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Introduction. In [S1], [S2] we introduced the notion of polarizable Hodge Modules
on complex analytic spaces, which corresponds philosophically to that of pure perverse
sheaves in characteristic p [BBD]. If X is smooth, MH(X, n)? the category of polarizable
Hodge Modules of weight n (and with k-structure) is a full subcategory of the category
of filtered holonomic 24-Modules (M, F) with k-structure by a given isomorphism
o: DR(M)~C®,K for a perverse sheaf K (defined over k). Here k is a subfield of R,
and we assume for simplicity k=R in this note. In general MH(X, n)? is defined using
local embeddings into smooth varieties, and the underlying perverse sheaves K are
globally well-defined. We can show that the category MH(X, n)? is a semi-simple abelian
category, and admits the strict support decomposition:

0.1) MH(X, n)P=@ MH,X,n)*  locally finite on X,
¥4

where Z are closed irreducible subspaces of X, and MH (X, n)? is the full subcategory
of MH(X, n)? with strict support Z, i.e. the underlying perverse sheaves of its objects
are intersection complexes with local system coefficients, and supported on Z (or &).
This decomposition is unigue, because there is no nontrivial morphism between the
Hodge Modules with different strict supports. The category MH (X, n)” depends only
on Z and n (independent of X), and we have the equivalence of categories [S5]:

0.2) MH4(X, ny ~VSH(Z, n—dim Z)Z,,

where the right hand side is the category of polarizable variations of R-Hodge structures
of weight n—dim Z defined on Zariski-open dense smooth subsets of Z, and the
polarizations on Hodge Modules correspond bijectively to those of variations of Hodge
structures. The main result of [S1], [S2] was the relative version of the Kaihler
package:

(0.3) THEOREM. Letf: X— Y be a cohomologically projective morphism of complex
analytic spaces, i.e. there is le€ H*(X, R(1)) which is locally on Y the pull-back of a multiple
of the hyperplane section class by X g Y x P™. Then we have the natural functors:

0.3.1) HIf,: MH(X, n >MH(Y, n+j)?

compatible with the corresponding functors *#'f, on the underlying perverse sheaves
[BBD], and the relative hard Lefschetz:
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0.3.2) V.t if M Hf MG  for MeMH(X,nf and j>0,

with the induced polarization on the relative primitive part P.# I f M (:=Ker I'*1) by
(=1YU=D2f 86 (id®L) for j>0.

Then we have naturally:

(0.4) CoNJECTURE. The Theorem (0.3) is valid with the assumption f projective
replaced by f proper and X smooth Kéhler.

In fact, it is not so difficult to show (0.3.1) under the assumption of (0.4), using a
recent result of Kashiwara-Kawai [KK?2], cf. the remark after 3.21 in [SS], and we can
get the natural pure Hodge structure on the intersection cohomologies of a compact
analytic space in the class C in the sense of Fujiki, associated to a polarizable variation
of Hodge structures on a nonsingular Zariski-open subset [loc. cit.]. In this note we prove:

(0.5) THEOREM. The conjecture (0.4) is true for the direct image of the constant
sheaf (i.e. (M, F, K)=(0y, F, Ry[dy]) with Gr¥ Ox=0 for i#0).

Combining with the decomposition (0.1) and Deligne’s decomposition [D3], we get
as a corollary (cf. [BBD] in the algebraic case):

(0.6) THEOREM. Let f: X— Y be a proper morphism of irreducible analytic spaces.
Assume that there is a proper surjective morphism n: X— X with X smooth Kihler. Then
we have the decomposition theorem for the direct image of the intersection complex, i.e.
J+ICxR is a direct sum of intersection complexes with local system coefficients and with
some shift of complex.

Here the assertion is valid also for f,IC4L, if L is “geometric” in the following
sense: L is a direct factor of the restriction of R'n, Ry to a smooth Zariski open subset
for some © as above. In fact we have the decomposition by (0.1) and [D3] in the case
of (0.5), and IC4L is a direct factor of 7 (Rgdx]) up to a shift of complex. Therefore
the assertion is reduced to that for (f7), (Rzlds]) by [D3] and (1.5) for the perverse
sheaves, and we can apply (0.5) to fn. Note that the decomposition theorem can be
divided into the two assertions:

0.7 S ICxL=@® (P#7f ICKL) —j] (non-canonically) ,
j

(0.8) PHIfICKkL=@IC,L],  (canonically)
VA

with L} local systems on smooth Zariski open subsets of Z, and (0.7) follows from the
hard Lefschetz by [D3], and (0.8) from (0.1).

The decomposition (0.7) implies the E,-degeneration of the perverse Leray spectral
sequence:
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(0.9) EY=H\(Y,?#1f,ICL) = IH'*1*4x(X, L) (= H'*i(X, IC4L)) .

Applying it to n (R z[d]) for w as above, we see that the intersection cohomology IH (X)
is a canonical subquotient of H'(X), more precisely, IH'(X) is a canonical direct factor
of Gr®H'(X) by the uniqueness of the decomposition (0.8), where G is the filtration
associated to the Leray spectral sequence. Therefore in the compact case, we get a
canonical Hodge structure on the intersection cohomologies /H (X), if the Leray spectral
sequence and the decomposition of Gr®H'(X) are compatible with the Hodge structure
of H'(X). Actually we can prove these using the theory of Hodge Modules. This argument
can be generalized to the case of variation of Hodge structure, using (0.3) and [KK2],
if = can be taken to be projective (this condition is satisfied in the case X in class C by
a recent result of Varouchas). Moreover (0.3.1) can be generalized to:

(0.10) HIf,: MH(X, n)’ >MH(Y, n+j)?

for f as in (0.6) with  projective. In the case of Y=pt and X in class C, the Hodge
structure on IH'(X) obtained by (1.10) coincides with the one by the Leray spectral
sequence, etc. for any z.

In § 1 we review the definition and some properties of polarizable Hodge Modules.
In §2 we prove (0.10) using [KK2]. In §3 we prove (0.5) using essentially Hironaka’s
resolution.

1. Polarizable Hodge Modules (cf. [S1]~[S2]).

(1.1) Let X be a complex manifold of dimension dy, and 2, the sheaf of
holomorphic differential operators with the filtration F by the degree of operators. In
this note we use the (filtered) left 2x-Modules. For the correspondence to the right
Modules in [S1]~[S5] we use the functor ®, (2%, F) with GrfQ% =0 for i# —dj,
so that the filtration is shifted by —dy.

(1.2) Let MF, (24, R) be the category of filtered holonomic 24-Modules (M, F)
with R-structure given by a: DR(M)~ C®gK for a perverse sheaf K defined over R,
where the morphisms are the pairs of morphisms of (M, F) and K compatible with o.
The functor (M, F, K)—K is exact and faithful, because M =0 if DR(M)=0.

