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0. Introduction. Harmonic maps of a compact Riemannian manifold (M, g) into
another Riemannian manifold (N, h) are the extrema of the energy functional (cf. [1])

= — \dφ\2dVg.2 JM

In this paper, we treat the case (M, g) = (N, h) = (G, g) for a compact connected semisimple
Lie group G with a left invariant Riemannian metric g. It is well known that every
inner automorphism of G into itself is both isometric and harmonic with respect to a
bi-invariant Riemannian metric g0 on G. However, we here deal with an arbitrary left
invariant metric g on G, and show which inner automorphisms of G into itself are
harmonic maps of (G, g) into itself.

In § 1, we introduce Guest's criterion (cf. Lemma A) for the map between reductive
homogeneous spaces G/H and G'/H' induced by a Lie group homomorphism from G
into G'.

In §2, using this criterion, we obtain a necessary and sufficient condition for an
inner automorphism Ax of (G, g) to be harmonic (cf. Theorem 2.2).

In the particular case G = St/(2), we then completely determine harmonic inner
automorphisms of (SU(2), g) for every left invariant Riemannian metric g (cf.
Proposition 3.3-3.5).

Finally in Theorems 3.6 and 3.7, we show that for any left invariant and but not
bi-invariant Riemannian metric g on G = S£/(2), there always exist on (G, g) both a
non-harmonic inner automorphism and a non-isometric but harmonic inner
automorphism.
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1. Preliminaries. In this section, we review Guest's work which gives a necessary
and sufficient condition for the map induced by a homomorphism θ: G-»G' between
reductive homogeneous spaces G/H, G'/H' with invariant Riemannian metrics to be
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harmonic (cf. [4]).
Let θ: G-»G' be a homomorphism of compact Lie groups G, G' such that 0(H)c=H'

for closed subgroups H, H'. We denote by g (resp. I), g' and r/) the Lie algebra of all

left invariant vector fields on G (resp. H, G' and H'). Let /β: G/H->G'/H' be the map
between reductive homogeneous spaces G/H, G'/H' induced by θ, that is, fθ(xH) = 0(x)H',
(xeG). Let m be the subspace of g such that g = l) + m (direct sum of vector spaces)
and [I), m]cτn. Then the subspace m of g can be identified with the tangent space of
G/H at the origin O: = {H} e G/H.

The derivative dfθ of the induced map fθ is determined by its restriction to O e G/H,
which is given in terms of the Lie algebra homomorphism θ: g->g' by

(1.1) dfθ(X) = θ(X)m,, Xem,

where θ(X)m, denotes the m'-component of the element 0pOeg' = I)' + m'.
Let < , > (resp. < , >') be an inner product which is invariant with respect to Ad(H)

(resp. Ad(H')) on m (resp. m'), where Ad denotes the adjoint representation of H (resp.
H') in g (resp. g'). This inner product < , > (resp. < , >') determines an invariant
Riemannian metric g (resp. g') on G/H (resp. G'/H').

Then, the connection function α (cf. [6, p. 43]) on m x m corresponding to the
invariant Riemannian connection of (G/H, g) is given as follows (cf. [6, p. 52]):

α(*, Y) = y [X, r]m+ U(X, Y ) , (X, Ύem),

where U(X, Y) is determined by

(1.2) 2<17(X, 7),Z> = <[Z,*]m, Y> + <*> [Z, y]m>, (*, y,Zem),

and Xm denotes the m-component of an element A reg = ί) + m.
The invariant metric g' on G'/H', U' on m' x m', and the connection function α'

are given similarly.
Recall that for Riemannian manifolds (M, g), (N9 h), a smooth map /: M-*N is

said to be harmonic if tr V(df) = 0, namely, the tension field τ(f) vanishes identically (cf.
[1,2]).

Guest [4, Lemma 2.1] obtained the following:

LEMMA A. The induced map (G/H, g) into (G'/H', g') is harmonic if and only if

- V'(dfθ(XΪ, dfe(Xί))-dfθ(U(Xi, X$}=0 ,

where {Xi}f=ί is an orthonormal basis of m with respect to <, >, and m\ =
dim(G/H) = dimm.

