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Abstract. We apply the method of Liapunov functions to obtain a new invariance
principle for a class of nonautonomous functional differential equations. An asymptotic
stability result is applied to an equation from population dynamics.

1. Introduction and notation. In 1983, Haddock and Terjeki [6] employed
Liapunov-Razumikhin techniques to develop an invariance principle for autonomous
functional differential equations (F.D.E.'s) with finite delay. One of the purposes of
this paper is to develop a Liapunov-Razumikhin invariance principle which includes
nonautonomous F.D.E.'s. In doing so, we employ the notion of precompactness of
equations. The basic idea is to use properties of the "limiting equations" of a given
equation to determine the asymptotic behavior of solutions of the equation. We obtain
generalizations of several of the theorems of [6] above, and we illustrate the applicability
of our methods by examining an equation dealing with population dynamics, an
autonomous version of which was treated in [5].

The theory of limiting equations for ordinary differential equations is well developed.
See, for example, [l]-[3]. Considerable progress has also been made employing the
limiting equation concept to functional differential equations. References here include
[11]. The definition of limiting equation in the F.D.E. setting tends to be more narrow
than that encountered in the O.D.E. literature. This is, no doubt, a consequence of the
relative complexity of the phase space in the F.D.E. case. This paper represents the
first attempt, as far as we know, to combine the tools of limiting equations and
Liapunov functions to investigate the behavior of solutions to F.D.E.'s.

We employ the following notation: For xeRn, \x\ denotes the Euclidean norm of
x. For r >0, Cr = C([ — r, 0], Rn); that is, Cr is the Banach space of continuous Rn-valued
functions on [—r, 0] equipped with the sup norm | φ | r = sup_Γ<s<01 φ(s) |. In general, if
7 is a given topological space, we denote by C(7, Rn) the space of continuous Rn-valued
functions endowed with the compact-open topology. If xeC([t0 — r, oo), /?"), then for
each t>t0 we denote by xt the element of Cr defined by xt(s) = x(t + s), — r<s<0. The
positive orbit of xt in Cr is the set y +(xt) = {xt: t>t0}. If xe C(R, Rn) we define functions
xt as above for all values of /, and we define the orbit of xt as y(xt) = {xt: teR}. Next,
we define the ω-limίt set of xt, denoted by Ω(xt), to be the set of all ψ e Cr for which
there exists a sequence /k->oo with xtk-+φ in CΓ. Finally, for each feC(R x Cr, R

n) and
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toeR, we define a "translated" function f°e C(R x Cr, R
n) by f°(t, φ)=f(t + t0, Φ)

The differential equations which we consider are of the form

(1.1) * ' = /(',*,)

where / e C(R x Cr, R
n) and

(1.2) / is bounded and uniformly continuous on sets of the form R x K whenever K
is a compact subset of CΓ, and

(1.3) f(R x H) is bounded whenever H is a bounded subset of Cr.

These conditions are sufficient for the following to hold: For any sequence ίfc-»oo there

exists a subsequence {tk>}, such that/**'-»# uniformly on compact subsets of Rx Cr.

For a proof, see [9]. Associated with equation (1.1) are initial value problems

(1.4) x' = f(t9xt), xt0 = φ.

The above conditions are sufficient to insure the existence of solutions to any initial
value problem. We shall assume for the rest of the paper that these solutions are unique,
and we denote the unique solution of (1.4) by x(t0, φ, / ) . Equations satisfying (1.2)
above are said to btprecompact. If x(t0, φ, f) is a solution of (1.4) defined and bounded
on [t0 — r, oo), then Ω(xt(t0, φ,f)) is nonempty, connected and compact in CΓ, and
y+(xt(to, Φ, /)) is connected, and its closure in Cr is compact (cf. [7]). Finally, let Γ
denote a collection {x' = g(t, xt): geG} of equations where G<=C(R x Cr, R

n). Then a
subset M of Cr is said to be positively semi-invariant with respect to Γ if for each φ e M
and toeR there exists an equation x' = g(t, xt) in the set Γ with a solution x(ί0, φ, g)
defined on [to — r9 oo) such that y+(xt(t0, ψ, #))c=M. A subset M of Cr is said to be
semi-invariant with respect to Γ if for each ψeM and ί0e/? there exists an equation
xf = g(t, xt) in Γ and a solution x(t0, φ, g) defined on all of R with y(ί0, ψ, f)<^M.

