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0. Introduction. The rigidity aspects of minimal hypersurfaces in a Euclidean
space or a sphere have constantly drawn authors' attentions, about which we mention
the recent conclusive result of Dajczer-Gromoll [12] which states that a complete
minimally immersed hypersurface of dimension >4 in Sn+1, or in Rn+1 if it dose not
contain Rn~3 as a factor, is rigid, even in RN^>Rn+1. On the other hand the failure of
this theorem to hold in general for a Riemann surface is well-known, to which we
should add the positive result of Barbosa [2] which says that a minimally immersed
Riemann sphere in a sphere is rigid, that of Choi-Meeks-White [11] which asserts that
a properly embedded minimal surface in R3 with more than one end is rigid, and that
of Ramanathan [22] stating that for each compact Riemann surface minimally immersed
in S3, there are only finitely many other minimal immersions isometric to it.

Along another line of development, minimal immersions (especially the
superminimal ones) of Riemann surfaces into CPn have recently been extensively studied
by several authors [6], [8], [13], [14], [15], [25]. It is the purpose of this paper to look
into the rigidity problem for superminimal immersions of compact Riemann surfaces
into CP2; to the author's knowledge the only results of this kind are the rigidity theorem
of Calabi [7] which says that a holomorphic curve (a special class of superminimal
immersions) in CPn is rigid, the rigidity of totally real superminimal immersions in CPn

in Bolton-Jensen-Rigoli-Woodward [3], and the rigidity of superminimal immersions of
constant curvature in [3], Bando-Ohnita [4], and [10]. One different feature of minimal
immersions of Riemann surfaces into CP2 from those into S3 is that the immersion is
of (real) codimension 2, with respect to which the conclusion of rigidity would be harder
to draw in general. However with the given holomorphic data which a superminimal
immersion in CP2 enjoys, we are able to assert the rigidity for large classes of
superminimal immersions.

After some preliminaries in § 1 on the structure of minimal immersions in CPn

through the work in Chern-Wolfson [8], [9], and Eschenberg-Gaudalupe-Tribuzy
[15], we establish the result (Lemma 1) in §2 that infers that those points of a given
superminimal immersion at which the curvature K—A are exactly those ramified points
of index > 2 of either the holomorphic curve or the dual of the holomorphic curve (but
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not both) which generates the minimal immersion; furthermore the order of a zero of
4 —AT completely determines the index of ramification of the holomorphic curve or its
dual at the underlying point. From this follows, by a maximal principle type argument,
the rigidity result (Theorem 1) that a superminimal immersion is rigid if it is generated
by a holomorphic curve all ramified points of which as well as of its dual are disjoint
and of index > 2. Examples of various genera are constructed, among which we mention
those curves projectively equivalent to the Fermat variety of degree 4 (genus = 3) which
generate rigid superminimal immersions among all minimal immersions not even
superminimal (Theorem 2).

Although the technique in § 2 fails to give information at ramified points of index = 1,
we shall verify in § 3 that minimal immersions (necessarily superminimal) generated by
generic (in the sense made clear in § 3) rational curves of any given degree are rigid,
with the aid of the lifting map, of which the Sergre embedding [18] is a special case,
constructed in [10] (see also [4]) together with the elimination theory of quasi-projective
varieties. In §4, we prove, incorporating [10] again and some algebraic curve theory,
that for each superminimal immersion generated by a nonsingular plane cubic curve,
there are only finitely many other superminimal immersions isometric to it. The results
in §3 and §4 indicate that the lifting map defined in [10] has strong bearings on the
rigidity of superminimal immersions, as suggested in that paper.

In contrast to superminimal immersions in CP2, superminimal immersions in S4

studied in Bryant [5] are all rigid in the category of superminimal immersions in S4.
This follows from a discussion in the final remark of §4, in which one transforms these
immersions into certain totally real superminimal immersions in CP4.

I would like to thank Peter Hall for sharing insights into part of this paper.

1. Minimal immersions of compact Riemann surfaces into CP2. In this section
we give a quick review of some facts and formulae that we need in the sequel. The
reader is referred to [8], [9], [15] for details. Throughout the paper M is understood
to be a compact Riemann surface and CPn is assumed to be equipped with the
Fubini-Study metric <, } c p n whose curvature is normalized to be 4. Fix a metric ds in
the conformal class of M. Let f0: (M, ds)^>CPn be a weakly conformal and harmonic
(or equivalently a branched minimal) immersion, i.e., foi,}cpn = ^'ds f° r some
nonnegative function and tr(W/o) = 0. Denote by $£ the tautological bundle over CPn.
Then L = /Q1^ inherits a natural holomorphic bundle structure from those of M and
CPn (cf. [9]), and so does Zr1, the hyperplane bundle perpendicular to L in Mx Cn+1.
For a local coordinate system z, the Gram-Schmidt process defines a map
Gz\ XeLh+dX/dz-[(dX/dz, X}/\\XW]XeLL, where < ,> denotes the Euclidean inner

product on Cn + 1. Then conformality and harmonicity of/0 implies the following:
(1) The well-defined map fx (denoted df0): /? i-> Gz(Lp), from M to CPn is

conformal and harmonic.
(2) The map d: X^Gz(X)®dz, from L to LL®T{U0)M is a well-defined
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holomorphic bundle map.
Clearly the procedures (1) and (2) can be successively carried on so that one obtains

