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Introduction. Let K be an algebraic function field of one variable of genus g over
the complex number field C. Let ?βl9 , φ n and ml9 * * , mn be any given distinct
prime divisors of K over C and any given elements of 7Vu{oo} satisfying 2g — 2 +
X"= 1(l —l//Wj)>0, respectively, where N means the set of natural numbers. Set
Λ = {Ϊ| I ^ I ^ Λ , m—oo} and Δ' = {1, 2, ,n} — A. We consider all Galois extensions L
of A" in a fixed algebraic closure K of K such that the divisors T>(L/K)' divide
Σ"= i(mi~ l)Φi a n c * ^ a t Λ e ramification indices e<$. (1 ̂ i^n) of divisors of L over %
divide wί? where T)(L/A:)/ = T)(L/A:)-X i e Jv^φ ί and T>(L/K) = ΣvVyφ is the ramifi-
cation divisor of L over K. It is well known that the Galois group of the composite
field of all these Galois extensions of K is isomorphic to the profinite completion of a
Fuchsian group Γo with signature (ml9 -,mn:g) (cf. Eichler [2] and Weil [9]). We
fix an odd prime number p and denote by Fp the finite field with p elements.

In this paper, we shall study the number of Galois extensions L (resp. L) of
K in K with SL2(Fp) (resp. PSL2(Fp)) as their Galois groups such that
TϊiL/KϊΊΣ^^mi-lWi, ey.\mi (ieAr) and e^^m^ This number is independent of
φ i ? , φ n . So we denote by N(ml9 - -,mn:g) (resp. N(ml9 , mn: g)) the number of
such Galois extensions. Throughout this paper, for technical reasons, we confine
ourselves to the case where m1 =p. This assumption is essential to our arguments. In
Theorem 1, we shall obtain formulas for N(m1, , mn\ g) and N(mί, , mn\ g). In

n-ί

particular, N(k) = N(p, oo, k: 0) (k= 1, , 7 or k is a prime), N(p, oo, , oo :g) and

N(p, oo, , oo: g) {phi) can be determined explicitly as follows:

q\{p2-V

q=p

0 otherwise

for every odd prime q. Furthermore,
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n-2

N(p, o o , •••,

and

ft(p, oo, , oό: 0) = (l/2)2*+«-2#(/>, άo, , oo:

In a preparatory Section 1, we shall discuss elementary properties of the
uniformization theorem of Riemann surfaces and Fuchsian groups. Using Galois theory
of algebraic function fields of one variable, we can verify that N(p, m2, , mn: g) (resp.
N(p,m2, -,mn:g)) equals the number of normal subgroups Γ of Γo such that
ΓO/Γ^SL2(FP) (resp. PSL2(Fp)) and γtφΓ9 where γί is an element of Γo defined in
Section 1. In Section 2, we reduce the computation to that of the number of GL2(FP)-
equivalence classes of ordered systems of generators of SL2(Fp) (resp. PSL2(FP))
satisfying certain conditions. In Section 3, applying the method used in §1 and §2,
we shall calculate #i(/?, ra2, , mn\ g) (resp. N2(p, m2, , mn: g)) which is the number
of Galois extensions L of K in K such that Gal(L/K) s PSL2{Fp) and T>(L/K)' =
Σiej( w i~ l)Φι (resp. isomorphism classes of PSL2(Fp)-Galois extensions L of K in K
of type (p, m2, , mn: g)) (See §3 for definition).

We note that Hecke [3] essentially obtained a formula for Nx(p, 3, 2:0) in the study
of elliptic modular function fields of level p (cf. Shih [7]).