2. Some invariance principles for F.D.E.'s. The significance of precompactness
of (1.1) lies in the following: given any sequence ίfc->oo, there exists a subsequence {tk,}
and a geC(R x CΓ, /?w) with Γk'->g in this function space. We denote by Ω(f) the set
of all gεC(Rx Cr, R

n) for which there exists a sequence tk-+oo with /ίk-»0, and we
denote by if+(/) the collection of limiting equations {x' = g(t9 xt): geΩ(f)}. Finally, for
any subset H of CΓ, and any collection Γ = {x' = g(t, xt): geG^C(Rx Cr, R

n)} of
equations, we denote by M(Γ, H) the largest subset of Hsemi-invariant with respect to Γ.

THEOREM 2.1. Let (1.1) be as above and suppose x(ί0, φ, f) is a solution defined
and bounded on [t0 — r, oo) with φ e Ω(xt(t0, φ, /)), say xtk(t0, φ, f)-+ψ. Then there exists a
subsequence {tk.} of {tk} such that xtk>(t0, φ, f)(t) converges in C(R, Rn) to a solution
x(ί0, φ, g) of the equation x' = g{t, xt), where Γk'^g in C(R x CΓ, R

n).

PROOF. We assume without loss of generality that t0 = 0 and fix our attention first
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on a compact interval [-N, N]. Now x(0, φ, f) bounded implies the boundedness of

y+(xt(0, φ, /)) (in Cr) which in turn insures the boundedness of xf(0, φ, f) on R+ by

(1.3) above. By the Arzela-Ascoli Theorem, {xίk(0, φ, f)(t)} is a precompact family in

C([ — N, N], Rn). Letting N=l,2, , and employing a diagonalization process, we

choose a subsequence, which we again denote by {xtk(0, φ, f)(t)}, that converges in

C(R, Rn) to a bounded function y(t). Clearly xtk+s(0, φ, f)-*ys in Cr for every seR. By

the precompactness of (1.1), there exists yet another subsequence, which we still denote

by {tk}, and a ge C(R x Cr, Rn) with fk-^g. We claim that y(ή = x(0, φ, g)(t) for all ί.

In light of the continuity of the mapping s^ys, y'(t) = g(t,yt) for all t is equivalent to

the integral equation

y(t)=\ g(s,ys)ds+y(O).

Now

y(t)= lim JCJO, 0, f){t)= =
fc

Jo

the last equality following from the observation that / ί |c(s, x ί k + s(0, φ,/)) converges

(pointwise and boundedly) to g(s, ys), followed by an application of the Lebesgue

Dominated Convergence Theorem.

The following three theorems are analogues of results in ordinary differential

equations found in [1].

THEOREM 2.2. Suppose x(ί0, φ, f) is a bounded solution 0/(1.1) on [t0 — r, oo) and

ψeΩ(xt(t0, φ, / ) ) . Then there exists a geΩ(f) and a solution x(t0, φ, g) of x' = g(t, xt)

defined on R such that γ(xs(t0,φ, g))czΩ(xt(t0, φ, / ) ) . That is, Ω(xt(t0, φ,/)) is semi-

invariant with respect to <$f+(f).

PROOF. Suppose xtk(tθ9 φ, f)-*ψ where ίfc->oo. The existence of an appropriate g

and x(to,φ,g) follows from Theorem 2.1. We need only note that for seR,

xs(t0, φ, g) = limk.-+O0xtk,+s(t0, φ, f) for some subsequence [tk] of {tk}, and hence that

xs(to> Ψ> β)εΩ(*t(to> Φ> /)) f o r every seR.

THEOREM 2.3. Consider equation (1.1) without the precompactness hypothesis (1.2).

Suppose, however, that x' = g{t,x^) is a limiting equation (1.1). If x(t0, φ, f) is defined

and bounded on [t0 — r, oo), then there exists aφe Ω(xt(t0, φ, /)) and a solution x(t0, φ, g)

of the limiting equation xf = g(t, xt) defined on R with y(xs(t0, φ, g))<^Ω(xt(t0, φ, / )) .