One sets L{ = f^^£. Similarly one can define/j, fy • • and Ljby replacing d/dz by d/dz
in (1) and (2). Conformality of f0 implies that Lo, Ll9 L\ are mutually orthogonal.
In particular if n = 2, and if f0 is neither holomorphic nor anti-holomorphic, then we
have either of the following:

(a) 0 = / 2 = 5/i (resp. / 2 = 0). It follows that f0 = 3f± (resp. = dfj) and / i (resp. /T)
is anti-holomorphic (resp. holomorphic). f0 is said to be superminimal (we will include
holomorphic and anti-holomorphic curves as superminimal immersions as well).

(b) / T = / 2 , SO that the d-process is cyclic. f0 is said to be nonsuperminimal.
We also need the quantitative description of these. Pick orthogonal unit vectors

Zo, Zl9 Z2 spanning Lo, Ll9 L2. Let (p = 01+yJ—192 be the complexified dual form
of an orthonormal frame (el9 e2) with respect to ds on M. Then d(p = y/—lcQA(p with
co the connection form and K the curvature of ds. Then (b) says (cf. [8])

dZ0 = ij/0Z0 + sq>Z1 + lxpZ2

(1.1) dZx = —~s<p

dZ2 = - tcpZ0 -

where î 0, i//l9 \j/2 are the connection forms of the bundles Lo, Ll9 L2 = Lj. Note that
/ 0 is superminimal precisely when c = 0. Furthermore, the holomorphy of the map
d: LQ-^L1 ® T(1'0)M9 i.e., Zo i-> sZx ®<p, infers that the difference between the first Chern
classes of L1® T(li0)M and Lo is the ramification index of d, or equivalently,

or,

(1.2)

Similarly by considering d: L1-^L2(S)T(ly0)M, where Zl\-^cZ2®(p, a n d d:L2

L0®T(1'0)M, where Z2v-+-tZ0®q>, o n e d e d u c e s

(1.3) 2 2 2

(1.4)

One introduces the Kaehler angle a, 0<a<7c (cf. [8]) such that

Notice that in case / 0 is an isometric immersion, the first equation of (1.1) implies
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and e2 = y/-l(sZ1-tZ2). Let e3=-tZl+sZ2, and ^ = ^ - 1
sZ2) be in the normal bundle of M in CP2. With the aid of the connection of CP2

given by VZi = YJ
2
=1coi

iZj, \<i<2, where <y! =¥',.— *P0, and cof = c</>, one verifies (cf.
[8], [15])

2 f l > ; =

so that

where AJj denote the components of the second fundamental form. Hence

(1.6) \\B\\2=4\c\2Hhh-ht2)
2Hhii-hl2)

2.

One also concludes from the Gauss equation that

(1.7) ||2?||2 = 2[4-3-s in 2 (a ) -*] .

2. Rigidity of superminimal immersions of higher order singularities in CP2. The
following theorem reduces the study of the rigidity of superminimal immersions in CP2

to those immersions of the form dg for some holomorphic curve g.

THEOREM 0. Let f: M-+CP2 be a nondegenerate holomorphic curve. If f is
isometric to a superminimal immersion g: M—>CP2, then, up to complex conjugation, g
is holomorphic, and hence is unitarily equivalent to f.

PROOF. Recall (cf. [10]) that if F is a holomorphic curve from M into CP2 which
generates a superminimal immersion dF, let F be its dual curve and let L and L be the
bundles pulled back via F and F from the universal bundle of CP2. Then L®L gives
rise to a holomorphic curve, denoted F®F, from M into CPS whose pull-back metric
is identical with that of the superminimal immersion dF. Explicitly, if ^ and ij/ A I//' are
two local lifts of F and F, respectively, then il/®(il/ A\j/f) is a local lift of the curve
induced by L®L.

Suppose now g = BG for some nondegenerate holomorphic cruve G from M into
CP2. Then by the above remark G®G\ M^CP8 is isometric t o / : M^CP2czCP8.
Since G®G and / are both holomorphic, the theorem of Calabi infers that G®G and
/ are unitarily equivalent in CP8; in particular, G®G is contained in certain
2-dimensional linear subspace of CP8. Recall that locally G can be put in the canonical
form [\:z1+l(ao + a1z+- •):z2+l+m(b0 + b1z+ •• •)]> where / and m are called the
ramification indexes at z = 0 of G and its dual, respectively. A straightforward
computation gives

where in each slot of the homogeneous coordinates, we only display the zero part of
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the Taylor expansion, e.g., z1+m should really be zi+m(ao + a1z + • • •) with 0O/O, etc.
A look at the above expression for G®G confirms that G®G can be put in the canoni-
cal form

where again we only display the zero part in each slot. However this implies that G®G
can not possibly lie in a 2-dimensional linear subspace of CP8. Such a contradiction
forces the map g to be either holomorphic or anti-holomorphic, which may be assumed
to be the former by applying complex conjugation. The theorem of Calabi then asserts
that / is unitarily equivalent to g. Q.E.D.