After having written down the first draft of this paper, Professor Y. Morita informed
the author that Professor Y. Ihara obtained results closely relative to ours. H. Katsurada
gave an upper bound of the number of etale-SX2(Fp) Galois covering of algebraic
curves of genus 2 of positive characteristic p (cf. [5]). To compare a gap between the
number of etale-5'L2(Fp) Galois covering of algebraic curves of characteristic 0 and
p, Y. Ihara obtained explicit formulas for unramified SL2(Fp) Galois extensions of
algebraic function fields over C (cf. [5]). His result does not overlap with ours: The
motives and the method are different. Thanks are due to Professor Y. Ihara for valuable
suggestions, interest in this work and warm encouragement.

Finally, the author is indebted to the referee for suggesting some revisions of the
original version of this paper and showing a simple proof of Corollary 1.

NOTATION. We denote by Cand Z, the complex number field and the ring of rational
integers, respectively. The complex upper half plane is denoted by H. #S denotes the
cardinality of a set S. Gal(L/AΓ) means the Galois group of a Galois extension L over
a field K.

1. Galois extensions of algebraic function fields of one variable. If Γ is a finitely

generated Fuchsian group of the first kind, the quotient spaces Γ\H and Γ\H*
become Riemann surfaces, where H* = H u {cusps of Γ). Γ\H* is well-known to be
compact. We denote by K(R) the field consisting of rational functions on a compact
Riemann surface R. Let K be an algebraic function field of one variable of genus g
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over C, i.e. K is a finite algebraic extension of a rational function field C(z). Denote by
R(K) the set of all prime divisors of K over C Then R(K) has a structure of a compact
Riemann surface. We fix a finite number of distinct prime divisors φ l s , φ π of
# over C and fix a finite set of elements mu -,mn of 7Vu{oo} satisfying
2g — 2 + £ " = j (1 — l/wf) >0. Moreover, we fix an algebraic closure K of K and consider
all fields here to be subfields of K. We further fix an odd prime number p. Hereafter
we assume that m1=p. Now we consider Galois extensions L (resp. L) of K in K
satisfying the following conditions:

(1.1) Every prime divisor φ of K over C except the prime divisors
is unramified in L, and the ramification indices e^. ( l^/ = w) relative to ^βf of
the divisors of L over Sβ( divide /wf.

(1.2) (resp. (1.2)') The Galois group Ga\(L/K) (resp. Gal(L/K)) is isomorphic to
the special linear group SL2(Fp) (resp. projective special linear group PSL2(Fp))
over the finite field with p elements.

(1.3) The index e^i is equal to m1 .

When 0 = 0, n = 3, the condition (1.3) is automatically satisfied because there exist no
non-abelian Galois extensions of C(z) ramified only at two prime divisors of C(z). We
denote by N(p, m2, - ,mn:g) (resp. N(p, m2, * , mn: g)) the number of Galois
extensions L (resp. L) oϊKΊn ^satisfying the conditions (1.1), (1.2) (resp. (1.2)') and (1.3).

Let L be a Galois extension of K in K satisfying (1.1). Then the projection
/ : R(L)->R(K) is a surjective holomorphic mapping and the ramification index of/at
every point i n / " 1 ^ ) equals e^.. Conversely, for any surjective holomorphic mapping
/ : R^>R(K) of compact Riemann surfaces such that the ramification index of/at every
point i n / " 1 ^ . ) divides mi? K(R) is a finite algebraic extension of K(R(K)) ( = K) and
all ramification indices of K over Sβi divide mf. By the uniformization theorem of compact
Riemann surfaces, we have a suitable Fuchsian group Γo ( c PSL2(R)) of the first kind
and a biholomorphic mapping ho\ R(K)^Γ0\H* satisfying the following condition:
If/: R^R(K) is any surjective holomorphic mapping of compact Riemann surfaces
such that all ramification indices o f / a t / " 1 ^ ) divide mh then there exists a subgroup
Γ of Γo of finite index and a biholomorphic mapping h: R^Γ\H* such that the diagram

h

R >Γ\H*

(1.4) /

R(K) >ΓO\H*

is commutative.
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It is known that Γ o has a system of generators α l 5 βl9 , αg, βg, γί9 , yn with

the following fundamental relations

(cf. Eichler [2] and Weil [9]).