(1.3) Leti: X— Y be a closed embedding locally defined by X={x, ="+ =x,=0}
with (xq, - -, x,,) local coordinates of Y. Then for a filtered holonomic 2,-Module
(M, F), the direct image (M, F)=i,(M, F) is defined locally by:

FPAZ= ® FMREo
qt|vl<p-k
where 6“=H15i5k6§", |v|=Yv;, 0;=0/0x;. Then we have DRoi, =i ,oDR and we get
the functor

(1.3.1) iy: MF(@y, R)>MF,(2,, R) .
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(1.4) Let g be a holomorphic function on X, and i,: X— X x C the embedding by
graph. Put (M, F)=(i,),(M, F) and consider the conditions:
(1.4.1) M has the filtration V of Malgrange-Kashiwara [K2] indexed by Q,

(1.4.2) t: F,V*M S F, V"' for a>—1,
(1.4.3) 0,: F,Gr¢M > F,, \.Gry"'M  for a<0,

where Vis indexed decreasingly so that 19, —« on Gr% M is nilpotent. A filtered holonomic
Dx-Module (M, F) is said to be regular and quasi-unipotent along g, if the conditions
(1.4.1-3) are satisfied. Sometimes it is more convenient to replace the condition (1.4.1) by

(1.4.4) M has the filtration ¥ indexed by R,

because it is always satisfied in the case of polarizable variation of Hodge structure
defined over R. Here the filtration is assumed to be indexed discretely. If (M, F) satisfies
(1.4.2-4), we define

(1.4.5) Y M,F)= @ GryM,F), ¢,1(M, F)=Gr; (M, F[—1]).

—1<ax<0

Then y,DR[—1]=DRy, (same for ¢, ;) and —0,, ¢ correspond to can, Var (cf. [S2,
3.4.12)). If (M, F) has a real structure K, we put

(1.4.6) VM, F, K)=(,M, F), y ,K[—1]) (same for ¢, ;)
and we get the morphisms
(1.47) can:y,,(M,F,K)>¢,,(M,F,K), Var:¢,,(M,F,K)-y,,(M,F,KY—1)

induced by —d,, t. Here y, ; is the unipotent monodromy part of y, (same for ¢, ;),
cf. [D4] for the definition of y,, ¢,. We have

(1.4.8) YoM, F)=0, ¢,,(M,F)=(M,F), if suppMcg~'(0),
because (1.4.2-4) are equivalent to g(F,M)c F,_; M in this case, cf. [S2, 3.2.6].

(1.5) ProrosITION (cf. [S2, 5.1.4]). If (M, F) satisfies the conditions (1.4.2-4) for
any g locally defined on X, the following conditions are equivalent:

(1.5.1) ¢,1(M, F)=Im can@Ker Var for any locally defined g,

(1.5.2) for any open set U of X, (M, F)|y has the canonical decomposition @ (M3, F)
for Z closed irreducible subspaces of U, such that M, has strict support Z, i.e.
supp M, =Z (or &) and M, has no nontrivial sub or quotient supported in a
proper subspace of Z.

Moreover M has strict support Z, if and only if supp M =Z and can is surjective, Var
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is injective for any locally defined g such that dim g~ '(0)n Z<dim Z.

(1.6) The proposition (1.5) holds with (M, F) replaced by K or (M, F, K), and
the decomposition in (1.5.2) is called the strict support decomposition. In the case of
perverse sheaves, no assumption is necessary (i.e. K may be non quasi-unipotent), and
(1.5.1-2) are equivalent to

(1.6.1) K is a direct sum of intersection complexes with local system coefficients .

(1.7) Let MF,(9y, R)4. be the full subcategory of MF,(2y, R) satisfying (1.4.2-4)
and (1.5.1-2). Let MF,(9y, R); be the full subcategory of MF, (24, R)4.. With strict
support Z, i.e. the underlying perverse sheaves are intersection complexes with support
Z, cf. (1.6). Then we have the canonical decomposition (locally finite on X):

(1.7.1) MF (2, R)sec.= D MF,(Zy, R),,
z

where Z are closed irreducible subspaces of X.
Let (M, F, K) be an object of MF,(Z2y, R)z, and g a holomorphic function on X such
that g~*(0)# Z and can: y, (M, F)—>¢, (M, F) is strictly surjective. Then we have

(1.7.2) F,M=Y0i(V> "'Mnj,j 'F,_.M)
with j: Xx C*>X x C-and (M, F)=(i,),(M, F) as above. In this case the filtration F
on M is uniquely determined by its restriction to the complement of g~*(0).

(1.8) DermNiTION. The category MH(X, n) of Hodge Modules of weight n is the
largest full subcategory of MF,(2y, R),.. such that the objects (M, F, K) satisfy the
following conditions:

(1.8.1) If supp M ={x}, there is an R-Hodge structure (Hg¢, F, Hg) of weight n (cf.
[D1]) such that (M, F, K)=(i,),(He, F, Hg), cf. (1.3.1), where i,: {x}>X and
F,=F.

(1.8.2) For any open subset U of X, any closed irreducible subspace Z of U, any
holomorphic function g on U such that g~'(0) 2 Z, we have

GriW‘/lg(MZ, F’ KZ) ’ Griqug,l(MZs Fa KZ)e MH(U’ l) .

where (Mg, F, K;) is the direct factor of (M, F, K)|U with strict support Z,
cf. (1.5.2), and W is the monodromy filtration shifted by n—1 and » (i.e. the
center is n—1 and n) .

The condition (1.8.2) is well-defined by induction on dim supp M. Put
" (1.8.3) MH,(X, n)=MH(X, n)nMF (24, R),
so that MH(X, n)= @ ,MH(X, n) with Z closed irreducible subspaces of X.
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(1.9) LemMma [S2, 5.1.9-10]. The category MH,(X, n) depends only on Z and n,
i.e. independent of X via (1.3.1), and (M, F, K)e MH4(X, n) is generically a variation of
Hodge structure, i.e. if Z=X and K[—dy) is a local system L, (M=0x®L,F,L) is a
variation of R-Hodge structure of weight n—dy.

(1.10) ProPOSITION [S2, 5.1.14]. The categories MH(X, n) and MH4X, n) are

abelian categories such that any morphisms are strictly compatible with the Hodge filtration
F.

(1.11) ReMARK. In the definition (1.8), Kis not supposed quasi-unipotent, because
(1.4.1) is replaced by (1.4.4). But the same argument works.

For a Hodge Module (M, F, K) with strict support Z, M is regular holonomic. In
fact s#7f'M are regular for any f: S—X with dim S=1. Therefore #°n'M is regular
for a resolution n: Z—Z, and M is a subquotient of # On*}\? with A a (minimal)
subquotient of #°n'M by the adjunction of m. We can also show that (M, F) is
Cohen-Macaulay, i.e. Gt*M is a Cohen-Macaulay Gr*9%,-Module, so that the dual
DM, F, K)=(D(M, F), DK) is well-defined, cf. [S2, 5.1.13].