PROOF. Suppose ftk^g in C(R x Cr, Rn). The boundedness of x(ί0, φ, f) implies

the precompactness of γ +(xt(t0, </>,/)) in CΓ. Hence there exists a subsequence {tk) of
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{tk} such that xtk,(t0, φ, f)-+ψ. Employing techniques used in the proof of Theorem
2.1, we see that xtk,+s(tθ9 φ9 f)^xs(t0, φ9 G) for every seR where x(t0, ψ, g) is a solution
on R of the limiting equation, and clearly xs(t0, ψ, g)eΩ(xt(t0, φ, /)) for all s.

COROLLARY 2.1. Ifx(t0, φ, f)(t)^>ceR, then y(t) = c is a solution for any limiting
equation 0/(1.1).

THEOREM 2.4. Suppose x(t0, φ, f) is a bounded solution 0/(1.1) on [to — r, oo), and
x&o, Φ, f)^Ha Cr as /-.oo. Then xt(t0, φ9 f)^M(&+(f\ H).

PROOF. We have xs(t0, φ, f)-+Ω(xt(t0, φ, /)) as j->oo, so xs(t0, φ, f)-*H entails
xs(to> Φ> f)-*HnΩ(xt(tθ9 φ, /))cM(J^+(/), H), the inclusion following from Theorem
2.2.

3. A fundamental invariance theorem. In this section, we develop and illustrate
an invariance principle for nonautonomous F.D.E.'s with finite delay. The afore-
mentioned paper of Haddock and Terjeki is used as a guideline in the development
of the main theorems. We are particularly interested in establishing results regarding
asymptotic constancy of solutions.

Throughout the remainder of this paper, we make the following convention:
Characterization of a subset H of Cr as positively invariant without further clarification
means positively invariant with respect to (1.1).

DEFINITION 3.1. Let Vdenote a function from Rn+ί into R. The upper right-hand
derivative of V with respect to (1.1) is given by

Vf[t,φ]= Urn (V[t + h,x(t,φ,f)(t + h)]-V[t,φ(O)])/h.
h->0 +

A continuously differentiate function Fis called a Liapunov (or Razumikhiή) function
for equation (1.1) if the following holds:

V'f[t, φ]<0 whenever φeCr with V[t, φ(0)] = max V[t + s, φ(t + s)].
-r<s<0

In applications, we often restrict φ to some subset of Cr positively invariant with respect
to (1.1). Throughout the remainder of this paper, we make the following assumption:
V is bounded and uniformly continuous on sets of the form RxB whenever B is a
bounded subset of Rn. The Ascoli Theorem assures us that for any sequence {tk} there
exists a subsequence {tk,} and a function Ve C(R x Rn,R) such that Vth*->V in
C(R x Rn, R) where Vp[t9 x] = V[t + p, x]. Set Ω(V) = { Ve C(R x R\ R): V= limfc_,, V\
tk-+oo}9 the limit being in C(R x /?", R). For our purposes, Liapunov functions V for
which Ω{V) consists of a single element V are of particular importance.

Consider again equation (1.1). For any Liapunov function V for (1.1), VeΩ(V),
c, toeR9 geΩ(f), and closed DczCr positively invariant with respect to (1.1), set
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My(to,g,D;c) =

{φeD: x(t0, ψ, g)(t) is defined on R and max V[t + s, x(t0, ψ, f)(t + s)] = c] .
-r<s<0

THEOREM 3.1. Let Vbea Liapunov function for (1.1) and DczCra closed, positively
invariant set. Then for any φeD such that x(t0, φ, f) if defined and bounded on [t0 — r, oo)
and every ψeΩ(xt(t0, φ, /)), we have feM^(/0, g, D\ c) for some ceR, VeΩ(V), and
g e Ω{f). Then number c, but not necessarily V and g, are independent of our choice of
ψeΩ(xt(t0,φ,f)).

PROOF. From the boundedness of x(ί0, φ, / ) , and the assumptions on (1.1), we
see that Ω(xt(t0, φ, /)) is nonempty and compact. By a Razumikhin-type argument, it
is clear that max _ r< s< 0 V[t + s, x(tθ9 φ, f){t + s)] is nonincreasing (as a function of i) on
R. Details can be found in [10]. Suppose ψεΩ(xt(t0, </>, /)), say 0 = limfc_oo xtk(tθ9 φ, f)
where tk-+oo. In light of the precompactness of (1.1), Theorem 2.1, and the assumptions
regarding V, there exists a subsequence {tw} such that

(i) ftk'^g in Cr for some geCr and xtk,(t0, φ, f)(t)^x(t0, Φ, 0X0 in C(/?, Rn\
and

