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1. Introduction. In this section we give a brief description of the background of

and solution to the problem considered. The detailed assumptions are given in the next
section.

It is shown that if solutions of the infinite delay Γ-periodic system

(1) x'=f(t,xt)

are uniformly ultimately bounded (UUB) in the supremum norm, then there is a

Γ-periodic solution. This improves known results which have required that solutions
of (1) also be uniformly bounded (UB). It was shown by Kato [11] that uniform ultimate
boundedness for (1) does not imply uniform boundedness.

This problem goes back to Levinson [12]. It was solved for second order ordinary
differential equations by Cartwright [7] and Massera [13]; solutions for general n followed
from Browder's fixed point theorem (cf. Browder [2] and Yoshizawa [16; p. 158]). Hale
and Lopes [9] show that if (1) has finite delay then UB and UUB imply that (1) has a
Γ-periodic solution. It is known that for periodic ordinary differential equations then
UUB implies UB.

When (1) has unbounded delay, an example of Seifert [15] shows that if UUB is
expected, then (1) must have some type of fading memory. Moreover, it was believed
until very recently that in order to prove that (1) has a Γ-periodic solution using UB
and UUB, then the boundedness must be in terms of a weighted norm on the phase
space [1] which allowed unbounded initial functions. If (1) has the special form

ΓJ - c

(1)* x' = h(t,x)+ q(t,s,x(s))ds
J - GO

then a simple fading memory was defined in [3] which enables one to show that if

solutions are UB and UUB in the supremum norm, then the same is true for a weighted
norm. Investigators have been unsuccessful in extending the stated result for (1)* to
(1). The details for this summary are found in [4; pp. 214-324]. The recent survey book
by Hale [8] continues the problem to operator equations.

Recently, Burton-Dwiggins-Feng [5] have shown that if (1) has a fading memory
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and if solutions of (1) are UB and UUB in the supremum norm, then (1) has a Γ-periodic
solution. Thus, the present note removes the UB assumption.

2. The setting. Let (X, \\ - ||) be the space of bounded continuous functions
φ: (— oo, 0]->/?π with the supremum norm and consider the system

(1) x'(t)=f(t,xt)

where xt(s) = x(t + s) for — ao<s<Q and where

(2) /: [0, oo) x X^R" , f(t + Γ, φ) =/(ί, φ)

for some Γ>0. It will be supposed that

for each φ e A" there is a unique solution x(ί, 0, φ)

satisfying(1) on 0 < / < oo withx0( , 0, φ) = φ .

In the way of fulfillment of (3), Sawano [14] asks that:

i fx : (—00, A) -*Rn is bounded and continuous,
(HI)

then/(t, x,) is measurable in t e [0, A),

for any bounded set Va X there exists a function m(t) = mv(t\

locally integrable on R+, such that | /(ί, φ) | < m(t) for any φ e V,

and

(H3) /(ί, φ) is continuous in φ for each t e R + .

He then shows that (1) has a solution on some interval 0<ί<α. Moreover,

if there is a locally integrable function τ/(f) = ηv(t)

suchthat\f(t,φ)-f(ί,ψ)\<η(t)\\φ-ψ\\onR+xV,

then the solution is unique. Finally, if the solution is defined on [0, α) and is
noncontinuable beyond α, then lim sup,^- | x(ί, 0, φ) \ = oo. Since our result asks that
solutions be UUB, they will be continuable to + oo.

The following notation will be adopted.
Rn denotes ^-dimensional Euclidean space, R~, R+, R mean the intervals, (— oo, 0],

[0, oo), and (—00, oo) respectively.
For every ί>0, let Pt: X^X be defined by

(Ptφ)(s) = x(t + 5, 0, φ) for — oo<s<0.

G denotes the set of continuous non-increasing functions g: (— oo, 0]-»[1, oo) such
that 0(r)->oo as r-> — oo and 0(0) =1.

For a given g e G, then (Xg, \ - \g) denotes the Banach space of continuous functions
φ: R~ -+R" for which
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\φ\a= sup \φ(t)/g(t)\
-oo<ί<0

exists.
Let x: [α, Z?]-»#n and define

DEFINITION 1. Solutions of (1) are uniformly bounded at ί = 0 (UB) if for each
B1 >0 there exists B2 >0 such that [||φ|| <£1? f >0] imply that | x(ί, 0, φ) | <B2. Solutions
of (1) are uniformly ultimately bounded for bound B at / = 0 (UUB) if for each B3>0
there exists K>0 such that [||φ|| <B3, t>K~] imply that \x(t, 0, φ)\<B.

DEFINITION 2. Let Ωa X. We say that Pt is continuous in (Ω, (/) if there is a # e G

and for every φίeΩ, J> 0, and μ > 0 there exists a δ > 0 such that [φ2 e Ω, | φi — φ2 \g < <5]
imply that | PJφί - Pjψ2 \g < μ.

