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1. Introduction. Let G be a Fuchsian group acting on the unit disc D. In [2], it
was shown that G is finitely generated if and only if the limit set for G consists of only
points of approximation and parabolic fixed points. Moreover, it is known that the
Lebesgue measure of the set of points of approximation is zero if and only if G is of
convergence type. Hence, if G is an infinitely generated Fuchsian group of convergence
type and of the first kind, then it necessarily has some other kinds of limit points, the
set of which has positive Lebesgue measure. There are some papers where properties
of such points are discussed (see, e.g. [5], [6] and [8]). In [4], to study limit points for
infinitely generated Fuchsian groups, we have decomposed dD into three disjoint sets
Ll9 L2 and L3 (for the definition, see §2). In §2, we study Ll9 L2 and L3 more closely and
consider certain measures on them. In §3, we consider a measure with atoms. In §4, we
treat some G-invariant measurable subsets of the limit set for G and estimate the
Hausdorff dimensions of those in terms of the exponent of convergence of G. In §5, we
consider the Riemann surface D/G, which belongs to a certain class of Riemann surfaces,
and give estimates for a lower bound of the exponent of convergence of G.

2. G-invariant subsets of the limit set. Let G be a Fuchsian group acting on the
unit disc D. Since the number of elements of G is countable, we consider G as an ordered
set {gn}™= i of elements gn. We assume that each element of G, except the identity, does
not fix the origin 0. The isometric circle of a Mobius transformation g which does not
fix oo, is given by | g\z) | = 1. By r(g) and c(g) we denote the radius and the center of the
isometric circle of g, respectively. We define a subset L(fc) of 3D as follows:

L(fc)={C|limsup ri<9n) =M, 0 < M < + o o } .
n - \ C C ( g ) \

Note that Uk) = 0 for k > 2. Hence we only consider the case 0 < k < 2. A point in L(2)
is called a point of approximation. Ordinary points are contained in L(0). We also note
that L(fc) is independent of the choice of ordering for the elements of G.

LEMMA 1. The set L(k) is a G-invariant measurable set.
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PROOF. We set

r(gn)k

\£-c(gn)\

on dD. Since the term r(gn)
k/\£—c(gn)\ is continuous as a function of £e3D for each fc,

we see tha,tfk(O is a measurable function. Hence Uk) is a measurable set.
Elementary calculation shows that

1 1 2 and dgj-

for/GG. Hence we have

\f l(0-c(gn)\

Since |/'(c(flfj) |(*~1)/2 is positive and bounded both above and below except for finitely
many gn, we conclude \haXf~l{QeL(k) if and only if £eL(fc). This completes the proof.

We set

and L 3:= |J Uk).

By the definition of the isometric circle of g, we see that

rig)2

2 '

Hence Lx consists of horocyclic limit points, i.e. the points ( which satisfy
lim sup | g'(Q | = +00, while L3 consists of oricyclic limit points, i.e. the points ( which
satisfy lim sup | g\Q | = 0. Hyperbolic fixed points are contained in Lx and parabolic fixed
points are contained in L2.

Let / i b e a finite Borel measure on dD with the property

(*) ditQ=-}—drig(Q) for all geG.
10(01

Through the Poisson integral we see that there exists a one-to-one correspondence
between the set of such measures and the set of positive harmonic functions on D/G.

By m we denote the Lebesgue measure on dD. Let A be a G-invariant measurable
set with m(A)>0. Then x^dm satisfies (*), where XA *S the characteristic function of A.

THEOREM 1. Let G be a Fuchsian group acting on D. Then the following four
statements hold:

(1) Each ofLl9 L2 and L3 is a G-invariant measurable set.
(2) Let fi be a finite Borel measure satisfying (*) and with support on Lx. Then Lx is a

conservative piece with respect to \i.
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(3) m(L2) = 0.
(4) Let \i be a finite Borel measure satisfying (*) and with support on L3. Then L3

is a dissipative piece with respect to \L.

REMARK. For the Lebesgue measure, the statements (2) and (4) in the above
theorem are already in [9].

PROOF. (1) By the definition of Ll9 L2 and L3, each of them is G-invariant.

0}, we see that Ll9 L2 and L3 are measurable.
(2) Recall that Lx is said to be conservative with respect to \x if, for an arbitrary

measurable set AczL1 with fi(A)>0, there exist infinitely many geG such that
lj(A<\g(A))>0.

First we show that YJQZGIJL(9(A)) = +OO implies fi(Ang(A))>0 for infinitely many
geG. We assume that there exists {^}j=0 with go = id such that fi(Ang(A))=0 for all
geG\{gj}n

j=0. Let C be a hyperbolic fixed point of a hyperbolic element h. Since
|/i'(0l#l> there exists no atomic measure on f with the property (*). We set Ax =
;4\{fixed points of 0/}"=i. Then we have fi(A1) = fi(A). For each ^eAu there
exists an open interval 1^ such that l^gj<l$ = 0 for all gj9 \<j<n. Suppose that
fi(At n/ c)=0, for all ^eA^ The set {/J is a covering of Ax. Since Ax is the Lindelof
space, there exists {/an)}*=i such that Ax c (Ji°-i few We have

This is a contradiction. Hence there exists (>eAl with fi(Ax n/c)>0. We set A2 = Ax n/c.
Then we have tx(A2ng(A2)) = 0 for all gf6G\{id}. Hence we get

Next we show that 5]#eG/i(flf(i4))= + oo for an arbitrary measurable set AaLl with
fi(A)>0. For an arbitrary M > 0 , set

g,M): = {t;edD\\g'(0\>M}.