(ii) Vth'-+ V in C(R x Rn, R) for some Ve C(R x Rn, R).
Now

max V[t + s, x(t0, φ, g)(t + s)] = max lim Vtk'[t + s, x(t0, φ, f)(t + s)]
-r<s<0 -r<s<0 k'-+ao

= max lim V\ t + s + tk.9 lim x(to,φ, f)(t + s+tk>)
-r<s<0 k'->ao |_ k'^oo J

= lim lim V[t + s + tk.9 x(tθ9 φ, f)(t + s + tk.)] = c = c(t0, φ).
k'-^co -r<s<0

Hence ψeMy(t0, g, D; c), and the theorem is proved.
Let x(ί0, φ,f) be a bounded solution of (1.1). It is a fundamental theorem that

xs(to, ΦJ)^Ω(xt(t0, φ, /)) as ^^oo. (See [7].) If we set

Mv(t0,f,D;c)= U U Mp(tO9g9D;c)9

geΩ(f) VeΩ(V)

then we have

*s(Ό, Φ, f)^Ω(xt(t0, φ, f))czMv(t0, /, D; c).

Next, set Mv(t0, / , D) = \JceRMv(t0,f, D; c). The following is an easy corollary:

COROLLARY 3.1. Suppose there exists a constant function KeCr such that
Mv(t0,f D) = {K}. Then every bounded solution x(t0, φ,f) of(\Λ) with φeD tends to
the constant value K as t—>co.
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Consider again equation (1.1). Suppose D is a closed subset of Cr positively invariant
with respect to (1.1). Suppose as well that u e C(R, Rn) is bounded and (J teR Br(ut9 rx) a D
where Br(ut, rx) is the open ball in Cr of radius rx centered at uv We say that the function
u is eventually stable with respect to (1.1) if for each ε>0 there is an α = α(ε) and a
δ = δ(t0, ε) with 0<δ<r1 such that for any t0 > α, | uto — φ \r < δ implies | xt(tθ9 φ,f) — ut\r<
ε for all t>t0. We say that u is eventually D-globally asymptotically stable with respect
to (1.1) if it is eventually stable with respect to (1.1) and for any φeD,
l*t(*o> Φ>/)-«ίlr->° a s *->°° for every t0.

To simplify the statement of the next theorem, we introduce some notation. Suppose
that K is the constant function whose value is KeRn, φeD, D a closed, positively
invariant subset of Cr, and that V is a Liapunov function for (1.1). We can think of
the triple (φ,f, V) as an element of X=C([-r, 0] x Rn + 1 x D, R2n+ί). For any toeR,
we define a semi-group Tto: R

+ -*X by

We set ΩD(t0;φ,f: V) = {(ψ,g, V): Tt0(tk)(φJ, V)-+(Ψ,g, V) for some tk-^π). That is,
ΩD(t0; φ,f, V) is just the ω-limit set of (φ,f, V) under the semi-group Tt0.

A wedge is a continuous, strictly increasing function W\ R + -+R+ with

THEOREM 3.2. Suppose that V is a Liapunov function for (1.1) and K is the constant
function whose value is KeRn. Suppose also that W is a wedge and that

(i) V[t, x] > W{\ x - K I) for every xeRn,teR;
(ii) l i m r . 0 0 ^ ( r ) = α ) ;

(iii) l i m ^ V[t, ΛΓ|->0; and
(iv) V'g[t, ψ]<0 whenever (φ, g, V)eΩD(t; φj, V) with φφKand

V[t,φ(0)]= max V[t + s,x(to,φ,g)(t + s)].
-r<s<0

Then K is eventually D-globally asymptotically stable.

PROOF. We first establish the eventual stability of K. Let ε>0 be given. Then by
(ii) above, there is an α>0 such that V[t, K\< W(ε)/2 whenever t>a — r. For any to><x,
there exists a 5 > 0 such that max_ r< s<0 | V[to + s, φ(s)]— V[to + s, K]\< W(ε)/2 when-
ever \φ — K\r<δ. Now for any to><x and φeD with \φ — K\r<δ, t>t0 implies that