(1.12) DEFINITION. A polarization of a Hodge Module (M, F, K) of weight n is a
pairing S: K®Q K—ayR(—n) with ay: X—pt, and satisfies the following conditions by
induction on dim supp M:

(1.12.1) Sis compatible with the Hodge filtration F, i.e. the corresponding morphism
K—(DK)(—n) can be extended to

(M,F,K)->D(M, F, KX —n).
(1.12.2) If supp M={x}, S is a polarization of (Hc, F, Hg) in the sense of [D1] for
(H, F, Hg) as in (1.8.1).
(1.12.3) For U, Z, g as in (1.8.2), the restriction of
PYySoGA®NY): Gl Y, K, @Gt 1, P, K;—ayR( —n—1)
to the primitive part (=Ker N**') is a polarization of
PGtV WMz F,K;)  for i>0.

(See [S2], [S7] for the definition of D(M, F,K),?y, etc.) Here the Tate twist
(M, F, R)=(M, F, K )m) s defined by (M, F)=(M, F[m]), K= K® (2ni)"R. We say that
a Hodge Module is polarizable, if it has a polarization. By definition, the polarizations
(and the polarizability) are compatible with the strict support decomposition. We denote
by MH(X, n)?, MH,(X, n)’ the full subcategories of the polarizable Hodge Modules
(with strict support Z). Note that (1.12.3) implies

(1.12.4) ¢, ,S-(id®N") is a polarization of PGr}, ¢, (M, F, K;) , cf. [S2, 5.2].
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(1.13) LemMa [S2, 5.2.11-12). A4 polarization of a Hodge Module is non-degenerate
(i.e. induces K= DK(—n)), is independent of X, i.e.

(1.13.1) i,: MHZX, n)PSMH,(Y,n)?  for a closed immersion i: X—Y,
and gives a polarization of the generic variation of Hodge structure in (1.9).

(1.14) PropPoSITION. The full subcategories MH(X, n)?, MH/X, n)* are abelian
(i.e. stable by Ker, Coker) and semi-simple.

In fact this follows from (1.7.2) (with (1.10)) and (1.13). We have also

(1.15) LeMMA. The categories MH(X, n), MH,(X, n), MH(X, n)?, etc. are stable
by direct factors in MF (2, R).

(1.16) For an analytic space X, the categories MH(X, n)’ and MH,(X, n)? are
defined using local closed embeddings into complex manifolds, cf. [S2, 5.3.12]. This is
well-defined by (1.13.1) where i, depends only on the restriction of i to Z, by (1.4.8).
One of the main results of [S5] is the equivalence of categories (0.2), i.e. the converse
of (1.9), (1.13) holds. The functor given in (1.9) is fully faithful by (1.7.2), (1.11), and
the essential surjectivity was shown using [S7, § 3] and Kashiwara’s lemma on nilpotent
orbit, cf. [SS, 3.21].

(1.17) For the proof of (0.10) we have to treat the mixed case a little bit, because
the vanishing cycles of Hodge Modules are mixed. We denote by MHW(X) (resp.
MHW(X)?) the category whose objects are obtained by extensions of (polarizable)
Hodge Modules. If X is smooth, it is the category of (M, F, K; W) such that
GrY (M, F, K)e MH(X, n) (resp. MH(X, n)?) where (M, F, K)e MF,(2y, R) with W a
pair of filtrations of M, K compatible via «. We also assume that gF McM,_, M if
g~ 1(0)>supp M so that MHW(X)? is well-defined also for X singular, using local closed
embeddings as in (1.16). Here (K, W) are globally well-defined.

Let N: (M, F,K; W)»(M, F,K; W)(—1) (:=(M, F[—1], K(—1); W[2]) be a mor-
phism of MHW(X) and S: KQ K—axR(—n) a morphism of DY(R,). We say that
(M, F, K; W) is strongly polarized by (S, N) with weight n, if the following conditions
are satisfied:

(1.17.1) Ni: Gr¥ (M, F, K)SGr? (M, F,K)—i) for i>0,

(1.17.2) So(iId®N)+S-(N®id)=0,

(1.17.3) the restriction of So(id®N'): Gr}Y, KQGr}, K—axR(—n—i) to the
N-primitive part (:=Ker N'*') is a polarization of PyGr}),(M,F,K)e
MH(X, n+1) for i=0.

In this case Grf(M,F,K) are polarizable, because (1.17.1) implies the primitive

decomposition:
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(1.17.4) GrYM,F,K)= @  N'PyGrl. (M, F,K)i).
i>max(0,n—k)
These are generalized to the singular case as above.
One of the key points in the proof of (0.3) (cf. [S2], [SS5]) is:

(1.8) PrOPSOITION. Let f: X— Y be a proper morphism of complex analytic spaces,
and (M, W)eMHW(X). If the Hodge filtration F of f,Gtl.# are strict and
HIf,Gr¥ M e MH(Y, i+j), then F of f M is strict and (K’ f M, W[j))e MHW(Y)
with W the filtration induced by #' ' f,, i.e. W is associated to the weight spectral sequence:

(1.18.1) Erti=spif,Gt¥ M=>Hif,#4 in MHW(Y),
which degenerates at E,. In particular (%7 f,.#, W1j]) are polarizedif so are #7 f Gt} M.

(1.19) PROPOSITION. Let f be as above, le H*(X, R(1)), and (#, W)e MHW(X)
strongly polarized by (S, N) with weight n. Assume F of f,PyGrY. . # is strict and
HIf PyGrY M satisfies (0.3.1-2) (with the induced polarization on the l-primitive parts).
Then the hard Lefschetz (0.3.2) holds for (#'f, M, W[j))e MHW(Y) (cf. (1.18)), the
weight filtration W{j] of #'f M is the monodromy filtration shifted by n+j, and the
l-primitive part P(# ~if, M, W[—j]) is strongly polarized by ((—1)/V~V2f So
(id®F), N) (j=0).

(1.20) In [S3]~[S5], the notion of mixed Hodge Module is defined for complex
analytic spaces. The category MHM(X) of mixed Hodge Modules is the largest full
subcategory of MHW (X) stable by the (exact) functors: ¥,, ¢,.1, jii ™%, j,j~ 1, #%*,
where g is a locally defined holomorphic function, j is an open immersion whose
complement is a locally principal divisor, and p is a smooth morphism with d the relative
dimension. Put

MHM(X)? = MHM(X) n MHW(X)? .

Then it is stable by the above exact functors and also by s#7f, for f projective and
HJi*, #i' for i a closed embedding [S5]. We have

(1.20.1) MH(X, n)? = {(#, W)e MHM(X)?: Gt .# =0 for i+n}

using [SS5, 3.27] and the intermediate direct image j,.
‘The following proposition will be used in the proof of the global polarizability of
HIf M in (0.10).