2. Harmonic maps between compact semisimple Lie groups.

2.1. Let G be a compact semisimple Lie group and T be a maximal torus of G.
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We denote by g (resp. t) the Lie algebra of G (resp. T). Let gc be the complexification
of g. We denote by A the set of all nonzero roots of gc with respect to tc, and by A +

the set of all positive roots with respect to a fixed linear order in the dual space of
{Hetc\ a(H)eR for any cteΔ}R. Let B be the Killing form of gc. We define an inner
product < , >0 on g by <JT, 7>0:= -B(X, 7), (X, Yeg).

We choose an orthonormal basis of g with respect to the inner product < , >0 as
follows: For αe/d, let EΛ be a root vector such that B(EΛ, E_a)= — l and Natβ = N_Λt_β

for α, βeA (α + β^O), where NΛfβ are real numbers defined by

[Eα, Eβ] = NΛίβEΛ+β if α, β, α + β e A , and
(2J) V v n\7VM = 0 if

Hence, [£α, £_ J= -#α, /^α being determined by B(#, HΛ) = a(H) for any //et. For_
, put UΛ = EΛ + E_Λ, VΛ = J^Λ(EΛ-E_Λ) which belong to g. Let {Ht}

s

issl be an
orthonormal basis of t with respect to < , >0, where ,y = dim T. Then

(2.2) {(l//2")ί/α,(l//T)Kα,^|α6Zl + , l^i^s}

is an orthonormal basis of g with respect to < , >0.
On the other hand, we take another inner product < , > on g such that

(2.3) {a^'(UJ^)9b-l'(VJ^2)9cΓ1'Ήt\ΛeA +

 9l^i^s}

is an orthonormal basis of g with respect to < , >, where αα, bΛ and ct are positive
constants. Then < , >0 (resp. < , » determines a left invariant Riemannian metric g0

(resp. g) on G. In fact, g0 becomes a bi-invariant metric on G.
An inner automorphism Ax : (G, g)-+(G, g\ (xe G), is harmonic if and only if

(2.4) Σϊ=ιcΓ2{U(Aά(X)Hi9 Ad(x)Hύ-Ad(x)U(Hi9 H

/α, Ad(x)C/α) -

=0 .

This follows from the case H= {e} of the reductive homogeneous space G/H in Lemma
A o f § l .

Now, we analyze the formula (2.4) further.

Lemma 2.1.
(i)

(ii)
(iii) l/( t/β, KJ = V - 1 ΣI= ! c^a(H&al -b2

Λ)Hi9 and
(iii') <!/([/., Fα), c^HJ-lcΓ^HΪKal-bl) ,

oceA+ in (ii), (iii)

PROOF. From (1.2), we have
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(2.5) 2<C7(C7(1, VΛ\ Z> = <[Z, UJ, Fα> + <C/01, [Z,

Using (2.1), we obtain the following equations:

- [tf f, ί/J = - y^αtffi) ^ , [H,, KJ =

(2.6)

Zeg

U. ,

where α, βe Δ + , 1 ̂ i ̂ s. From (2.6), we get

(2.7)[Z,t/J =

and

(2.8)[Z,[/J =

if Z=cΓlHt,

if

if

if Z=

if Z=

if Z

Hence, from (2.3) and (2.5)-(2.8), we obtain (iii). The assertion (iii') follows immediately
from (iii). Similarly, using (1.2), (2.1) and (2.6), we can prove (i) and (ii). q.e.d.

THEOREM 2.2. An inner automorphism At, (t e T), of a compact connected semisimple
Lie group (G, g) is a harmonic map if and only if

(2-9) Σαe,+(b~ 2 - a' 2)(b2

x - a2) sin(2>/-ϊ«(fί))α = 0 ,

where ί = exp H, (Hei).

PROOF. For ί=exp HeT,we have

(2.10)

Theorem 2.2 is obtained from (2.4), Lemma 2.1 and (2.10). q.e.d.

REMARK. Let x be an arbitrary point of a compact connected semisimple Lie
group G. Then there exists a maximal torus T of G containing x (cf. [8, Th. 3.9.4, p.
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72]). Therefore the criterion for Ax to be harmonic can be obtained by a direct application
of Theorem 2.2.