W(\x(to,Φ,f)(t)-K\)<V[t,x(to,φ,f)(t)]< max V[t + s9 x(t0, φ, f)(t + s)]
-r<s<0

< max V[to + s, φ(s)]<W(ε).
-r<s<0

It follows that \xt(t0, φ, f) — K\r<ε whenever \φ — K\r<δ and t>t0. Next, we note that
all solutions of (1.1) are bounded. For any toeR and φeD, we have again that

) — K\)<m2ix_r<s<oV[to + s,φ] for all t>t0, and the boundedness of
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y+(xt(to> Φ,f)) follows from (ii) above. Consider a solution x(/0, φ, /) of (1.1), and

suppose (ψ, g, V)eΩD(t0; φ, / , V). If φφKy it follows from (iv) above and standard

comparison results that max_Γ<s<0 V[t + s, x(t0, φ, /)(/ + .?)]< max _Γ< s< 0 V[to+s, φ(s)]

as soon as / > t0 + r, a contradiction to Theorem 3.1. We conclude that φ = K, and hence

that all solutions of (1.1) tend to K as /->oo.

We note that all theorems proved so far have "local" analogues. That is, we could

replace CΓ with an invariant open subset of CΓ. In fact, the example appearing in the

next section involves an equation jc' = /(ί, xt) where / is not defined on all of R x CΓ.

However, we believe that more is gained by stating the above results globally and

subsequently adapting them for applications than would be achieved by giving local

versions of the theorems.

4. An equation from population dynamics. In a recent paper, Freedman and

Gopalsamy [5] established criteria under which three types of equations modelling single

species population dynamics have globally asymptotically stable positive equilibria. Such

stability is shown, in these models, to be independent of the (finite) delay occuring in

these equations. All equations treated in their paper are autonomous. In particular, the

authors assume the existence of a unique and constant carrying capacity. We treat an

equation which is more general in form than related ones treated in [5]. We allow for

a variable "instantaneous carrying capacity" and for somewhat greater flexibility

regarding the fashion in which current behavior of the population depends on its past

history.

In the following, C? = {φeCr: φ(s)>Oforall.?e[-r, 0]}, and/?+ =(0, oo). Suppose

h: RxR+ xR+ -+R is continuous and satisfies the following properties:

(HI) There exists a constant m>0 such that h(t, 0,0)>m for all t.

(H2) There exists a bounded, continuous function ξ: /?->/?+ such that for every

t we have h(t, ξ(t), ξ(t)) = O and (z-ξ(t))h(t9 z, z)<0 for zφξ{t).

(H3) ξ(t)-*K as /-•oo for some constant Λ^>0.

(H4) For each teR and xeR+, the mapping y-^h(t, x, y) is increasing.

We consider an equation

(4.1) x'(t)=f(t, xt) = B(t, xt)h(U x(t), D(t9 xt))

where

(Cl) B and D are bounded on sets of the form RxH whenever H is a bounded

subset of CΓ

+ and are uniformly continuous on sets RxS whenever SczCr

is compact.

(C2) B(t, φ), B(t, φ) > 0 for every φ e Cr

+ and B e Ω(B).

(C3) min_Γ<s<oφ(s)<D(ί, </>)<max_Γ<s<oφ(s) for all φeC? and teR.

We assume also that all initial value problems associated with (4.1) have unique

solutions defined for all times / greater than the initial time.
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We choose a strictly decreasing, continuously differentiable function b: R-+R+

such that

K-b(t)<ξ{t)<K+b(t)

for all t, where \imt^aDb(t) = 0. Set

f(*-^)2 b2(t + s)}
<1 , max \ ; L

2 -r<s<0 2 J
and suppose F|7, 0(O)] = max_ r< s<o KjV + s, 0(s)]. Then either

(i) φ(0) > K+ b(t), in which case φ(0) > ξ(t), and hence

Vflt, Φ] = (Φ(0)-K)B(t, φ)h(t, 0(0), D(t, φ))<(φ(0)-K)B(t, φ)h(t, φφ), φ(0))<0 ,

or

(ii) φ(Q) < K- B(t\ in which case φ(0) < ξ(t), and hence

V'f\U φ] = (φ(0)-K)B(t, φ)h(t, φ(0), D(t9

We see that V is a Liapunov function for (4.1). It is immediate that V satisfies (i)-

(iii) of Theorem 3.1 with W{x) = χ2/2. Also, it is clear that conditions (C1)-(C3)

above guarantee that Vf

g[ί, ψ]<0 whenever geΩ(f) and ψeC+ with ψφK and

V[t, ψ(O)] = max-rzSzOV[t + s,ψ{t + s)]. We remark that V[t, x] = (x-K)2/2. Eventual

CΓ

+-global asymptotic stability of K will follow as soon as we establish the invariance

of Cr

+ with respect to (4.1). Suppose φe Cr

+ with 0(O) = min_ r< s< 0 φ(s)<K-b(t). Then

x'(to> Φ> f)(to)>B(t, φ)h(t, φ(0), φ(0))>0, and the desired invariance follows.