(1.21) PROPOSITION. Let f: X—Y be a proper surjective morphism of complex
manifolds, # e MHy(X, n)?, and g, - - -, g, holomorphic functions on Y. Put h;= f*g,,
Yo=[\g: '(0)and Xo=f~'(Y,) withi: Xo— X, i: Yo—Y the natural inclusions. Assume

‘that X, is a locally principal divisor on X, and for #M' any iterations of PyGr”y,, or
PyGr¥@y,.1, -+, PxGr™Y,, or PyGr¥ ¢, | of #(0<i<k), the assumption of (1.18) is
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satisfied, and the weight filtration of X°f .. M', Hif by, M is the monodromy
filtration shifted by j+n'—1, j+n' respectively, where n’ is the weight of .#'. Then the
iterations of Y, or ¢, 1, "+, Y, OF Gy, 1 On HIf, M are inductively well-defined and we
have the spectral sequence:

(1.21.1) EN =P, M= H U f ™4 in MHW(Y)

compatible with the natural spectral sequence on the underlying perverse sheaves. Moreover
i* M is defined in D"'MHM(X)? so that Kf (i*M)=HT"'H " i* M.

PrOOF. By (1.20.1) the iterations of vanishing cycle functors 4;- - - A, M with
A=Yy, or ¢y, 1 (1<j<k) are inductively well-defined. We check inductively that the
weight filtrations W associated to 4; (i.e. the monodromy filtration relative to W4~
up to shift) induce compatible filtrations on A4;- - -4, .#. By the canonical splitting of
Kashiwara, Gr"”(4;- - - 4, .#) is the direct sum of (Gr"”4))- - -(Gr™"4,).#, where
A; are exact and commute with Gr"”. Therefore the assumption of [S5, 2.16] is satisfied,
and we can apply it inductively so that the (iterations of) vanishing cycle functors
commute with #/f, (e.g. the direct image of V is strict, the (decalage of) direct image
of the relative monodromy filtration induces the relative monodromy filtration, i.e. the
weight filtration, cf. [loc. cit.], etc.) '

Put i;: h71(0)—>X (or g; '(0)—Y) so that i, i*=(i),if - ().t and

(1.21.2) (i)4if=C(can: §,, > ¢y,,) (same for g)), cf. [SS5, 2.24] .

This implies the last assertion using (1.5), because it is equivalent to H#9i* # =0 (i# — 1)
and »Ji* is independent of the equations [S5, 2.20]. The spectral sequence is then
induced by the pair of canonical filtrations t of f 4, --4;M and ?t of f K, where
(M, F) and K are the underlying filtered 2-Module (cf. [S2, 2.1.20]) and perverse sheaf
of #, and the filtrations F, DecW® on f, A4, --A;M are bistrict by [S5, 2.15]. Here
i, i*.# is represented as above, and H#’f,(i*.#) can be defined using the shifted weight
filtration on i i*.#.

(1.22) ProOPOSITION. Let f: X—Y and g: Y—Z be proper morphisms of complex
analytic spaces, and (M, W)e MHM(X)P. Assume the hypothesis of (1.18) is satisfied
for the direct image of Gt M by f, h:=gf, and that of H#'f,Gt¥ M by g,
Hif Gr¥ M eMH(Y, j+i), and f,Gr(M, F)~@#’f,GrY(M, F)[—j] in DRDy),
where (M; F, W) denotes the underlying filtered 2x-Module of M#, cf. [S2, 2.1.20] [SS5,
2.13). Then we have the Leray spectral sequence in MHM(Z):

(1.22.1) Ei=H'qg H [ M=>H" " M
compatible with the (perverse) Leray spectral sequence of the underlying perverse sheaves.

PrOOF. Let (My; F, W), (M; F, W) denote the underlying filtered complexes of
2-Modules of f 4, g, f, M, and L, L* the filtration on My defined by the canonical
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and cocanonical filtration, ie. L,M{=M} (j<i), Kerd (j=i) and 0 (j>i) and
L*M},=M} (j<i), Imd (j=i+1) and 0 (j>i+1). Put L,;=L, L,,,,=L¥* We
denote by the same symbol the filtration on M induced by L, L*, I. By E,-degeneration
of the weight spectral sequence (1.18.1) the filtration  on Gr(M,, F) corresponds to
that on #7f,Gr? # defined by Kerd,, Imd,, and splits by hypothesis and the
semisimplicity of MH(Y, #)?. Therefore the hypothesis of [S2, 1.3.8] is satisfied and Dec
of Won (M, F) commutes with Gr,.i. We check that W on Gr ZZ,-M y=H"f M[—i]is the
weight filtration up to shift by —i so that Dec W on Gr f,»M 2=9, " f,M[—1i] gives the
weight filtration on #7g, #f,.# by [S5, 2.15], and Grzz,.H(MZ; F, Dec W) is acyclic
by the spectral sequence by W, because its E,-complex Gr ,_EH ,Gr¥ (M, F)is isomorphic
to the direct sum of g,Coim d,[—i] and g,Im d,[—i—1] by the above decomposition
and its E,-complex is filtered acyclic, where d, is the differential of the above weight
spectral sequence. Then we get (1.22.1) by L or L*, using the same argument as in [SS5,
2.16]. In fact (1.22.1) is well-defined for the underlying 2-Module with filtration F,
Dec W and for the underlying perverse sheaf, and we check inductively that E,-terms are
mixed Hodge Modules and d, are morphisms of mixed Hodge Modules, and finally the
converging filtration is a filtration of mixed Hodge Modules.

(1.23) COROLLARY. With the above notation and assumption, let K denote the
underlying perverse sheaf of M, and assume K has an endomorphism N: K—K(—1). If
we have a decomposition f K= @ (*H#f,K)—j] compatible with the action of N, and
the weight filtration of *3#’h, K is the monodromy filtration by N shifted by j+w, then
the weight filtration of *#'g,*# 1 f, K is the monodromy filtration shifted by i+j+w.

Proor. This is clear by (1.22), because the spectral sequence (1.22.1) degenerates
at E, and the converging filtration L has a splitting compatible with N and hence with W.

REMARK. If # =y, M' o1 ¢ , M’ for #'e MH(X, n)” with n=w+1 or w and for
k=k'h with k’ a holomorphic function on Z, the assumption on the decomposition of
/K follows from that of f,K' in the case f projective by the commutativity of the
vanishing cycles with the direct images by proper images, where K’ is the underlying
perverse sheaf of /'.