Let © = Aut(K) be the group of automorphisms of the field K of all meromorphic

functions on H which are meromorphic at every cusp of Γ o. Consider the injective

mapping Φ of Γ o into © defined by Φ(γ)(u)(ί) = w(y" 1(t)) for every y e Γo, UGKand /e H.

We put © 0 = Φ(Γ0) and Ψ = Φ~X (the inverse mapping of Φ).

For any subgroup $ of © 0 of finite index, we put K(ξ>) = K(Ψ(ξ))\H*). For any

ueK(Ψ(ξ>)\H*), we define a function ύ on /f by w(0 = w(π§(0) for any ί e # with

the natural projection π§ of // onto Ψ(ξ>\H). It is well known that the set

{fi| usK(Ψ(ξ>)\H*)} coincides with the field of automorphic functions with respect to

«P(S). Therefore, we can regard K(Ψ(ξ>)\H*) as a subfield of K. By (1.4), we have a

natural isomorphisms

*(©o)=K(ΓO\H*) s Λ:(Λ(A)) S Λ:

of fields. Hence in what follows, we identify Γ0\H* and ^((50) with Λ(A )̂ and K,

respectively.

Let L be an algebraic extension of K in K satisfying the condition (1.1). By (1.4),

there exists a subgroup Γ = Γ(L) of Γ o such that

K(Ψ~ \Γ))/K^L/K (/^-isomorphism).

Hence, to study such finite algebraic extensions L in K, it is sufficient to study K(Γ\H*)

instead of L. Since, by (1.4),

© 0 acts on L. For y e © 0 and uΈL, we write this action as y(w'). Put ®(L) =

{y e ©01 y(w') = u' for any u'eL}. Following the methods in Iwasawa [4], we can

easily prove the following in parallel with Galois theory:

PROPOSITION 1.1. (1) Ifn = [(S0:S)] is finite, then K(9y) is an algebraic extension

of K of degree n satisfying the condition (1.1) and ©(AT(f))) = § .

(2) IfL satisfies the condition (1.1) and n = [L: K], then ©(L) is a subgroup of © 0

of index n and K((S(L)) = L.

(3) L is a Galois extension of K if and only Ϊ / © ( L ) is a normal subgroup o/

Furthermore, in this case, there exist isomorphisms

We identify the profinite completion f0 with the Galois group of the maximum
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Galois extension of K in K satisfying (1.1) via an isomorphism in such a way yf (1 ̂  i" ̂  ή)

generate inertia groups above φ f . Fix this isomorphism. Then we have the following

proposition.

PROPOSITION 1.2. Let the notation be as above. There exists a one-to-one

correspondence between the set of Galois extensions L {resp. L) of K in K satisfying

(1.1), (1.2) {resp. (1.2)'), (1.3) and the set of normal subgroups of Γo of finite index such

that Γo/Γ is isomorphic to SL2(Fp) (resp. PSL2(Fp)) andyxφΓ.

2. Calculation of the number of Galois extensions. In this section, we calculate

N(p, m2, ' ' ,mn: g) only. N(p, m2, ,mn:g) can be calculated similarly. In this section,

we assume that p is an odd prime number. By Proposition 1.2, we obtain

N(p,m2, --,mn:g)

= #{Γ\Γ is a normal subgroup of Γ o such that γxφΓ and Γ0/Γ^SL2(Fp)}.

Let GL2(Fp) denote the general linear group over the finite field Fp. By Steinberg [8],

we can easily show the following lemma.

LEMMA 2.1. Let σ be an automorphism of SL2(Fp). Then there exists an element

g of GL2(Fp) such that

σ(x) = gxg ~x for every x e SL2{Fp).