2.2. The Lie algebra s!w(C) of SLn(C) is the complexification of the real Lie algebra
su(π) of SU(n). Let Etj denote a square matrix with the (ί, j)-entry being 1, and all the
other entries being 0. Let I) be a Cartan subalgebra of *\n(C) which consists of the
diagonal matrices of trace 0. Then we have the direct some decomposition

(2.11) »WC) = HΣι^CEu

If €i(H\ (Heί), l^z^ft), is the diagonal matrix with the (i, *>entry 1 and the other
entries 0, we get

(2.12)

Here, the non-zero roots of s!π(C) with respect to I) are

(2.13) et-ej, (l^ijgfi, iφj) .

Let B be the Killing form of sIΛ(C) which is given by

(2.14) B(X, Y) = 2n Trace(X7) , (X, Y e

We define an inner product < , >0 on su(n) by

< *, y>0 : = - B(X, Y ) , (X, F € βu(n)) .

We choose an orthonormal basis of su(n) with respect to < , >0 as follows: For i,j such
that 1 ̂  i<j^n, let Ee.-e. (resp. Ee._e) denote the root vectors with the (i,;)-entry being

n (resp. the (/, i)-entry being — l/^/2n) and all the other entries being 0. Then
B(Ee._e., Ee.-e)= — 1, and He._e., (i<j), is the diagonal matrix

i j

(0, - - ,0,Γ/2ιι,0, - - - , 0 , -ί/2ιι,0, - - - , 0 )

of order n. We put

βi, Vβi -e . '. = J- 1 (Eet .e. - Ee ._e)

and

where l^i,j^n and /V/ Then,

(2.15) {c
is an orthonormal basis of su(n) with respect to < , >0.

On the other hand, we take another inner product < , > on su(n) such that



J.-S. PARK

(2.16) {a^U^

(aip bίp c{. positive constants), is an orthonormal basis of su(n) with respect to < , >.
Then < , > determines a left invariant Riemannian metric g on su(n). Let Γbe a maximal
torus of SU(ri) whose Lie algebra is t : = [HiΛ + ± \ 1 ̂  i^ n — 1}R. Then, we get the following
from Theorem 2.2:

COROLLARY 2.3. An inner automorphism At9 (ίeΓ), of (SU(n\g) is a harmonic
map if and only if

where t = exp(H), (Hεi).

3. The case of SU(2). In this section, we get necessary and sufficient conditions
for inner automorphisms AX9 (xeSU(2)), of SU(2) to be harmonic with respect to any
left invariant Riemannian metric.

The Lie algebra sI2(C) of SL2(C) is the complexification of the real Lie algebra
su(2). The Killing form B of sI2(C) satisfies

(3.1) B(X, Y) = 4 Trace(AT) , (X, Ye sI2(C)) .

We define an inner product < , >0 on su(2) by

< X, 7>o : = - B(X, Y) , (X, YE su(2)) .

In this section, g denotes any left invariant Riemannian metric of SU(2).
The following lemma is known (cf. [7, Lemma 1.1, p. 154]):

Lemma 3.1. Let g be a left invariant Riemannian metric. Let < , > be an inner
product on su(2) defined by < ,̂ 7> : = ge(Xe, Ye), where X, 7esu(2) and e is the identity

matrix ofSU(2). Then there exist an orthonormal basis (X^ X2, X^) 0/su(2) with respect
to < , >0 such that

(32)

where ai9 (l^/^3), are positive real numbers determined by the given left invariant
Riemannian metric g of SU(2).

Now, putting Yl: = 2yf2Xl9 Y2: = 2^ΎX2, and Y3: = 2JΎX3 for the
orthonormal basis (Xί9 X2, X$) with respect to < , >0 in Lemma 3.1, we have

(3.3) [Γ1? r2] = 2F3, [72,^ = 2^, IY3,Y^ = 2Y2.

We know from Lemma A of § 1 that an inner automorphism Ax, (x e SU(2)), of(SU(2), g)
is harmonic if and only if
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(3.4) £f=1 {f/(Ad(x) YJ(2j2aύ, Ad(x) YJ

= Σ?=ι("Γ2/8){l/(Ad(x)yί,

In order to analyze (3.4) further, we need the following:

Lemma 3.2.