2. Stability by proper Kihler morphisms.

(2.1) Let f: X—7Y be a proper morphism of complex analytic spaces such that
X is smooth. We say that f is cohomologically Kdihler with Kihler class /e H2(X, R(1)),
if / is represented by a Kéhler form locally on Y. Let f be cohomologically Kihler
with /e H*(X, R(1)), and n: X— X a projective morphism of complex manifolds with /’
the first Chern class of a m-ample line bundle L. Then the restriction of fn to any
relatively compact open subset U of Y is also cohomologically Kéhler with Kihler class
n*l+cl’ for 0<c« 1, where the range of ¢ depends on U and perhaps it does not exist
globally. For the proof, we use the representative of [’ as 90 log u with u a metric of
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L and a partition of unity on X associated to local embeddings X;—P"~! x X; induced
by 0% —» m,L™|x, (i>0), where {X.},, , is an open covering of X such that X,=X\U,
X.=n71X, and m is highly divisible and independent of i>0. Note that at each x€ X,
we have the minimal embedding X—P"" ! x X with n=dim n,L"® o(Ox/m,) on a
neighborhood of x which factorize the other embeddings. This is an analogue of the fact
that the compsition of projective morphisms is projective, if we restrict it to a relatively
compact open subset of the image.
In this section we prove the following theorems by induction on dim Y:

(2.2) THEOREM. Let f: X—Y be a proper morphism of complex analytic spaces
(assumed always reduced and separated). We assume that there is a proper surjective
morphism n: X— X such that X is smooth, m is a composition of projective morphisms and
the restriction of f := f7 to any relatively compact open subset U of Y is cohomologically
Kdéhler with Kdhler class | in Im(H*(X, R(1))-H*(f~'(U), R(1))). Then for M e
MH(X, n)? the Hodge filtration F on f, # is strict, and we have the natural functor

2.2.1) H'f,: MH(X, n)P>MH(Y, n+j)?
compatible with the corresponding functor *3#’ f, on the underlying perverse sheaves.

REMARK. By Hironaka, the assumption is satisfied if X is Kéhler (X may be
singular). By (2.1) and Hironaka, the assumption is stable by restriction of X to closed
subspaces; in particular, we may assume X, Y irreducible and restrict to MH(X)?. By
(0.3) and Deligne’s uniqueness of decomposition, we may also assume that X is smooth
and f satisfies the assumption on f; i.e. replace X by X, cf. (2.4-5).

(2.3) THEOREM. Let f: X—Y be a proper surjective morphism of irreducible
analytic spaces, D a divisor on X, and g4, * - -, g, holomorphic functions on Y such that
Ng: '0)={y} and f~ 9710y D. Assume X is smooth Kihler with Kdhler class
le H¥(X, R(1)) and D is a normal crossing divisor with smooth irreducible components.
Then for (M, F, K)e MH (X, n)? such that K[—dy] is a local system on X\ D, we have
the following on a neighborhood of y:

(2.3.1)  f(M, F) is strict and #’f, (M, F, K)e MH(Y, n+ )

(2.3.2) the hard Lefschetz (0.3.2) with the induced polarization on the primitive part holds
for Hf M.

ReMARK. If Y=pt, the assertions (2.3.1-2) were proved in [KK1], [KK2]. In fact
the Poincaré lemma for the L?-complex £, was shown in [KK 1], [CKS], and the filtered
L*-complex (£ ,, F) underlies a cohomological Hodge complex inducing the Hodge
structure on the intersection cohomologies [KK1]. Then (2.3.1) follows from the
isomorphism f, (M, F)=RI'(X, (£,, F))[dy] constructed in [KK2]. Here it is enough to
construct a morphism DR(M, F)—»(%,, F)ldx] in the derived category of filtered
differential complex [S2, §2] by the self duality of (M, F) [S5, 3.15], and we use the
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filtration ¥ in the non-unipotent case, i.e. replace ® ,_Op, by Gry. The hard Lefschetz
was proved for the action of /+c¢/’ on H'(X, &,) for 0<c«1 with I'=) 03 log log h;,
where D=|JD, and h; is the norm of 1€ I'(X, Ox(D;)) by a Hermitian metric of the line
bundle 04(D)), i.e. locally of the form u;z;Z; with u; a nowhere vanishing C*-function
and z; a local equation of D,. But the action of /' is zero, because J log log h;Ave %,
if ve #,. For the polarization we use the natural pairing

Z,ld] ® Loldx] > L (O)2dx]>D4[2dy] ,  cf. [KK1], [S5, 3.15],

which represents K; ® Kc—ayC by Hom(K; ® K¢, axC)=Hom(K¢ |y ® K¢y, ayC).
Then the assertion follows from the harmonic theory [KK1].

Note that (2.3) implies (2.2) locally on Y, using Deligne’s uniqueness of de-
composition (cf. also (2.11)):

(2.4) ProrosITION (Deligne). Let 9 be a triangulated category with t-structure
given by 1, where the associated cohomological functor is denoted by H'. Let M be an
object of D with a morphism n: M— M[2] such that n': H"*M > H'M (i>0) and H'M =0
(j>0). Then we have a non-canonical decomposition [D3]:

24.1) M~® (H'M)[—]].

Moreover, if Ext*(H'M, H'M) are Q-modules, we have a canonical choice of the
isomorphism (2.4.1) uniquely characterized by:

(2.4.2) (adno) " 'n;=0  for i>0 (in particular n,=0),

where n=Y 1, is the decomposition of

n: @HM)[—jl-DH'M)[2—j] (via (2.4.1))
such that n;e EBjExt‘(HjM, Hi*27iM)).

In fact, combining with (0.3) and the uniqueness of decomposition of (0.1), this
implies:

(2.5) PrOPOSITION. Let m: X—X be a composition of surjective projective
morphisms of irreducible analytic spaces withd=dim X —dim X. Let # e MH (X, n+d)?
be the generic pull-back of # € MHy(X, n)?, i.e. the generic variation of Hodge structure
is the pull-back of that of M. Then M is a direct factor of n*.//? [—d], i.e. the direct factor
for the underlying complexes of filtered 9-modules (in the sense of [S2, 2.1.20], [S5,
2.13)) and for the underlying R-complexes is compatible via a.

REMARK. Xisa projective limit and 7,.# is an inductive limit, where the projective
system and the inductive system are locally constant on X so that they are well-defined.

(2.6) For the proof of (2.2), we apply (2.5) to m: X— X such that f7 satisfies the
assumption of (2.3) for some g, - - -, g, € Oy, where = exists locally on Y by Hironaka
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and the assumption of (2.2), because we may assume X, Y irreducible and restrict to
MHy(X, n)?, cf. the remark after (2.2). Then f, .# is a direct factor of (fn)*.,/? [—d] so
that the Hodge filtration is strict, and s#7f,# is a direct factor of #7~¢ (fn),# so
that #/f,.# e MH(Y, n+ ) by (1.15) locally on Y.