We put M= {φ I φ is a surjective homomorphism of Γ o to SL2(Fp) and the order of

Φ(yi) i s p}- F ° Γ elements φ and φ' of M, suppose Γ = Ker φ = Kcτ φ' induce natural

surjective isomorphisms:

φ: Γo/Γ • SL2 (Fp) and φ': Γo/Γ > SL2(Fp).

Since φo(φf)~ί is an automorphism of SL2(Fp), by Lemma 2.1, there exists an element

g in GL2(¥p) such that

Φ°(ΦT1(x) = g-ίxg for every xeSL2(Fp).

Therefore we conclude

for every ysΓ0. If φ and φ' of M satisfy this condition, we say that φ and φ' are

GL2(Fp)-equivalent to each other and denote φ1 ~ φ. When there is no fear of confusion,

we simply write φ'~φ. Consequently, we have

(2.1) N(p9m29'"9mn:g) = #(M/G)9

where λf/G denotes the set of GL2(Fp)-equivalence classes of M. We define a subset

Λ = {x = (xo,xu '-,x2g+n-2)} (resp. Λ = {(xθ9xu , x2g+n-2)}) of SL2(Fp)
2°+n~ι
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(resp, PSL2(Fp)
2g+n~1) by the following conditions:

(2.2) The order of x0 is equal to p .

(2.3) If AZ^3, (jcn_i + 1 ) m < = l for every ze{3, 4, , n} — A .

(2.4) If m2 is not equal to oo, then

ί-y * Γ v v-Ί ^ Γv v Ί ^ Γv* v 1 1 v l . . v 1\"*2 — 1
\x0 \.xn~Uxn\ L x π + l ? x π + 2J lx2g + n- 3? X2g + n-2i xn-2 x ί ) — 1

For Λ: = {x^) and y = (yf) of A, we write x ~y if there is a g e GL2(Fp) satisfying x{ = gy(g ~x

for every i (0^/^2flf + / i - 2 ) . For every set S ( c Λ ) , we denote by 5/G the set of all

GL2(/Γ

p)-equivalence classes of S. F o r every φeM, put Xo — φ{y\), χ\ = φ{y^), ***,

^ - 2 = 0(7H)> *n-l= Φ(*g)> Xn = Φ(βg), ' ' ', X2g + n-3 = Φ(<*ll X2g + n-2 = Φ(βl) Then We
conclude that x = (x0, xί9 , x2g+n-2) belongs to A. Furthermore, this mapping

induces a bijection of M/G to

It follows that

To express N(p, m2, , wπ: gf) in a clearer form, we need the following well known

lemma (cf. Serre [6] and Burnside [1, p. 325]).

LEMMA 2.2. Let G be a subgroup of SL2(Fp) such that p\#(G) and G£SL2(Fp).

Then there exists an element g of SL2(Fp) satisfying

•*••={(: .-.)!•";•»•'.}•
For every k (1 ̂ k^2g + n— 1), we put

— Jγ — ίγ V V ^ί= /I
It — Λ * — v ^O* A l 5 5 •Λ2g + n - 2 / C r y i

Si^k-l), xkφβ\ (l^k^2g + n-2) and\ (l^k^2g + n-

-l = ΛX = (X0>Xl> ' ' '? X2g + n-2)eΛ X0 = ( ft . IJ

where
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The following lemma can be easily shown.
LEMMA 2.3. Let the notation be as above. Then the following assertions hold.
(1) Any element x of A is GL2 (F^-equivalent to a suitable element ofAk for some k.
(2) // x = (x0, • , x2g+n-i) and y = (y0, ' ',y2β+n-2) of Ak satisfy x^

some geGL2(Fp), then g is of the form

α /Γ

0 OL,

(3) Ifk φ k\ then any elements xeAk and ysA'k are not GL2(F^-equivalent to each
other.