In light of Theorem 0, we will assume from now on, unless otherwise stated, that
the superminimal immersions we deal with are of the form dg for some holomorphic
curve g: M-> CP2. We will also assume without loss of generality that g is nondegenerate,
since otherwise the pull-back metric for the map dg from M to CP1 is of constant
curvature, and the rigidity follows from [10]. Choose a metric ds in the conformal class
of M. Set p = \s\, q = \ t\ in (1.2) and (1.4) ((1.3) is vacuous since c = 0 now). Then

(2.1) g*<,>cP2 = 12-ds2

by the third equation of (1.1). Let g be the dual curve of g, i.e., g be the tangent lines
ofg in CP2. Then

(2.2) §*<,\P2=P2'ds2

by the second equation of (1.1), and

(2.3) f*<,} = (p2 + q2yds2

by the first equation of (1.1). Given locally the canonical form [1 :z1+l(ao + a1z+ • • •):
z2+l+m(b0 + b1z + — •)] of a holomorphic curve in CP2, it is not hard to see that /
(resp. m) is the order of zero of q (resp./?) at the underlying point (cf. [17]). Also (1.2)
and (1.4) now read

(2.4)

(2.5)

Note that/?2 + <72#0 everywhere, since / is an isometric immersion.

LEMMA 1. Let f: M->CP2 be an isometric superminimal immersion so that f — dg
for some nondegenerate holomorphic curve with § the dual curve, and let Kf be the
curvature of M with respect to the pull-back metric of f. Then Kf(x0) = 4 if and only if
x0 is a ramified point of index >2 of either g or $ (but not both since f is an isometric
immersion). Furthermore at such points the ramification index is determined by the order
of zero of4—Kf.
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PROOF. Suppose Kf = 4. By (1.7) we have Kf < 4—3 • sin2(a). Hence Kf = 4 implies
sin(a) = 0, i.e., either p = 0 or #=0. Assume p^Q, q = 0 at the point without loss of
generality so that the Kaehler angle a = 0. By choosing the metric dls = $*<, >cp2 in the
conformal class of M whose curvature we denote by K, one gets p—\ in (2.2) with
respect to the chosen ds. Therefore (2.4) reads

0 = A(log/?) = £ + 2 < ? 2 - 4 ,

i.e.,

(2.6) £ = 4 - 2 ? 2 = 4 -2tan 2 (a /2 ) ,

so that K=4 at x0. Now tan2(a/2) = <72//?2 = |z|2-r(z) in terms of any local coordinate
system z = x + yj — \y with z = 0 representing the point x0, where r(0) = a^0 if and only
if the ramification index of g is 1. Since tan2(a/2) is real analytic, one can write

(2.7) tan2(oi/2)=(x2+y2)(a + bx + cy + • • •) .

Now with respect to the metric ds2 = f*(, >cp2 in the conformal class of M, (2.4) can
be rewritten as

(2.8) Kf = 4p2 - 2q2 + A(log p) = K- cos2(a/2) - — • A(log p ~ 2)

= £cos 2 (a /2 ) -—• A[log(l + tan2(a/2))] .

A simple calculation gives that at z = 0, Alog(l H- tan2(a/2)) = a/s for some positive num-
ber s upon incorporating (2.7). Hence one infers that Kf=4—a/s at z = 0, or inter-
changeably at x0. This forces a = 0 since Kf = 4 at x0; thus the ramification index >2.
Conversely if the ramification index of g at x0 is > 2 then a = 0 and so /^/ = 4.

Now around z = 0, tan2(a/2) = |z|2m-r(z), m>2, r(0)#0, and in view of (2.6)
K=4+\z\2m+ • • • (ignoring coefficients in the Taylor expansion), while cos2(a/2) =
1 + • • •. Consequently, one sees from (2.8) that Kf = 4 + (x2+y2)im~1) + higher order
terms, which says that the ramification index ( = m) can be determined by the order of
the zero of 4 - Kf (= 2(m -1 ) ) . Q.E.D.

THEOREM 1. Let g: M-+CP2 be a nondegenerate holomorphic curve with the dual
curve i). If the ramified points of g and § are disjoint and are all of index >2 , then dg is
a superminimal immersion which is rigid among all superminimal immersions, i.e., any
other superminimal immersion with the same pull-back metric as that of dg must be
unitarily equivalent to dg up to complex conjugation.

PROOF. Set f=dg. Choose di=/*<,>C P2 in the conformal class of M. Then
p2 + q2= l in (2.3), which, when integrated over M, yields (cf. [17])
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(2.9)
n

where r(g) (resp. r(§)) denotes the total ramification index of g (resp. cj) and g(M) is the
genus of M. Now suppose we are given a holomorphic curve G: M-» CP2 which generates
a superminimal immersion F= 5G isometric to / . On the one hand, since F is isometric
to / , Lemma 1 asserts that the set of ramified points of G and G of index > 2 coincides
with the set of ramified points of g and $, counting multiplicities. On the other hand,
if there is a ramified point of index 1 for G or G, then r(G) + r(G)>r{g) + r(c)), which
contradicts (2.9). As a result, the set of the ramified points of G and C is identical with
that of g and $, counting multiplicities; if one denotes the associated quantities of G
parallel to those defined for g by the same letters with a upperscript "*", one concludes
that pq/p*q* = sin(a)/sin(a*) is a nowhere vanishing function on M. However, one sees,
summing up (2.4) and (2.5), that