For the global polarizability of #/f,.#, we may replace X by X, restrict to
M € MH (X, n)? and assume that X, Y irreducible, f is surjective and .# is a variation
of Hodge structure on the complement of a normal crossing divisor D on X by the same
argument as above. Let Y, be a closed proper subspace of Y such that any local
intersection of irreducible components of D (in' particular X) is smooth over
U:= Y\ Y,. We may further assume that X,:=f 'Y, is a divisor. Then we have the
spectral sequence (1.21.1) by (1.21-23) and (2.3), because the assumption of (1.21) is
local on Y and we can apply (1.23) to a projective morphism 7 : X— X as above (restricting
Y). Then (1.21.1) degenerates at E, by the decomposition (0.7) (locally on Y) so that
HOi*HIf, M is a subobject of # 7+ f A ~1i*.# e MHW(Y), and polarizable by (1.18)
(with the inductive assumption). As # %*i, =id, it remains to show the polarizability
of the variation of Hodge structure #7f,.# |, by (0.2). Replacing Y by U, we may
assume X, Y smooth connected. By assumption there is a nonempty open subset U’ of
Y such that f is cohomologically Kihler with / coming from H?(X, R(1)). Then by
[KK 1] we have the hard Lefschetz by / and the polarization by (— 1)/~ 1/2f, S0 (id @ V)
on the primitive part, because it holds on U’ and Y is connected. This completes the
proof of (2.2) (assuming (2.3)).

(2.7) ProoF OF (2.3). We show the assertion by induction on d=dim Y. If d=0,
it follows from [KK 1], [KK2], cf. the remark after (2.3). Assume d> 0, and take g, such
that g;1(0) Y. Then the assumption of (2.3) is satisfied also for the direct factors
of PyGr"y, M, PyGr¥ ¢y, 1 # with h;= f*g,, where the support of the direct factors are
the intersections of local irreducible components of D, cf. [S5, the proof of 3.20], and
we may assume Y irreducible at y. Then by induction hypothesis and [S2, 3.3.17],
(1.18-19), we get the following on a neighborhood of y:

(2.7.1)  f (M, F) is strict and Y, #’f (M, F)=3#'f\, (M, F) (same for ¢,),

(27.2) (Y, H'f (M, F,K), W)=(H#'f ¥,,(M, F, K), W)e MHW(Y)? with W the
monodromy filtration up to shift (same for ¢,),

(2.7.3) the hard Lefschetz with the induced polarization on the /-primitive parts holds
for y,, and ¢,, , of #'f (M, F, K), cf. (1.17).

In particular we get the hard Lefschetz for #7f,.# on a neighborhood of y. We can
apply the same argument for any y’ and g}, * - -, g} such that (g;~(0)={y’}, replacing
X by aresolution of | J f~'g;”'(0)u D in X. Then we get #’/f,.# e MH(Y, n+)) by (2.5),
where (1.4.2-3) and (1.5.1) are satisfied by [S2, 3.3.17 and 5.2.14]. Moreover the assertion
on the induced polarization on P.# ~/f,.# follows from the lemma below, which we
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apply to Ay - A, H(fr), M with A;=PyGr™y,; or PyGr¥¢,. |, where g/, m, M are
defined on a neighborhood of y' as above. (We can apply it also to the generic variations
of Hodge structures of the direct factors of # f(fn)*j , if we use (0.2).) In fact the
functors A4; are exact so that the Leray spectral sequence induces

(2.7.4) E¥=Ay- - AHPf Hn, M= Ay A H (), M

degenerating at E,, and the restriction of n*f to M = H °n, M coincides with S, where
(A , S) is the generic pull-back of (#, S). Here G in the lemma is induced by t on
n,# , S by the iteration of GrWn// (or ¢, ) and (id ® N™) on H#°( fn),S, and
N,, N, by n*/,I’ as in (2.1). Then the direct factor #~ if M of HIf HOn M=
Gr$# ~I(fn), M corresponds to a direct factor of H,,=Gr2H; contained in
Py,H; o=Ker GrgN,, so that So(id ® N7) induces a polarlzatlon of the N,-primitive
part, where the index of H; is reversed (with Tate twist (—i)) as in [CKS, end of §3].

(2.8) LEMMA. Let H; be R-Hodge structures of weight n+i with a decreasing
filtration G and morphisms

Ny, Nyt H—H;_5(—1)

such that H;=0 for |i|»0, N,G*H,c G*H,_,(—1), N,G*H;,cG*"?H;_,(—1). Put

=Gr}H, ., so that Ny, N, induce

GrgN;: Hij—’Hi—z,j(—l) > GrgN,: H; i H - A=1).
Let S: (H)rg® (H_)r—R(—n) (ie Z) be nondegenerate pairings such that S(u, v)=
(= 1)"S(v, u), S(G*, G %) =0, S(N, ® id)+S3id ® N,)=0 (a=1,2), and Grs;S induces
nondegenerate pairings on (H;j))g ® (H_; _))g. Put N.=N,+cN, for 0<c«1. Assume:
(28.1) Niy:H;SH_, (—i) (i>0),
(2.8.2) N:: HSH_(—i) (i>0), and So(id ® N') induces a polarization of Hodge
structures on th primitive part Py H'=Ker N:*! for i>0 and 0<c«]1.

Then we have

(2.8.3) Ni: HySH,_(—)) (j>0),

(2.8.4) So(id ® N|N%) induces a polarization on the biprimitive part Py Py H,;:=
Ker Ni*'nKer Ni*! for i,j>0.

ProoF. This follows from [CKS, (2.11)], [CK, proof of (3.3)], because the filtration
G’ defined by G} H;=G'"*H, is the monodromy filtration of N, on H:= @ H, by (2.8.1).
In fact (H, S; Ny, N,) is a nilpotent orbit and H= @ H; gives a splitting of the weight
filtration, i.e. the monodromy filtration of N, + N, (0 <c« 1) by (2.8.2). This completes
the proof of (2.2-3).

REMARK. For the moment [KK1], [KK2] is proved in the quasiunipotent
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monodromy case, and so are (2.2-3) (i.e. (1.4.1) is assumed). For the applications (e.g.
the proof of (0.5)) it is sufficient in most cases. Note that (0.3) is valid in the
nonquasiunipotent case (assuming (1.4.4)), because [Z] is proved in this case.

(2.9) REMARK. (2.3)gives a generalization of Kollar’s torsionfreeness of R’ f,wy,
the higher direct images of the dualizing sheaf, to the case X smooth Kidhler and f
proper, cf. [SS, 2.34].

" (2.10) THEOREM. Let f: X—Y be as in (2.2). Then the functor #’f, in (1.18)
induces the cohomological functor

Hf,: MHM(X)?->MHM(Y)?
compatible with the corresponding functor P37, on the underlying perverse sheaves.

Proor. The assertion follows from (2.2) and [S5, 2c], if X is smooth. In the singular
case we can apply the same argument, if the bifiltered direct image f,(M; F, V) is defined
so that Gr! (M, F)= f,GrY(M, F), and #%(F,V,f, M), # 4V f, M) are coherent over
O, VoD, where f=fxid: X=Xx C»Y=YxC and (M, F)=(i) (M, F). With the
notation of [loc. cit.], we have a natural isomorphism

)My, F)=(pDDRy ((iy),(My, F))

where i, : V=V, x V] is the immersion by graph of f, p;: V;x V-V is the natural
projection, (i), denotes the direct image of filtered 2-Modules, and (p,), the topological
direct image with proper supports. Taking the fiber product with C, we define

TV F, V)=(5)DRy ((},)(My; F, V)

where f;= f; xid (same for i~h, p;) and (M,, F)=(i,),(M, F) with h; an extension of
h|y, to V;. Then f(M; F, V) is defined as in [loc. cit.]. The assertion on the coherence
is reduced to the pure case using the weight filtration, and then to the case X smooth
using a resolution n: X’—X and the filtration t on #,(M’; F, V) (by induction on dy),
where (M’, F, K)e MH.(X", n)? is the generic pull-back of (M, F, K)e MH (X, n)? (X
may be assumed irreducible), and t exists by the strictness of #,(M’; F, V), cf. [S2, 1.2.3.
iii, 3.3.17].