Equation (4.1) represents a generalization of equations I and II of [5]. The more

general form of (4.1) suggests that we could allow for certain refinements in our model.

Fortunately, any allowable refinements would result in an equation whose solutions

approach the "asymptotic carrying capacity" of the environment. The uniform stability

of the equilibrium ^present in [5] is sacrificed, however, and we must settle for eventual

stability.

Next, we consider the effects of weakening the assumption that ξ(t)-*K. Suppose

instead that ξ is slowly varying in the sense that for each Γ>0,

lim sup ξ(s) - inf ξ(s) = 0.
ί-»oo |_r<s<ί + r r<s<ί+r J

We still assume that ξ(t)>0 for all t, lim inf^^ ξ(t)>0, and that (HI) above holds.

With the assumption that ξ is slowly varying, it is still true that any limiting equation

(4.2) x' = g(U xt) = B(t, xt)fι{U x{t\ D(t, xt))

of (4.1) will have a (unique) eventually Cr

+-asymptotically stable equilibrium. Let

/=(liminfί_+ooξ(ί), lim s u p ^ ^ ξ(ή), and suppose eel, where ξ(tk)-+c for a sequence
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tk->oo. For any t0 e R and φ e C r

+, there exists a subsequence of {tk}, which we again de-

note by {tk}9 a geΩ{f) and a φeΩ(xt(tθ9 φ, /)) such that /*->£ and y(xt(/0, Ψ, θ))^

Ω(xt(t0, φ, f)). This follows from Theorem 2.3. But lim f_„*(/(,, ψ, g)(t) = c, and

hence c£Ω(x f(ί0, φ, / ) ) . It follows that any solution to (4.1) oscillates into /. Such be-

havior is not unexpected, for even slow variation of the carrying capacity can be de-

. stabilizing. See [8].

5. Asymptotic constancy of solutions. Perhaps the most common application of

the limiting equation concept arises in the study of systems whose limiting equations

are of a simpler form than the equation itself. For example, equations of the form

(5.1) x' = Axt) + g(t,xt),

where g-+0 in some sense, are of this type. While the idea of gaining information

concerning the qualitative behavior of solutions to complex equations by examining

the properties exhibited by the solutions of less complicated ones has great appeal, the

role of limiting equations is broader. In this final section, we consider instead equations

whose limiting equations retain the same general form as the original equation. Equations

which are autonomous save the slow deviation of their arguments sometimes fall into

this catagory. We prove an asymptotic constancy result extending work of Haddock

and Terjeki [6]. In this case, a Liapunov function for the original equation serves as a

Liapunov function for all limiting equations as well. For the remainder of this paper,

all Liapunov functions will be autonomous, i.e., V[t, x] = V[x]. With this restriction, the

theorems of [6] have very natural extensions to precompact nonautonomous F.D.E.'s.

We choose to show how Theorem 3.1 of [6] can be generalized, and we present a proof

somewhat simpler than the one found there.

We consider again (1.1). Suppose V is a Liapunov function for (1.1), and that

i/c=C r is invariant. In the following, Kv = {φeH: V[φ(s)] = V[φ(0)] for all se[-r, 0]}.

LEMMA 5.1. Suppose there exists a Liapunov function V and a closed set H positively

invariant with respect to (1.1) such that whenever φeH with x(ί0, φ, f) defined and bounded

on [to — r, oo), we have Ω(xt(t0, φ, f))aKv. Then x(t0, φ9 /)(ί)->c as ί->oo where c =

The proof of this lemma is practically indentical to that of Lemma 2.2 of [6].

For any nonempty set S c [ - r, 0), let KV[S] = {φeH: V[φ(s)] = V[φ(0)] for all s e S}.

LEMMA 5.2. Let V, H, and S be as above with S nonempty. Suppose the following

conditions hold:

(i) [V[ψ(0)] = ™X-rϊs<oV[ψ(s)] and V'g[t,ψ] = 0 for some teR and geΩ(f)]

implies that ψeKv[S].