A(logsin(a)) = 2 ^ - 2 ;

therefore

A(\og(pq/p*q*)) = 0

since /and F are isometric. Hence pq/p*q*=n, a constant by the maximal principle.
We claim that n= 1 in fact. We may assume /i< 1 without loss of generality. If there
exists a point y at which sin(a(j>))=l, we are done; for then l/sin(a*(>>)) = sin(a(j>))/
sin(a*(j>)) = /i<l would imply sin(a*O0)=l. Otherwise there is no point at which
sin(a) = 1. Then either supy€M oc(y) = a0 < n/2, or infyeM a(y) = a0 > n/2. Now subtracting
(2.4) from (2.5) one obtains

A(log tan(a/2)) = 6 • cos(a) > 0

(resp. <0)ifao<7r/2(resp. >n/2), while tan(a/2) < tan(ao/2) (resp. >tan(ao/2)). Hence
tan(a/2) is a constant by the maximal principle, which forces cos(a) = 0, a contradiction.
Hence fi= 1, i.e., pq=p*q*. This together with p2 + q2=p*2 + q*2 = 1 establishes that
either (p, q) = (p*, q*), or (p, q) = (q*,p*), which may be assumed to be the former by
complex conjugation so that q = q*. Consequently, g*(, >Cp2 = G*< , >cp2 by (2.1). The
theorem of Calabi [7] on the rigidity of isometric holomorphic curves in CPn then
shows that g is unitarily equivalent to G, and so is dg to dG. Q.E.D.

EXAMPLE 1. Let g be an algebraic curve in CP2 projectively equivalent to
h = [\ :x:y],ym = xm+1, or parametrically7z = [l :zm:zm+1] : CP1^CP2, m>3. h has a
cusp of order m—\ at z = 0 and fi = [\ :z:zm+1] has a cusp of order m—\ at oo. The
rigidity of dg among superminimal immersions then follows from Theorem 1.

COROLLARY 1. dg is rigid among all superminimal immersions if g is a nonsingular
algebraic curve in CP2 whose flexes are all of the form [1 \z:zm~\ with m>4.
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PROOF. Since g has no ramified points, the ramified points of g and dg are trivially
disjoint. Furthermore the ramified points of g are exactly the flexes of g, whose
ramification index is therefore m — 2>2. Q.E.D.

EXAMPLE 2. Let g be a plane algebraic curve projectively equivalent to the Fermat
variety h = [x : y: z], xm +ym + z"1 = 0, m > 4. h is a nonsingular algebraic curve of genus
( m - l)(m-2)/2 (cf. [19]), which has 3m flexes at [1:e: 0], [0:1:c] , [e:0:1] , £m= - 1 ,
each of index m — 2. The rigidity of dg among superminimal immersions then follows
from Corollary 1.

EXAMPLE 3. Let g be a plane algebraic curve projectively equivalent to
h = [x:y:z]9 xmym+ymzm + zmxm = 0, m> 3. h is the quadratic transform of the Fermat
variety of degree m9 and has three ordinary w-ple points at [1:0:0] , [0:1:0] , [0:0:1]
each of which is of the form [1 : z : z m + 1 ] . h has no cusps and a computation on the
Hessian of h shows that h has no flexes, dg is rigid among superminimal immersions
by Theorem 1. Notice that the surface is a torus when m = 3.

EAMPLE 4. Let g be an irreducible plane conic (i.e., a rational normal curve), g
is known to be totally unramified and projectively equivalent to [1 :x:y], y = x2, (cf.
[17]); therefore pq = sin(<x) is nowhere vanishing. If dg is isometric to dG, then deg(G) = 2
by (2.9); thus G is a conic as well so that p*q* is nowhere vanishing. One concludes as
in Theorem 1 that dg is unitarily equivalent to dG.

We conclude this section with a class of Riemann surfaces of genus 3 which are
rigid among all minimal immersions not neccessarily superminimal.

THEOREM 2. Superminimal immersions (including the holomorphic and anti-
holomorphic ones) generated by the plane algebraic curves projectively equivalent to the
Fermat variety of degree 4 {genus = 3) are rigid among all minimal immersions not
necessarily superminimal in CP2.

PROOF. Let Fbe any nonsuperminimal immersion in CP2 isometric to dg generated
by a curve g as given in the statement of the theorem. Denote p = \s\, q = \t\, r = \c\
for the minimal immersion F. Summing (1.2) through (1.4) yields

(2.10) A(\ogpqr) = 3K.

Integrating (2.10) one gets

where #(pgr)denotes the number of zeros of pqr, counting multiplicities, and #(M) is
the Euler characteristic of M. In particular, #(/?<?) = #(sin(a))< 12; here a is the Kaehler
angle of F. However, (1.7) says sin(a)=0 at K=4, which therefore asserts that sin(a) = 0
at the 12 flexes (of index 2) of the quartic curve g in view of Theorem 1. Consequently,
#(sin(a))= 12, and so #(r) = 0 because #(pqr)= 12. On the other hand at those 12 flexes
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115112 = 0 by (1.7), and so r = 0 by (1.6). We see then #(r)^0. This contradiction
establishes that r = 0, i.e., F is superminimal. Therefore the theorem follows from
Theorems 0 and 1. Q.E.D.