(2.11) RemarRk. We can prove (2.2-3) by induction on dim supp .# without
using the uniqueness of the decomposition (2.4) as follows. It is enough to show the
following assertion: Let n: X¥— X, f: X— Y be proper morphisms, and .# e MH(X, n).
Assume the assertion (2.3.1) is satisfied for n,.#, (fn),# and f, (#n, M) for j#0,
and the decomposition theorem holds for the underlying complexes of filtered 2-Modules
(cf. [S2, 2.1.20]) and R-Modules of n,.#. Then (2.3.1) holds also for f,(#°n,.#). In
fact the filtration r on 7, # induces a filtration G of #/ (fn),.# in MF,(2y, R) so that

GréHIf M= f H'n M  with f:=fn
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by assumption. Then Grfs#’ f*Jl eMH(Y,n+j)? for i#0, and this implies
Gr§o# ' f, .M eMH(Y, n+j)P and G is a filtration of #7f,.# in MH(Y, n+)*. Here it
is enough to assume the decomposition theorem for the underlying R-complex of n, M,
because we can apply the following to f,(t<m m,(M, F)) (i>0, j<0) inductively: For
a short exact sequence of filtered complexes

0-(X’, F)~(K, F)—(K", F)-0
the following two assertions are equivalent:
(2.11.1) (K, F), (K, F) are strict and Hi(K', F)— H/(K, F) are strictly injective.
(2.11.2) (K, F), (K", F) are strict and H/(K, F)—HI(K", F) are strictly surjective.

(This equivalence can be easily checked using the long exact sequence in the abelian
category containing the exact category of filtered objects.) This argument shows also
the compatibility of the two Hodge structures mentioned in the introduction.

3. Decomposition theorem for the proper Kihler direct image of constant sheaf. In
this section we prove (0.5):

(3.1) THEOREM. Let f: X—Y be a proper morphism of complex analytic spaces.
Assume X is smooth Kdhler with Kihler class I. Then

(3.1.1)  f,(Ox, F) is strict and #7 f,(Oy, F, Ry[dx]) e MH(Y, dyx +))",

(3.1.2) the hard Lefschetz (0.3.2) with the induced polarization on the relative primitive
parts holds for #7f,(Oy, F, Ry[dy]),
where dy=dim X.

Proor. The assertion is local by definition. By (0.2) (or [S2, 5.4.3]) we have
(O, F, Ry[dx]) e MH(X, dy)P, and by (2.2) (or (2.3)(2.5)) it remains to show (3.1.2) locally
on Y. By (2.3) there is a bimeromorphic projective morphism 7: X— X such that (3.1.2)
is satisfied for #/(fn), (O, F, Rldy]), n*l+cl’ (0<c«1). By Hironaka = is a com-
position of blowing-ups along nonsingular centers, and we may assume that = itself
is such a blow-up. Then the assertion follows from the next two lemmas by induction
on dy, because n,(0Og, F, Rgldy]) is the direct sum of (Oy, F, Ry[dx]) and

()4(O3, F, RJ|d;)(—j—Dld-2-2] (0<j<d-2)

with Z the center of the blow-up, i;: Z—X and d=dy—d,. Here we apply the next
lemma to A, - - A4, of #(fn),(Ox, F, Rgldy]) as in the proof of (2.3), cf. (2.7) (or to
the generic variation of Hodge structure of the direct factors, if we use (0.2)).

(3.2) LemMA. Let H=@ H,, S, G, H;;, Ny, N, and N, be as in (2.8). Assume H,
has a decomposition H; ® H{ compatible with G, N, and satisfies

(3.2.1) GriH,=0 for k#O0,
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(3.2.2) the decomposition GroH=GrgH' @ GrgH" is compatible with N, and S,
(3.2.3) the conditions (2.8.1), (2.8.3-4) for Gr;H" and (2.8.2) for H hold.

Then (2.8.1), (2.8.3-4) hold for H', if the following condition is satisfied:

3.24) N,H;=G°H!_,(—1).

Proor. Let W™ be the fnonodromy filtration of N, on H. Then it is compatible
with the decompositions H=@H; and H;=H;® H}, and W®=G’ on H", where
G}H,=G'"*H;. By (3.2.1) and (2.8), the assertion is equivalent to W) =G’ on H', i.e.

(3.2.5) Gt “H;=0 for i#k.

We may assume N, =0, replacing H, S, n by Py Gr}"H, S-(id ® N%), n+k, where
the condition (2.8.2) is satisfied by [CKS, (2.11)], [CK, proof of (3.3)]. Then (3.2.5)
becomes H;=0 (i#0). Put

j=max{|i|: H;#0} .
Assume j>0. We have
(3.2.6) N,H;=0 (i<2), NH{cH!_,(—1) (=2

by (3.2.4) and (3.2.1-2), because Gri,HY =0 (i#k) by (3.2.3) and N,G'< G'~ 2. Therefore
Jj=2, and for ue H’, there exists ve H] such that

Ny(u—v)eHj_,(—1),  Gri *(Ny(u—v))ePy,Gri 2Hj_,(—1).
Then w:=u—ve Py,H;=Ker N3*!, because Gr¢H_;_,=H'_;_,=0 and
Gr3i= (N4 'w) = GrgNiGris A(N,w) =0 .
This implies w=u=0v=0, because
0 <S(W, NiCw)= — S(N,w, Ni"2CN,w) <0

by (2.8.2) for H and (2.8.4) for GrgH"” (where i=./—1 is chosen so that the Tate twists
are trivialized on S).

To check the condition (3.2.4) in the proof of (3.1), we use:

(3.3) LeMMA. Let n: X—X be a bimeromorphic proper morphism of complex
manifolds with dy=dim X, and U a Zariski-open dense subset of X on which n is
biholomorphic. Put Y=X\ U and d=codim Y (>2). Assume the decomposition theorem
holds:

(3.3.1) T (Reldx))~ D, (IC;LY[—]] -
Then
(3.3.2) Lj=0 for|j|>codim Z—2>0,
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(3.3.3) Exti(Ry[dy], IC,L%)=Ext‘(IC,L%, Ry[dy])=0 for i<codim Z ,
(3.3.4) ueExti(Ry, Ry) is zero, if its restriction to U is zero and i<2d .

