) = 1$, and $(l_{p'} \cdot E_1) = 0$. Thus $H_5^{\infty} := \delta_1(\rho'(\Sigma \cup \pi^{-1}(L_{\infty})))$ is a ruled variety swept out by lines which intersect the line C.

We also have $V_5 - H_5^{\infty} \cong \mathbb{C}^3$. By Lemma 1.1, H_5^{∞} cannot be normal. This completes the proof of the theorem.

Finally, we will prove the corollary. Let L be any line in P^2 which does not pass through the point $p \in P^2$. We put $H_5 := \delta_1(\rho'(\Sigma \cup \pi^{-1}(L)))$. Then, H_5 is a member of the linear system $|\mathcal{O}_{V_5}(1) \otimes \mathcal{M}_x^2|$. Thus, H_5 contains a unique line C through the point x. We can see that

$$V_5 - H_5 \stackrel{\delta_1}{\cong} V_5' - \delta_1^{-1}(H_5) \stackrel{\rho}{\cong} \mathbf{P}(\mathscr{E}) - (\Sigma \cup \pi^{-1}(L)).$$

Since $P(\mathscr{E}) - (\Sigma \cup \pi^{-1}(L))$ is a C-bundle over $C^2 - \{0\}$, $V_5 - H_5 \ncong C^3$. Therefore we have the corollary.

REFERENCES

- [1] M. Furushima, Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C³, Nagoya Math. J. 104 (1986), 1-28.
- [2] M. FURUSHIMA, On complex analytic compactifications of C^3 , preprint Max-Planck-Institut für

- Mathematik, Bonn, 87-19 (1987).
- [3] M. Furushima, On complex analytic compactifications of C³ (II), preprint Max-Planck-Institut für Mathematik, Bonn, 87–45 (1987).
- [4] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math. 49, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
- [5] V. A. ISKOVSKIH, Anticanonical models of three dimensional algebraic varieties, J. Soviet Math. 13-14 (1980), 745-814.
- [6] Y. KAWAMATA, K. MATSUDA AND K. MATSUKI, Introduction to the minimal model problem, in Algebraic Geometry, Sendai, (T. Oda, ed.) Advanced Studies in Pure Math. 10 (1987), Kinokuniya, Tokyo and North-Holland, Amsterdam, 551-590.
- [7] D. Morrison, The birational geometry of surfaces with rational double points, Math. Ann. 271 (1985), 415–438.
- [8] C. OKONEK, M. SCHNEIDER AND H. SPINDLER, Vector bundles on complex projective spaces, Progress in Math. 3, Birkhäuser, Boston, Basel, Stuttgart, 1980.
- [9] T. PETERNELL AND M. SCHNEIDER, Compactifications of C³ (I), Math. Ann. 280 (1988), 129–146.
- [10] D. QUILLEN, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
- [11] M. Reid, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties (S. Iitaka, ed.), Advanced Studies in Pure Math. 1 (1983), Kinokuniya, Tokyo and North-Holland, Amsterdam, 131-180.

DEPARTMENT OF MATHEMATICS AND
COLLEGE OF EDUCATION
RYUKYU UNIVERSITY
NISHIHARA-CHO, OKINAWA, 903–01
JAPAN

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE UNIVERSITY OF TOKYO HONGO, TOKYO, 113

Japan