3.Generic rational curves generate rigid minimal immersions. Lemma 1 fails to hold
true if the holomorphic curve (or its dual) which generates the superminimal immersion
has a ramified point of index 1. However, by incorporating what is developed in [10],
we are able to prove the rigidity of a minimal immersion (which must be superminimal)
generated by a "generic" plane rational curve of any given degree.

Regard CP1 as C u {oo}. Then a plane rational curve of degree n, [/?t '.p2'.p^\,
where pl9 p2, p3 are relatively prime polynomials, can be lifted over C into C 3 as

(3.1) \I/ =
where A^C3 up to a constant factor. Since two polynomials in z have a common factor
if and only if their resultant is 0, it is clear that pl9 p2, p3 not being relatively prime
gives algebraic relations among the coordinates of At. Hence the space of plane rational
curves of degree n is a Zariski open set in CP3(n +1]~x. The dual curve of a plane rational
curve has a lift over C into C3 as

(3.2) <AAIA' =

We identify A} A Ak with a vector in C 3 in the usual way. In the following we refer to
an open and dense set as being "generic", so that when we say a generic plane rational
curve of degree «, we mean a generic point in CP3(n+1)~1 which corresponds to the
curve as described above.

LEMMA 2. For a generic plane rational curve of degree n, \\ij/\\2 and ||^ A \j/'\\2 are
irreducible polynomials in z and z.

PROOF. We have

(3.3) || * | |2 = <<A, iA> = I <AP, A^TTZ* ,

where <,> denotes the inner product of C3 . If ||iAI|2=/?i/V * Pm is the irreducible
decomposition, then so is \\^\\2=p1p2'' Pm the same decomposition. It follows that
either Pi=p{ or both pt and pt appear in ||^||2. We may therefore assume \\\j/\\2 =
(H=l if \\il'\\2=p1p1,p1¥>p1)9 where

(3.4) G= X Ai/z'
ij<k

and
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(3.5) H= I. Bmfz'

with Aij=AJi, BlJ=Bji, Akk^0, 5 ( i#0, and k+l=n.
Consider the map / : CP3*"*1'"1 x CP^^'- '-^CP*^1 '2-1 denned by

(3.6) / : IAO: • • • .AJxlBo: • • • .B^l- • • -(At, Bj): • • 1,

where As and Bs are vectors in C3, and {At, B}) denotes the symmetric product </4,,
One also defines the map &: CP*^1*2-1 x C P ^ 1 ' 2 " 1 - CP 1 ^ 1 ) 2 - 1 by

(3.7) g t : [ • • • : ^ y : - - - I x [ • •• :«„ :••

Then / and #k are regular maps between projective varieties (cf. [16]) so that the set
Sfk = {(x,y):f(x) = gk(y)} is Zariski closed in C P 3 ^ 1 * ' 1 x C P 3 ^ 1 * " 1 x Ci***1*2"1 x
C/>(i+i)2-i. let n be the projection from this product space to the product of the first
two summands. Then n(^k) is also Zariski closed defined by algebraic functions

Now from (3.3) through (3.7), one sees that the set of plane rational curves of
degree n for which ||^||2 is reducible is a subset of ^=\Jk^k=\Jk{(x,x)en(^k)},
where x is the complex conjugate of x. It is thus clear that each 3~k is a (real) Zariski
closed set defined by the same functions F{{\ F%\ • • • above with the (real) algebraic
substitutions Bt = At if \_A0: Ax: • • • : A^ x [Bo: Bx: • • • : £ J parametrizes CP3{n+1)~1x

Cp3(n+i)-i if after t h e substitution Bt = Ai the relations Ff, F%\ • • • become trivially
true, then it implies that for every ij/^0 in (3.1) | |^| |2 is reducible of the form in (3.3)
and (3.4). This is impossible by Lemma 3 below. Therefore there must be at least one
of F{f\ F(

2
k), ••• not trivial after the substitution B~Ah which implies that the

complement of y is a nontrivial (real) Zariski open set, on which ||i^||2 is irreducible,
proving the lemma for | |^| |2. For the irreducibility of | | I ^ A ^ ' | | 2 , one considers the
quasi-projective variety

"-1: X k-AjAAk=t0 for some <r\ ,
j+k=a+l J

and the map fx: TT X <r-+CPi2n-1)2~1 defined by

ft: lA0:A1:--:An]xlB0:Bi:'-:Bn]

*->[•••:( I k-AjAAk, I k'AjAAk):--\
L \j + k = p+l j + k = <r+l / J

where again (,) is the symmetric product between two vectors in C3. For fc + /=2« — 2,
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one defines the map gx: CP{k+1)2~l x cPll+1)2'1^CPi2m'1}2'1 similar to (3.6) above.
Then once more £fk = {(x, y):fi{x) = gl(y)} is Zariski closed, and so is its image under
the projection map taking C? ( k + 1 ) 2 " 1 xCi ) ( I + 1 ) 2 " 1 xirx ' f to i^xV, because the
projection map X x 7-» Y takes a Zariski closed set to a Zariski closed set, if A" is a
projective variety and Y is a quasi-projective variety (cf. [18], [23]). The rest of the
argument then proceeds identically as before. Q.E.D.