Proor. For (3.3.2) it is enough to show the vanishing for j>codim Z—2>0 by
duality. By (3.3.1) and proper base change theorem, we have

”—dz(ICZLé)yC Hj+°°dimZ(Xy, R)

and dim X, <codim Z— 1, if y is a generic point of Z. Therefore Lj=0 for j+codim Z>
2 codim Z—2.
The assertions (3.3.3—4) follow from the adjoint relation

Hom(i*K, K’)=Hom(K, i, K)
and duality. In fact, (3.3.4) is reduced to
Ext/(Ry, iyRy)=0  for j<2codimY,
where iy : Y- X. It is clear in the case Y smooth, because
i!YszRY(_d)[_Zd] -
In general we can proceed by induction on d=codim Y, using
—>i!ZRX—+i’YRX—>j*j‘1i’,,inl—.

where Z=Sing Y, j: Y\ Z-Y.

(3.4) ReMark. The above argument cannot be generalized to the X singular
case, replacing Ry[dy] by ICxR. In fact let ¥ be a smooth projective variety in P", X
the affine cone in C"*!, n: X— X the blow-up of the origine, and D=n"1(0) (~V)
with i: D—»X. Then —D is a m-ample divisor, and —/eExt?>(Rg, Ry(1)) is the
composition:

(3.4.1) Rgi» RD:%f)Rg(l)zi*i’R,‘v(l)[2]—>R,z(1)[2].
On the other hand we have

T (Rildx]) =ICxR ® ( @ PH>"17(D, R)(—h)1 +j—2k]>
0<k<j

i$(ICxR)= @ PH'*~1~i(D, R)[1+/]

io(ICxR)=@® PH™ ' =D, R)(—j—D[—j—1]

and m, of the middle isomorphism of (3.4.1):
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i§7 (Reldy]) = iom (R AdxDD[2]

is given by the identity on

@ PH*"'7I(D, R)(—k)[1+j—2k].

O0<k<j
Therefore its restriction to i¥(ICyxR)—in(ICxR)(1)[2] is not zero, if P,H**~1(D, R)#0.

(3.5) ReMARK. For the proof of (3.1) we need [KK1], [KK2] only in the
semi-simple monodromy (of finite order) case, where the proof is rather trivial. We
need also the elementary properties in [S2] (e.g. 2.5.6, 3.3.17, 3.4.12, 5.2.14, etc.) and
in §1 of this paper (except for (1.20-21)) as well as the calculation of vanishing cycle
functors in the normal crossing case in [S5, (3.a)], but not the deep results like (0.2),
(0.3). In the constant sheaf case, (2.5) is also replaced by the natural morphism

(Ox, )»n (03, F) (. @y, F)>n,(Qy, F), cf. [S2, §2])

compatible with Ry—n, Rz in D2(Cy), because they induce the splitting, combined with
the duality in [S2, 2.5] and the octahedral axiom of derived category.

As a corollary of (0.6), we get the following (cf. [BBD] in the algebraic case):

(3.6) CorOLLARY (local invariant cycle theorem). Let f: X—Y be a proper
surjective morphism of complex analytic spaces. Assume X smooth Kdihler. Let Uc Y be
the Zariski-open dense smooth subset of Y, on which f is smooth. Then for ye Y there
exists a sufficiently small neighborhood Y, of y such that for y'e U,:=UnY, the natural
morphism

(3.6.1) HI(X,, R)— H(X,., Ry"»?
is surjective, where X,:= ().
Proor. The natural morphism (3.6.1) exists once the neighborhood Y, is

sufficiently small, by proper base change and constructibility of R/f,R. Then by (0.7-8)
it is enough to show the surjectivity of

(3.6.2) ”_d(ICzL),,—h}f_“(ICZL);,'}(UW”"

where Z is the local irreducible component of Y at y containing y’ and d=dim Z.
Replacing L by its maximal constant subsheaf, we may assume that L is constant, and
then L=R, because IC,L is functorial for L. We have the natural morphism
R;[d]-IC,R and the assertion follows from the commutative diagram:
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H R [d]), —> H ~UR,[d]),
lz
H ~YIC,R), —> # ~(IC,R), .

By a similar argument (replacing # ~%(IC,L), by H %Z,IC,L) with Z the
globally irreducible component of Y containing y), we get:

(3.7) CoOROLLARY (global invariant cycle theorem). Let f: X—Y and U be as
above (e.g. X is smooth Kdhler). Then for ye U the natural morphism

3.7.1) Hi(X, R~ H/(X,, Ry""”
is surjective.

(3.8) REMArRk. The theorem (3.1) and the corollaries (3.6-7) hold under the
assumption that X is smooth and f is cohomologically Kéhler, cf. (2.1). If X is singular
and irreducible, and satisfies the assumption of (0.6), the assertions of (3.6-7) hold with
H/(X,,R), H(X,R) replaced by Hi(X,, ICyR| x,)» TH/*4™X(X, R)= H/(X, ICxR),
where U is a Zariski-open dense smooth subset of Y on which R/f,ICxR are local
systems in this case. We have also

ICXRIxy=ICXyR[dY] for yeU,

if we further restrict U so that f~!(U) has a stratification whose strata are smooth over
U. In this case (3.6.1), (3.7.1) become the surjectivity of the natural morphisms

(3.8.1) HI(X,, ICxR Ixy)—>IH"+d““"(Xy,, R)™Ws»)
(3.8.2) [HJ'(X’ R)_,IHJ‘(XY, R)m(U,y)
respectively.

(3.9) REeMARK. In the assumption of (0.6) the condition X Kihler may be
replaced by: the restrictions of = and fr to any relatively compact open subsets of X
and Y are cohomologically Kihler with Kihler classes extendable to H2(X, R(1)) (in
particular X (singular) Kéhler is enough, cf. (2.1)), because the decomposition theorem
holds for f, Ry[dy], if f: X—Y is proper, X is smooth and the restriction of f to any
relatively compact open subset U of Y is cohomologically Kdhler with Kahler class
in the image of H?*(X, R(1))-»H?(f~'(U), R(1)). In fact, by [D3] it is enough to
show the E,-degeneration of the spectral sequence

EY=H'C"#'f(Rxldy])) = H " /(f,Rx[dx])

for any cohomological functor H': D%(Ry)—Mod(Z). But we have the strict support
decomposition *#7/f, (Ry[dy])= @ ,IC,L} which induces the direct product decompo-
sition EY =[], H'IC,L%), and for any Z,, Z, there exists / such that /’: E} /- E¥(j)
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induces isomorphisms
li: H(IC, L7)) = H'(IC,, Ly )(j)  for a=1,2 and j>0.

Here / induces a morphism of spectral sequences (with shift of index j by 2), and
preserves the strict support decomposition. Then we get the vanishing of the restrictions
of d, to H(IC, L )—»>H"*"(IC,,Li."*") for any Z,, Z, by induction on r using the
primitive decomposition as in [D3].
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