PROOF. First we prove the assertion (1). Let x = (x0, xl9 *, Λ:2g+π_2) be an ele-
ment of A. By Lemma 2.2, there exist g of SL2(Fp) and bsF*such that

Since the order of x0 is /?, we have a= 1. A computation yields that

Hence we obtain the assertion (1).
To verify the assertion (2) and (3), it is sufficient to use the following property:

for some g e GL2(Fp), then

9 = \0 a

We put

By Lemma 2.2, for every x = ( , xh ) of A, there is an element g of SL2(Fp) such that

bi\ for each i(0£i£
0 /
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Since the order of x0 is p, we have

Hence x0 and xf can be written in the form

(\ o y γ i i\/ i o

and

/ Λ (\

for some ftj and d\eF*. This implies that

(2.7) KAolG)

Now, by (2.5),

(2.8) N(p,m2, , mn: g) =

By Lemma 2.3, we conclude that
29 + n - l

(2.9) #(^/G)= Σ
Λ = 1

Now we can prove the following lemma.

LEMMA 2.4. The following assertions hold.
(1) ;4wy element

(:

ofGL2(Fp) can be expressed in the form

\c d) \0 lj\c' rf'Λ

for some k, b', d and a" of Fp.

(2) //

\c d / Vθ \)\d d1

for some k, d and d'eFp and c and c'eF*, then k = 0.
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PROOF. First, we prove the assertion (1). A direct computation yields that

-kc k(a-kc) + b-k/ I i t V ' / f l b\ίl k \ ( a

\0 1/ \c d)\0 1/ V ck+d

kd\

)'

Since c φ 0, we can choose k e Fp satisfying a — kc = 0.

Then we obtain (1). To verify (2), we put

c d ) \0 \J\c' d' )\0

for some c and c'eF* and c?, rf' and keFp. Then

0 - c

c d

Hence

0 -

c ck+d)~{c' d1

Since cVO, we see that k=0, so the lemma is proved.

/0 - r V l k\_/I k\/0 -c"1

\c d Λθ 1 / VO l)\c' d'

For any k (\^ki^2g + n — 2)9 we put

k = \x = (x09xl9 " 9x2g+n.2)eΛ xo = l i \xi iEB

where

From the properties (2.1) (1=1, 8 and 9), (2) of Lemma 2.3 and Lemma 2.4, we have

the following theorem.

THEOREM 1. Let the notation be as above. Suppose that pφ2. Then the following

equalities hold.

N(p,m2,-,mn.g)=
2g + n-2

= ( , xk, •), xk =

and

N(p,m2,-',mH:g)=
2g + n-2

Σ ck dk
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We put N(k)=N(p, oo, k: 0) and N(k) = N(p, oo, fc: 0). By Theorem 1, we can prove

the following corollary.

COROLLARY 1. The notation being as above. Suppose that pφ2. Then

N(l) = N(2) = 0, N(4) = (p-l), N(6) = 2(p-1),

(p-iXϊ-l)/2 q\(p2-\)

p-\ q=pN(q) =

0 otherwise,

for every odd prime q, N(l) = O, N(2) = (p-l)/2, #(4) = (p-l)(( — 1 + 2 Y

ΛΓ(6) =

and N(q) = N(q) for every odd prime q.

Furthermore

B - l

N(p, co, '•',ώ:g)=

and

n - l π - 1

, oo, , oo : g) =

PROOF. For a natural number k, we put

— c~x

c d

, co,-,co:g)

A eSL2(Fp)

By Theorem 1, N(k) is equal to #(Jί(k)).

First we treat the case where k is an odd prime number q satisfying q \ (p2 — 1). Put

x?=\ and xφ\} .

Then we easily see that x + x 1eFp for every (β,x)eJ(q). Hence we may define a

mapping Φ:J(q)^SL2(Fp) by

0 -β-1

β x + x'1

We put Φ((β, x)) = A for every (β, x) of J(q). Since x and x " 1 are distinct eigenvalues

for every (β,x)eJ(q).
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of A and x4 = 1, we have

AeJί{q).