The following lemma is alluded to in Lemma 2 and is interesting in its own right.

LEMMA 3. One can choose a generic nonsigular 3 x 3 lower triangular matrix A

over C 3 such that for the projective cubic curve A[\:z\z*~\ and its dual, | | ^ | | 2 and

|| \jf A \\f' | |2 are both irreducible in z and z, where \j/ is the lift ^ = 4̂ • (1, z, z 3) of the curve.

PROOF. Let

be a nonsigular lower trianglar matrix. Let ij/ = A'(l,z, z3). By a direct computation,
2 3 ) , where

Supposing || ̂ r ||2 is reducible, let

||iAII2 = Wz)-z-+r(z)]-[M(z)-z-2 + t;(z)-

where deg(s(z))= 1, deg(r(z))< 1, deg(w(z)) = 2, and deg(i?(z)), deg(w(z))<2, in view of (3.3)
through (3.5). Equating, one sees that

(3.8) s

(3.9) s(z)t

(3.10) 5(z)

(3.11)

We now impose the condition that 4b3+ 21ac2^09 i.e., that p(z) has no repeated
roots so that s(z) and u(z) are relatively prime in view of (3.8). This implies that s(z)
divides t(z) by (3.9); hence

(3.12) t(z) = ls(z)

for some constant X^O by degree count. Solving v(z) and w(z) in terms of s(z) and t(z)
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by (3.9) and (3.11), substituting them into (3.10), and equating the coefficients with the
aid of (3.12), one ends up with

(3.13)

(3.14)

(3.15)

From (3.13), one derives c — X3a + XB. Substitution of this into (3.14) results in p=X6t,
which, when inserted into (3.15), gives | y | = 0. This contradicts the fact that the matrix
A is nonsigular. Hence we conclude that ||^||2 is irreducible if 4b3 + 21 ac2 / 0 , which is
a generic condition.

Before proceeding further, we remark that by the same reasoning a cubic curve of
the form

(
a, b, c\

0, a, P - ( l ,z ,z 3 )

0, 0, yl

has the property that ||<p||2 is irreducible if

(3.17) 4(<xp+bc)3 + 21(\c\2 + \fi

Now a computation gives

/ ay, 0,

I ^ A ^ ' = — by, — 3ay,

\bp-oic, 3ap, 2a(x/

which can be transformed into the same form (in the new variable t = z~l) as <p in
(3.16). Hence by (3.17), \\i// A ^ ' I I 2 is irreducible if

which is a generic condition as well. Hence the lemma is proved. Q.E.D.

THEOREM 3. A minimal immersion (necessarily superminimal) generated by a generic
plane rational curve of any given degree is rigid among all minimal immersions.

PROOF. We remark that any minimal immersion from a Riemann sphere into CPn

is superminimal (cf. [6], [13], [14], [25]). Also in view of (3.2) generic plane rational
curves of any degree carry nonsingulaf pull-back metric, so that the generated
superminimal immersion is nowhere branched by (2.1) through (2.3). Let F be a generic
plane rational curve of degree n which generates the superminimal immersion dF. Let
G be another rational curve for which the generated superminimal immersion dG is
isometric to dF. Let \j/F and \j/G be lifts of F and G over C into C3 as given in (3.1).
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Let F and G be the dual curves of F and G, respectively. Then by an earlier remark
F®F is isometric to G® G in CP8. Hence the rigidity theorem of Calabi implies that
F®F is unitarily equivalent to G®G in CP8. Over C this means that there is one
constant unitary matrix U over C9 such that

where 0AGAIA'G)* denotes IAGAIAG divided by the polynomial which is the greatest
common factor of all the components of the vector ^ G A ^ G , and r is an entire
holomorphic function. However, since the components of II/G®(}I/GA^I/G)*

 a n ^
II/F®1I/FA{I/F

 a r e polynomials, one infers that & is a constant. Thus up to a constant
one may assume

( 3 . 1 8 ) IIlAoll2II(tA^ ̂  • A ^ ) * I I 2 = IItAc^cs>C^o ̂  ̂ o ) * I I 2 = I I t A ^ I I 2 I 2

Lemma 3 then asserts either ||^F | |2 = ||IAGII2>
 o r HjM2= IIOAGA<AG)*II2- This implies

that either the two holomorphic curves F and G have the same induced metric, or F
and G have the same induced metric, by the fact that the pull-back metric of F is
4-d2/dzdz (log ||^F||2)|rfz|2. Hence up to complex conjugation F is unitarily equiva-
lent to G in CP2 by Calabi's result, and so is dF unitarily equivalent to dG. Q.E.D.