DEFINITION 3. Equation (1) is said to have a weakly fading memory in ΩaX if
for any />0, Z)>0, and μ>0 there exists a Λ^>0 such that

φ!(s) on [-X,0], 0<ί<J

imply that | /(ί, φ)-/(ί, (joj | <μ.

The following result was proved in [6].

PROPOSITION. Suppose that (3) holds and that
(i) equation (1) has a weakly fading memory,

(ii) /(ί, φ) w continuous at every (ί, φ) o/ [0, T~\xX with respect to the supremum

norm,
(iii) for each M>0 and α > 0 there exists L > 0 swcλ ίto/ [ || φ \\ < M, 0 < t < α] /m/7/y

ίteί |/(ί, φ)|<L. Then for every M>0 and Ω = {φeX: \\φ\\<M}9 Pt is continuous in

(O, G).

Horn's theorem [10] will now be stated for reference.

THEOREM (Horn). Let S0<^S1<^S2 be convex subsets of a Banach space X with
S0 and S2 compact and Sl open relative to 52. Let P: S2-+X be a continuous function

such that for some integer ra>0,

(a) PjS^S2, \<j<m-\

and
(b) PjS1 c S0 , m <j < 2m - 1 .

Then P has a fixed point in 50.

3. The main result. The proof of the existence of periodic solutions of dissipative
systems utilizes a translation map Pt which
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(a) must be continuous at least in the supremum norm. In order for solutions of
(1) to be defined even locally it is necessary that

(b) / take bounded sets into bounded sets. As / is Γ-periodic, this takes the form
of (ii) in the next theorem. In order for solutions to be UUB, by Seifert's example,

(c) some type of fading memory is required. In view of the referenced proposition
of the last section, conditions (ii) and (iii) of the next result are in some sense necessary.

The following theorem yields a Γ-periodic solution of (1) without asking that

solutions be UB.

THEOREM. Suppose that (2), (3), and the following hold:

(i) Solutions of (I) are UUB.
(ii) For each M>0 there exists L>0 such that []\φ\\<M, />0] imply that

(iii) For every bounded (in the supremum norm) set Ω^X,Pt is continuous in (Ω, G).

Then (1) has a T-periodίc solution.

PROOF. We first prepare the sets for Horn's theorem. Since solutions of (1) are
UUB, there is an N>0 such that

[φeX, \\φ\\<2B,t>N] imply that |x(i,0, φ)\<B .

By (ii), there is an Lβ>0 such that

(4) || φ || < 2B implies that | /(ί, φ) \ < LB for all / > 0 .

Let

(5) SB = {φeX: \\φ\\<2B,\ φ(u)-φ(v)\<LB\u-v\for u,veR~} .

By (iii) there exists a g* e G such that PN is continuous in the g *-norm on SB. Also, SB

is compact in the g *-norm; hence, PN(SB) is bounded in the 0*-norm and, being bounded
for t<—N, is bounded in the supremum norm: there exists B*>Q such that

(6) φ E SB implies that || PN(φ) \\<B* and | PN(φ) \g* <

In particular, there exists a B1 >B such that

(7) φ e SB implies that || x( , 0, φ) \\ [0' N]<B1 .

Let

(8)B2 = Bί+B and find L>LB with |/(ί, φ)\<L if />0 and

By (iii), there is a g e G such that Pt is continuous in the 0-norm on

(9) Ω = {φeX: \\φ\\ <B2, \φ(u)-φ(v)\<L\u-v\ for M, vεR~}

where B2 and L are defined in (8).
By the UUB, for the B2 of (8) there exists #>0 such that
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(10) [_φeX,\\φ\\<B2,t>K~\ imply that \x(t, 0, φ)\<B .

As Pκ is continuous on the compact set Ω in the 0-norm, it is uniformly continuous;
thus, there exists a δ > 0 such that

(11) [φl9φeΩ,\φ-φί\g<2δ] imply that sup |χ(ί, 0, φ)-x(t, 0, φί)\<B/2 .
0<t<K

In view of (7) and (11),

[φ e SB, φ^ e Ω9 \ φ — φί \g < 2δ~\ imply that

sup I χ(ί, 0, φO I < sup I χ(t, 0, φ)\ + sup | χ(ί, 0, φ)-x(ί, 0, φx) | <B l + (B/2)<B2 .

Now define

: \\φ\\ <B2, \φ(u)-φ(v)\<L\u-υ\, u, veR~} ,

{φeXβ:\φ-φι\β<2δ},
φιeSB

Q0= U {φeXg:\φ-φι\g<δ},
φιeSB

Now S2 is compact in (Xg9 \ |ff), while βi is open in (Xg9 \ |̂ ). We will show that
g0 is closed in (Xg, \ \g) since SΊ, is a compact set. Thus, S^ is open relative to S2 and
So is compact. Moreover, it can be verified that SO c= S1 c S2 are all convex.