(ii) If φeH with x(to,φ,f) defined and bounded on [to — r,°o) and ψ =

limfc_>Q0.xίk(ί0, φ, f) where /fc->oo, then there exists a subsequence {tk,} and a
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geΩ(J) with fk'-+g such that φeMv(t0, V, H\ c) and V[x(to,φ,g)(ή] is
eventually constant.

Then for any φeH such that x(t0, φ, f) is defined and bounded on [to — r, oo), we have
Ω(xt(t0, φ, f))^Kv. Hence l i m , ^ V[x(t0, φ, f)(ή = c = limt^o0 max_ r< s< 0 V[x(t0,

PROOF. Suppose φeH such that x(t0, φ, f) is bounded and suppose φe
Ω(xt(t0, </>,/)). The above hypotheses insure that there exists a geΩ(f) such that
φeMv(t0,g,H;c), where ^ l i m ^ max_ r< s<0 V[x(t0, φ, f)(t + s)]9 and that we
actually have V[x(t0, φ, g)(ή] = c for all t sufficiently large. We claim that φ e Kv. For
if not, there is a minimal t1>t0 such that V[x(t0, φ, g)(t)] = c for all t>t1. Note that
V[xtί(to,φ,g)(s)] is not a constant function of s. Let — rx be an element of S. In
light of condition (i) above, we have xt(t0, φ, g)eKv[S] for every t>t1. Hence
V[x(to,φ,g)(t — r1)]=V[x(to,φ,g)(t)] = c for every t>tl9 a contradiction to our
choice of tίm So Ω(xt(t0, φ, f))aKv, and the result follows from Lemma 5.1.

THEOREM 5.1. Suppose there exists a Liapunov function V for (1.1), a closed set H
positively invariant with respect to (1.1), and a nonempty set £<=[ — r, 0) such that the
following conditions hold:

(i) [V[φ(0)] = m2LX_r<s<0V[φ(s)] and V'g[t,φ] = 0 for some teR and geΩ(f)]
implies that φeKv[S].

(ii) Given any ε < 0 there exist —ru —r2eS and nonnegatίve integers p and q such
that 0 < qr2 —prγ < ε.

Then for any φeH such that x(t0, φ, f) is defined and bounded on [to — r, oo), we have
Ω(xt(to, ΦJV^Ky, and hence l i m ^ V[x(t0, 0,/)(O] = c = limί^oo max_ r< s<0 V[x(t0,

PROOF. Suppose φeH with x(ί0, φ, f) defined and bounded on [to — r, oo) and
that φeΩ(xt(t0, φ, /)). By Theorem 3.1, we have φeMv(t0, g, H; c) for some geΩ(f),
where c is as defined above. We want to show that V[x(t0, φ, g)(ή] = c for all t>t0. Let
ε>0 and t*>t0 be given, and suppose that/? and q are nonnegative integers and — r1

and — r2 elements of S such that 0 < qr2 —pr1 < ε. For ease of notation, set Q = qr2 and
P=pr1. Choose an integer N so large that N(Q — P) — t*>r. Since φeMv(t0, g, H; c),
there exists a t** such that V[x(tθ9 φ, g)(t**)] = c where t** satisfies the inequalities
t* + NP<t**<NQ. Cleary [t0, t*]a[to + t**-NQ, to + t**-NP]9 and the partition
FN={t0 + t**-NQ, ...,to + t**-((N-k)Q + kP\ •• ,to + t**-NP} has norm less
than ε. As a consequence of hypothesis (i), V[x(tθ9 φ, g)(ή] = c for each teFNr\[t0, t*].
Now FN = (FNn[to,t*])\j{to,t*} is a partition of [t0, t*] of norm less than ε with
V[x(t0, φ,g)(t)] = c for every teFN with the possible exceptions t = t0 and / = /**. As
ε>0 and t*>t0 were chosen arbitrarily, we have V[x(t0, φ, g)(t)] = c for every t>t0. It
follows that if φeH such that x(t0, φ, f) is defined and bounded on [to-r, oo) and
φ e Ω(xt(t0, φ, /)), then there exists a g e Ω(f) such that x(t0, φ, g) is eventually constant.
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The theorem follows from Lemma 5.2.