As a special case, when n = 3, it is known (cf. [20]) that any singular cubic curve
in CP2 is projectively equivalent to eithery2 = x3 in affine coordinates, i.e., parametrically
[ I : z 2 : z 3 ] , which is a curve with a cusp, or to J>2 = JC2(;C+1), i.e., parametrically
[1 :z2 — 1 : z ( z 2 - l ) ] , which is a curve with a double point. It is easy to see via the
parametric representation that those cubic curves with a double point constitute a
generic set in the space of plane rational curves of degree 3; therefore generic such
curves generate rigid superminimal immersions by Theorem 3.

On the other hand although the cubic curves with a cusp are "nongeneric" among
all the singular cubic curves, Lemma 3 says that among themselves generic such curves
generate rigid superminimal immersions.

It is interesting to note that for the cubic curves [ 1 : \iz: vz3], where /*, v are constants,
||^F||2 of their lifts ij/F = (l, fiz, vz3) are reducible, and these curves fall precisely in the
"nongeneric" category in the sense of Lemma 3 among cubic curves with a cusp, because
b3 + 27ac2 = 0 for the matrix A in that lemma. However these curves still generate rigid
superminimal immersions as can be seen by the following argument: Set t = \z\2. Then
||^F||2 and \\i//F A ̂ F | | 2 are cubic polynomials in / with real coefficients. (3.18) now forces
\\il/G\\2 to be a cubic polynomial in / as well, which implies that il/G must be of the form
Ao + Axz + A2z

2 + A3z
3, where Ao up to A4 are mutually orthogonal, and so either A1

or A2 is zero; we may assume A2 = 0 by applying the complex conjugation. Then by
applying the unitary transformation sending (1,0,0), (0, 1,0), (0,0, 1) to
^ i /Mi l l , A3/\\A3\\ one may assume that iAG = (l, /^z, vxz3). Now (3.18) gives | /i | = |
and | v | = | vx |, which establishes the rigidity.
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4. Rigidity of superminimal immersions generated by nonsingular plane cubic
curves. In this final section we look into the rigidity of those superminimal immersions
generated by nonsingular plane cubic curves of genus 1, and will prove that for each
of such superminimal immersions there are at most finite other isometric superminimal
immersions from the same torus into CP2, up to unitary equivalence and complex
conjugation.

LEMMA 4. Let g: M-^CP2 be biholomorphic to a nonsingular plane cubic which
generates the superminimal immersion dg. If G: M-+CP2 is another holomorphic curve
which generates the superminimal immersion dG isometric to dg, then G itself is
biholomorphic to a nonsingular plane cubic such that there is an automorphism W of M
and an automorphism U ofCP2 such that G=UgoY.

PROOF. Let g and G be the dual of g and G, respectively. Then deg(#) = 6 (cf.
[17]). Since deg(G0 + deg(G) = deg(#) + deg(#) = 9, we may assume, up to complex
conjugation, that deg(G) = 3 or 4. Supposing deg(G) = 4, let C be the image of M via
G. Then C is an irreducible algebraic curve of degree 2 or 4. If deg(C) = 2, then C is a
rational normal curve and so is its dual, which means that deg(G) must be a multiple
of 2 = deg(C). This is impossible since deg(G) = 5. Hence deg(C) = 4. Two cases occur:
(a) C has only traditional singularties, or (b) C has higher order singularities. In Case
(a), Pliicker's formula (cf. [17]) says 2(5 + 3/c = 7, where 5 denotes the number of double
points and K the number of cusps, since deg(C) = 4 and deg(C) = 5. So 3 = 2 and /c= 1.
But then the genus formula (cf. [17]) implies 0(M) = ( 4 - 1 ) ( 4 - 2 ) / 2 - < 5 - K ; = O,

contradicting g(M) = 1, where g(M) stands for the genus of M. In Case (b), C has only one
triple point and no other singularities. Three cases then occur: (i) the singular point
is an ordinary triple point, (ii) it is an ordinary cusp meeting a regular point, or (iii)
it is a higher order cusp. However by the Riemann-Hurwitz formula (cf. [17])

2-20(M) = 2deg(C)-deg(C)- /=3-/ ,

where i is the branching index over the unique singular point with respect to a projection
from a generic point onto a generic projective line. Now it is directly checked that
z = 0, 1,2 for Case (i), (ii), (iii), respectively, and thus g(M) = 0 for Case (ii) and is
vacuous otherwise. In any event this is contradictory. What we have concluded is then
deg(C)^4. Thus deg(G) = deg(C) = 3, so that C is a nonsingular plane cubic and so
G: M-+C is bi-holomorphic. Since g(M) is also a nonsingular plane cubic, one concludes
that C=G(M) and g(M) are projectively equivalent (cf. [21]). The rest of the lemma
then follows as a consequence. Q.E.D.