To see that Q0 is closed in (Xg, \ \g), let {ιAπ}c=β0 and \ψn — ψ\g^>0 as «->oo for
some ψ€Xg. For each ι/^n, there exists a φneSB such that |^π — φw |^<5. Since S^ is
compact in (Xg, \m\g)9 there exists a subsequence {<pπj of {φn} and a φe^ such that
\φnk — φ\g^0 as k^>ao. Now

|lA-^l,<l^-^J,+ l^nk-φnJ, + knk-^l,<^ + l^-^J

Letting fc-» oo yields | ψ — φ \g < δ. This implies that ψeQQ and QQ is closed in (Xg, \ |̂ ).
Define P: S2-*Xgby

(12) P(φ) = xr( ,0,(p) for φeS2.

That is, P=PT in terms of the notation of Section 2. In preparation for part (a) of
Horn's theorem, we now show that PjS1aS2 for 7= 1, 2, .

For every φeS1 there is a φ{ εSB such that \φ — φ\ \Q<1δ. Thus, by (7), (11), and
the fact that B1 > B we have
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sup |x(ί, 0, φ)\< sup |x(f, 0, q>ι)\+ sup |x(ί, 0, φ) — x(ί, 0, φί)\<B1 + (B/2) <B2 .
0<t<K 0<t<K 0<t<K

Also, φeS1 implies that \\φ\\<B2 which, together with (10), yields | x(ί, 0, φ) | <B for
t>K. Moreover, |/(ί, Pt(φ))\<L for />0 by (8). As Pj(φ) = Pjτ(φ) = xjτ( , 0, φ), it is
clear that Pj(φ)eS2 for 7= 1, 2,

Next, we find an ra and /with /^(S^cSΌ for ra + /<7<2(m + /)-l. First, there
is a />0 such that 4B2<δg(-JT) where 5 is defined just before (11). Use the fact that
PJT is continuous on the compact set Ω (see (9)) to find a μ>0 such that

|>, (pieΩ, \φ-φί\g<μ, 0</</Γ] imply that

I x(ί, 0, (p)-x(ί, 0, φj I <min{(5, B}/2 .

Find //>0 such that 4B2<μg(-HT). By (10) we have

(14) [φeΩ, PfcΓ(φ)eΩ for fc = 0, 1,2, '-,mT>K+HT, -HT<Θ<0]

imply that | x(mT+ θ, 0, φ) | < B .

Define

fx(wT + 0, 0, φ) if -HT<Θ<0

~ U(mT-//T,0,φ) if -oo<θ<-HT.

Then

(15) |x-7
" Θ<-HT

by choice of //. This implies that

(16) |x(ί,0,x)-x(ί,0,PmT(φ))|<min{^,^}/2 on [0,/T]

by (13) since (15) holds, || Jc|| < B, B2 > 2B, and so PmT(φ) and x are both in Ω. This yields

(17) |x(ί,0,x)|<(β/2) + |x(ί,0,Pmr(φ))|<25 on [0,/T]

since x(ί, 0, PmT(φ)) = x(t + mT, 0, φ). Hence,

(18) |x'(f,0, χ)| = |/(ί, Pt(x))\<LB on [0,/T]

by (4).
Let

ίx(0) for /<0
(19) y(t) = \

lx(ί,0,x) for 0<ί</Γ.

It follows that yJTeSB by (17) (see (5)) and that for φeS2 then

0<0
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< sup \x(JT + θ,0,PmΊ{φ))-y(JT+β)\/g(θ)
θ< -JT

+ sup I x(JT+ θ, 0, PmT(φ)) -y(JT+ 0) |/0(0)
-JT<Θ<0

< 2B2/g( -JT)+ sup |x( JΓ+ θ, 0, PmT(φ)) - x(JT + θ, 0, *) |
-JΓ<0<0

<(<5/2)+ sup \x(t,0,PmT(φ))-x(t,0,x)\<δ
0<t<JT

by choice of / (see the material just before (13)) and by (16). This proves that if φeΩ
and xkτ( , 0, φ) — PkT(φ)eΩ for fc= 1, 2, , then

(20) *(m+j)r( , 0, φ) = P(m+J)τ(<P)εSo

by definition of g0.
In particular, if φ e Sly then P(m+j)T(φ) e SQ. Now consider .P(m+ J + 1)Γ(φ) for φ e 5X.

It follows that Pτ(φ)eS2 and PkT(Pτ(φ))eS2 for J f c = l , 2, . By (20) we have

Λm+ j)r(^r(φ)) e 50. But P(m+ J+ 1)Γ(φ) = P(m+ J)Γ(PΓ(φ)). Thus, P(m+ J+ 1)Γ(φ) e 50. In this
way we argue that

zS,; for \<j

i c SO for m + J<j<2(m + J) - 1 .

Also, P is continuous in the 0-norm by (iii). By Horn's theorem, there is a φ e S0 with
Pφ = φ. Since x(ί, 0, φ) and x(t+ T, 0, φ) are both solutions of (1) with the same initial
function, by uniqueness, they are equal. This completes the proof.

REMARK. Many examples of'UUB are to be found in [1], [4], and [5]. In the
example of Kato [11], solutions are UUB, but not UB, and 0 is the unique periodic
solution.
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