,u(Yι, Y1)=u(Y29 Y2)=u(Y3, y3)=o,
t f y y = t f - * 2 α - 2 y

Proof. Using (1.2), we can prove this lemma in the same way as in the proof of
Lemma 2.1 of §2. q.e.d.

PROPOSITION 3.3. An inner automorphism Ax, (x = exp(rF1), re/?), of(SU(2),g)

is harmonic if and only if

(a2

3-a2

2)(a2

2-a^2)sm(4r) = 09

that is,

(3.6) a2 — a3 or re {(nπ)/4 \ n is an integer} .

Proof. Using (3.3), we have

V Ad(x) 73 = cos(2r) 73 - sin(2r) Y2 .

We know from (3.4), Lemma 3.2 and (3.7) that Ax is harmonic if and only if

(3.8) sin(4rXfl2 2-Λί2)(βi-fli)«Γ2I rι=0 . q.e.d.

PROPOSITION 3.4. An inner automorphism Ax, (x = exp(r72), re/?), of (SU(2), g)
is a harmonic map if and only if

(α2-αi)(αΓ2-«3~2)sin(4r) = 0,

that is,

(3.9) a1 = a3 or re {(«π)/4 1 n is an integer} .

PROOF. Using (3.3), we have

/ Ad(x) Y, = cos(2r)Y1 - sin(2r)Y3 ,

\
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Hence, we find from (3.4), Lemma 3.2 and (3.10) that Ax is harmonic if and only if

(3.11) sm(4r)(aϊ2-a-S)ai2(al-al)Y2 = Q . q.e.d.

PROPOSITION 3.5. An inner automorphism Ax, (x = exp(rF3), re/?), of(SU(2), g)
is a harmonic map if and only if

(3.12) a1 = a2 or r e {(/ra)/4 1 n is an integer] .

PROOF. We get from (3.3)

^ =cos(2r)Y1 +sin(2r)y2 ,
(3.13)

V Ad(x) Y2 = cos(2r) Y2 - sin(2r) Yt .

Using (3.4), Lemma 3.2 and (3.13), we obtain this proposition. q.e.d.

Thus, from Propositions 3.3, 3.4 and 3.5, we have:

THEOREM 3.6. An inner automorphism Ax of (SU(2), g) for any xeSU(2) is a
harmonic map if and only if the metric g of(SU(2), g) is bi-invariant.

PROOF. If Ax for any x εSU(2) is harmonic, then aί = a2 = a3 by Propositions
3.3-3.5. Hence, -B(X, Y) = c\X, 7>, and <[Z, AT], 7> + <AT, [Z, Y]>=0 for any
X, Γ, Zesu(2). The second equation implies that <Ad(exp rZ)X, Ad(exp rZ) 7> is a
constant independent of r e R. Hence B is bi-invariant. Conversely, if g is bi-invariant,
we know from (1.2) that U(X, Y) = Q for any X, Γesu(2). Thus, Ax for any xe SU(2)
is harmonic. q.e.d.

Finally, we get:

THEOREM 3.7. Assume that a left invariant metric g of(SU(2), g) is not bi-invariant.
Then, there always exist non-isometric harmonic inner automorphisms Ax of(SU(2), g).

PROOF. Since g is not bi-invariant by the assumption, there are two different num-
bers among {α l902, #3} by Theorem 3.6. Then, from (3.7), (3.10) and (3.13), there
exist non-isometric but harmonic inner automorphisms Ax for xeSU(2) such that

( Q\p(π/4)Yί when a2^a3,

exp(π/4)Γ2 when a3=£al9 and

exp(π/4) F3 when a x φ a2 .

Indeed, we get <Γf, Γf> = 8#f, /= 1, 2, 3. On the other hand we obtain

<Ad(exp(π/4)r3)r1, Ad(exp(π/4)73)71> = <y2, Y2y = %a2

2 ,

<Ad(exp(π/4) YJ Y2, Ad(exp(π/4) YJ72> = < 73, F3> = 8*f ,

and
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<Ad(exp(π/4)72)73, Ad(exp(π/4)r2)F3> = <F1, F1> = 8α? .

Therefore, the inner automorphisms Ax, for the above elements jc, are non-isometric
but harmonic maps of (SU(2), g) into itself. q.e.d.
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