THEOREM 4. Given a holomorphic curve F\ M^>CP2 which is biholomorphic to a
nonsingular cubic, let dF be the superminimal immersion generated by F. Then there are
at most finite superminimal immersions from M into CP2 which are isometric to dF, up
to unitary congruence and complex conjugation.
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PROOF. Without loss of generality we may assume that Fis projectively equivalent
to [l:g>(z):p'(z)], where p(z) is the Weierstrass p-function; a natural lift is
\I/F = (\, p(z), p'(z)). Supposing G.M^CP2 is another holomorphic curve which
generates the superminimal immersion dG isometric to dF9 then by Lemma 4 there is
a constant nonsingular 3x3 matrix and constants k and \i (to be specified later) such
that

(4.1) ^ 1 7 - ^ A Z + AI)

over the complex plane C is a lift of G. In fact, it will follow from Remark 1 below
that one can assume k = 1 without loss of generality, which is to be adapted from now
on. Since p(z)=l/z2 + O(z2) (cf. [1]), a computation shows that I//F®II/FA\IJF=1/Z9 +

higher order terms. Similarly il/G®i//G A{l/f
Gis doubly periodic with a pole of order 9 at

— fi. Let hF and hG be two entire functions whose zeros are the poles of \f/F®^FA^r
F

and i//G®il/G AI//Q, respectively (cf. [1]). Then hF'\j/F®\l/FA\jj'F and hG'\j/G®^GA^'G are
two holomorphic lifts of the isometric holomorphic curves F®F and G®G in CPS.
Then the rigidity theorem of Calabi asserts that there is a unitary matrix U in C9 and
an entire holomorphic function r such that

(4.2) hG-\l/G®il/GAil/G = er-U'hF-\l/F<g)il/FAil/F.

Let U'^F®\l/FA^'F = {f0,fx, - • •), and ^G®i//GAil/G = (g0,gl9 • • •), where we assume
that f0 is doubly periodic with pole z = 0 of order 9. Then (4.2) implies that the zeros
of/0 are identical with those of g0. On the other hand, it is well-known (cf. [1]) that
the sum of poles is equal to the sum of zeros modulo lattice; thus one derives that the
sum of poles of f0 is equal to the sum of poles of g0, i.e., modulo lattice,

(4.3) 0=—9/x.

Let 1 and co be the generators of the lattice without loss of generality, where
co = x + y/~^ly with - 1 / 2 < J C < 1 / 2 , x2+y2>\, andj/>0. Then ju = a + b(o, 0<a9b<\
(cf. [20], [24]). Hence one concludes, in view of (4.3), that a = m/9 and b = n/9, where
m and n are suitable integers, and so there are at most 81 such automorphisms z + fi.

To finish the proof, one notices that if there are given 82 mutually noncongruent
superminimal immersions dG isometric to dF, then there are two of such immersions,
say dGx and dG2, which share the same automorphism in view of the above and Lemma
4, i.e., <?! = U1-Fo W, and G2 = U2FoW for two automorphisms U1 and U2 of CP2.
Then G2 = U2'U^1G1. However this implies that Gx and its dual have the same ramified
points, counting multiplicities, as G2 and its dual, because projective automorphisms
preserve ramification indexes. The arguments in Theorem 1 then show that Gx is unitarily
equivalent to G2, which contradicts the mutual noncongruence of dGx and dG2.

Q.E.D.

REMARK 1. We observe that if// in (4.3) satisfies 3/x = 0 modulo lattice, then dG
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is in fact unitarily equivalent to dF. This follows from the general fact that if
3(ju/A) = O, then the automorphism Az + ju will leave the linear system |3(0)| invariant,
where 3(0) denotes the divisor 0 + 0 + 0 on M (cf. [20]), and so induces an automorphism
A of CP2 such that [1 : £>(Az + /i): p'(te + n)] = A'[l: p(z): p\z)~\. It follows from this
and (4.1) that G is in fact projectively equivalent to F, and hence the rigidity holds
again by the same argument as in the last paragraph of Theorem 4. This also implies
that the 80 possible automorphisms which came up in Theorem 4 can be reduced to
81-9 = 72.

In particular, setting /* = 0, one sees that for an automorphism of the form Xz on
M, [\\p(kz)\p'(kz)~\ = A-\\\{p(z)\p\z)~\ for some automorphism A of CP2. In-
corporating this with (4.1), one may therefore assume that A= 1, as was done there.

REMARK 2. In contrast to CP2, superminimal immersions in S4 as defined and
studied in [5] are all rigid among superminimal immersions in S4. This can be seen as
follows. Let {e0, &u " '> e\$ denote an orthonormal frame of S4 with e0 the position
vector. Imbed S4 in CP4 in the standard way. Let Z0 = e0, Z1 = (ei+yJ— Ie2)/yj 2,
Z2= Z1? Z3 = (e3 + yf^TeA)/yf2', and ZAr = Z3. As derived in [8],

dZ (

(4.4) dZ1=-^Zo(P-y/^Z1012-^l(H3-yf^H4)Z3 + (H3 + ̂ /^ ,

dZ3 =—(H3 + yf^XH^ZiV + y

where Hr = h\1-h^J-lh\2. The immersion is said to be superminimal in S4 if and only
if (//3)2 + (//4)2 = 0; one may assume H3 + ̂ 7 # 4 = 0. One then reads from (4.4) that

Zo—>Z2—»Z4—»0. Therefore the immersion is superminimal when it is viewed as an
immersion into CP4. Since the immersion is totally real in CP4 (Kaehler angle = TC/2),

one concludes that the immersion is rigid among superminimal immersions in S4

(cf. [3]).

QUESTION. Are all superminimal immersions rigid in the category of superminimal
immersions in CP21
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