It follows that Φ induces a mapping of J(q) to Jί(q). We easily see that Φ is a two-to-one

and surjective mapping. Consequently, we obtain

N(q) = #(Jt(q)) = #(J(q))β = (/>- l ) f o -

Secondly, we shall caluculate N(p). We define a mapping Ψ: F* -+Jί(p) by

for every βeF*p .

Then this mapping yields a bijective mapping between F* and Jί{p). Consequently, we

have

By our definition, we easily obtain N(q) = 0 for every odd prime q satisfying q Φp and

q )f (p2 — 1). In a similar manner, we can show that N(q) = N(q) for every odd prime q.
n-\

Thirdly, we shall compute N(p, oo, , oo: g). When (m2,m3, , mn) =
w— 1

(oo, oo, , oo), we have

"0 - c t -
1 N

#<xeΛk x = ( , x k , ' — ) , x

for every A: (1 <Lk^2g + n — 2). By Theorem 1, we have

N(p, άo, •'• , ob: #)=/?

Since we can also verify the remainders, we may omit the details.

3. Isomorphism classes of Galois extensions of algebraic function fields. The details

for our argument in this section can be found in Shih [7]. Though he studied Galois

coverings in the category of algebraic curves, we rewrite his definitions and terminology

in terms of field extensions. In this section, we suppose that/? is an odd prime number.

We consider Galois extensions L of K in K with PSL2 (Fp) as their Galois groups

such t h a t Ίϊ(LIK)' = Yji€Δ{mi-\)<$i(m1=p). W e d e n o t e by N^p.m^ ,mn:g) t h e

number of such Galois extensions. Let us consider a pair {L, φ} consisting of a Galois

extension L of K in K satisfying T)(L/K)' = ΣieΔ,(mi—\)tyi and an isomorphism φ of

PSL2(Fp) onto Gal (L/K). We call a pair {£, φ} a PSL2(Fp)-Galois extension of K of

type (p, m2, , mn: g). We say that PSL2(Fp)-Ga\ois extensions {L, φ}, {L', φ'} of type

(/?, m2, , mn\ g) are />SL2(/Γ

p)-isomorphic if there is a ^-isomorphism / of K such

that L'=f{L) and f°φ(g) = φ'(g)°f for every gePSL2(Fp). We also denote by
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N2(p, m2> ' ' ' * mn- 9) the number of the isomorphism classes of />5ίL2(Fp)-Galois ex-

tensions of K of type (/?, m2, ' ", mn\ g).

Let α0 be an element of Fp such that I — ) = - 1 . Define a subset Λ' =

{x = (x0, χl9 , x2g+n-2)} of PSL2 (Fp)29+n~1 by the following conditions:

(3.1) The order of JC0 id p.

(3.2) If « ^ 3 , the order of xn-i+ί is mf for every ie{3, 4, , n} — Δ.

(3.3) If m2 is not oo, then the order of

L lXn + 19 xn + 2 J lX2g + n- 3? X2g +

I '2) = {x = (x0, χl9 ', x2g+n-2)eΛf}

' X ' ' ' XX n - l ' ' ' X ί IS ffl2.

We put

with

Furthermore, for every A: (1 ̂ k^2g + n — 2), we put

^ Ί f * = {* = (*<» î> ' ' 'ix2g+n-2)eA\xu '' '9
 χk-i ^^ and xkφB}

and

where

B=
d

φPSL2(F.)

By the same method as in §2 and Proposition 1, we can verify the following theorem:

THEOREM 2. Let the notation be as above. Suppose that pφl. Then we have

Nχ(p,m2, --',mn:g) =
2gfn-2

xk =
0 ~

and

N2(p9m2, ,mn:g) =
n-2

0 -
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In particular, we have

N1(p93,2' 0)=l and N2(p9 3, 2:0) = 2 .
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