NOTE: Hypothesis (ii) holds if S is infinite, or, as a consequence of a theorem of
Dirichlet, if there exist su s2eS with sjs2 irrational.

The equation examined in the next example represents a generalization of an
equation studied in [4].

EXAMPLE 5.1. Consider the equation

(5.2) x' = f(t, xt)= _JC(ί) + x(/-r1(ί))-Jc(ίWί-' i(O)GWO, At-r2(t))> xt)

where GeC(R x Rx Cr, [0, oo)) is continuous with G(x, y, φ) = 0 only if φ = 0 and
rf :/£-•[ — r, 0] is uniformly continuous for /=1,2. Now H= C([ — r, 0], [0, oo)) is
positively invariant with respect to (5.2), and it can be shown that any limiting equation
for (5.2) has the form

(5.3) x'=0(ί, *,)= -xiή+xit-fM-AtMt-mWxitl χ(t-f2(t)% xt)

where rt is uniformly continuous, z=l,2. Set V[x] = x2/2. Suppose φeH with

max_Γ<s<oφ(s) = ̂ (0). Then V'f[t, φ]<0 for each /, and we see that Fis a Liapunov
function for (5.2). If geΩ(f) and ψeH with max_r<s<oιA(s) = ιA(0), then Vg[t,ψ]<0
for all t, and in the case of equality for some t0, we conclude that —ψ2(0)ψ( — r1(to)) = 0.
Clearly if ^(0) = 0, we have ^ = 0. lfφ(-f1(ίo)) = 0, it follows that ^(0) = 0 as well, and
again that ψ = 0. The conclusion is that any solution of (5.2) with initial condition φ e H
which is defined and bounded for all future times tends to a constant. We note that
since V[x\-*co as x-*oo and Fis a Liapunov function for (5.2), all solutions x(ί0, φ, f)
with φ G H are bounded.

EXAMPLE 5.2. Consider an w-dimensional system

t-rlt)))- Π G(t,
J-r(r)

(5.4) x' = /(ί, xί) = F(x(ί))- Σ Aft)F(x(t-rlt)))- Π G(t, s)F(x(t + s))ds
J r ( r )

where
(i) F[x] = [-grad V[x]] for all xeRn where F:/?w->[0, oo) is continuously

differentiable;
(ii) I grad V[u] \ < |grad V[w] \ whenever V[u] < V[w\;

(iii) Each At is an n x n matrix of uniformly continuous real-valued function on
R and r: R-*[0,r] is uniformly continuous;

(iv) For each i, τi: /?->[0, r] is continuous and r ^ - ^ e l Ό , r] with rtφr^ if iφj\
(v) G is an n x n matrix of continuous real-valued functions uniformly continuous

on Λx[-r,0] and

I ° s
J _ r ίe

Σ sup \\Aft)\\ + I sup ||G(/, s)\\ds< 1
i = l teR J _ r ίeR
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where

| = sup I Ac I for BeR"2.

The above conditions are sufficient to insure the precompactness of (5.4), and it is not

hard to show that any limiting equation of (5.4) has the form

J - r
(5.5) x' = g{t, xt) = F(x(t))- I

ί = 1 J - r(ί)

where G(t, •) and each At is an nxn matrix of uniformly continuous functions and

r: R->[r, 0] is uniformly continuous. Note that

V'flU Φ]<-\ grad V[φ(0)] | 2 +1 grad V[φ(0)] |Γ £ (sup \\AJts)\\j\ grad V[φ(-

Γ
Hence F}[ί, φ]<0 for every ί whenever F[φ(s)] = max_ Γ < s < 0 V[φ(s)], and an analogous

result holds for V'g whenever geΩ(f). Set

S=\-ri:sup\\Ai(t)\\>θ\u( Π Π

5* satisfies hypothesis (i) of Theorem 5.3. It follows that all solutions JC(/0, φ, f) of (5.4)

tend to a constant if any of the following conditions are present:

(vi) Infinitely many of the AVs are not identically the zero matrix;

(vii) There exist i and j and distinct, nonzero A{ and Aj with rjrj irrational;

(viii) For some se[ — r, 0] there is a tγ eR and an ε > 0 such that G(t, s)>ε for all

Hence if conditions (i)-(v) and any of (vi)—(viii) hold, we can conclude that

V[x(t0, φ, f)(t)] tends to a constant value as t-+co for every t0 and φeCr.
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