Since AczLx we have Acz\JgeGC(g9M). Hence we get

I l40(A))= Z f \9\ri)\dii{ri)> I Mfi(C(g, M)nA)>Mfi(A)>0 .
geG 9eGJA geG

Since M is arbitrary, we get YJ9SG^^A))= + °°*
(3) We set D'^DXlelliptic fixed points of G}. For zeD' we denote by Fz the

Dirichlet fundamental polygon with center at z. Let

0: = {CedD\t;€g(Fz) for all zeD' and for some geG}.

In [4], we showed that L3 c= O c= L2 u L3 and that if C e L2, then C is a Garnett point (for



432 S. MOROSAWA

the definition, see, e.g. [6]) or the point which is in O. In [6], it was shown that the
Lebesgue measure of the set of Garnett points is zero. Hence, if m(L2)>0, then
m(L2nO)>0. On the other hand, [8] showed that m(O\L3) = 0. It is a contradiction.
Hence we get m(L2)=0.

(4) Recall that L3 is said to be dissipative with respect to fi, if there exists a
measurable set B such that Bng(B) = 0 for all 0eG\{id} and such that ^ 3 ) =

L e t

1 for all

The set Bx is measurable. Since L3 c O a \JgeGg(dD n Fo), we have L3 = \JgeG 9(Bi)> Let

K: = {CeL3| there exist at least two elements gx and g2 with

In [6], it was shown that £eg1(F0)(\g2(F0) for gx ^g2 if and only if ^(0) and g2(0) are
on the same horocycle whose point at infinity is £. Hence the cardinality of K is at most
countable. If \i has atoms, then let P be a set of points on which \i has atoms. Since
the cardinality of P is countable, we choose a subset P of P such that points of P are
not mutually G-equivalent and that P=\JgeGg(P). We set B=(B1\(iCuP))uP. Then
B is measurable. It is clear that B n g(B) = 0 for all g e G\{id} and fj(L3) = fi(\JgeGg(B)).
Thus we complete the proof.

3. An atomic part of a measure with the property (*). First we consider a measure
with support on L3.

LEMMA 2. Let \i be a finite Borel measure satisfying (*). If fi has an atom at
rjeL3, then Y4geG\g'(i)\<+co.

Conversely, ifY,g€G I #'0/) I < + °°> t^ien there exists a finite Borel measure satisfying
(* ) and having an atom at r\.

PROOF. We set E: = {g(rj)\geG}. Since L3 contains no fixed point, the points of
E are mutually distinct. By the property (*), we have

+ oo>
JEi

Hence X ^ G 1^)1
Let us denote by vn the unit Dirac measure at rj, and let

We easily see that
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for heG. Let

geG

Then fi({rj}) > 0 and \x is a finite Borel measure satisfying (*). This completes the proof.

Next we consider parabolic fixed points. These points are in L2.

LEMMA 3. Let G be a Fuchsian group of convergence type and let h be a parabolic

element of G with h(rj) = rj. Then there exists a finite atomic measure satisfying ( * ) and

with support {g(rj)\geG}.

PROOF. Let G' = {gn} be a set of representatives of the left cosets with respect to
the cyclic subgroup </i> generated by h. First we show that £ f l eG. \(Gni)'(rJ)\< + °° if
and only if G is of convergence type. Note that the value | (g~ ̂ '(rj) | is independent of
the choice of a representative. We assume rj = \ and set <p(z) = i(z + l)/( — z+1). Then
G = (pG(p~1 acts on the upper half plane and K=cph(p~1 is a parabolic element with
/j(oo)=oo. We can represent g and g = (pgcp~l in terms of matrices in SL(2, C) and
SL(2, R) as

. and I
fi *J \c d

respectively. Then we get

(a + d .b-c\ J n (a-d b + c\
a=H- + i and jS= + + i .

"I 2 2 ) \ 2 2 )
Using these relations, we have

It is clear that cpG'cp ~1 = & = {gn} is a set of representatives of the left cosets with respect
to the subgroup <£> of G. In [1], it was proved that G is of convergence type if and
only if Y,gne G' I §'JJ) I < + oo. Hence we are done.

Next we construct an atomic measure on r\. As in the proof of Lemma 2, let

dn(Q:= I <K-(I,,(0.

For al l /eG, {gnf} is again a set of representatives of the left cosets with respect to </i>.
Thus fi satisfies (*). This completes the proof.

As was stated in the proof of Theorem 1, (2), on a hyperbolic fixed point there
exists no atomic part of a measure satisfying (* ). Moreover, since lim sup \g\Q \ = M > 0,

x uL2, the infinite sum ] j ^ e G I g'(Q \ diverges. Thus, by Lemmas 2 and 3, we have
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the following:

PROPOSITION 1. Let G be a Fuchsian group of convergence type. A finite Borel
measure with the property (*) has an atom at f if and only if f is a parabolic fixed
point or the point which satisfies £ f f e G \g\Q | < + oo.

The following theorem is a generalization of [8, Theorem 1].

THEOREM 2. Let \i be a finite Borel measure satisfying ( *) and with support on

L3. Then almost all points C of L3 with respect to pi satisfy Y,geG 10'(O I < + °°-

PROOF. By Theorem 1, (4), there exists a measurable subset B which satisfies
Bng(B) = 0 for all # e G \ { i d } and lAL3) = ii(\}geGg{B)). Hence we have

= I f d)40 = [ Z 19
9eGJg(B) JB9^G

+ oo > fi(L3) = I f d)40 = [ Z 19%) I <W0 •
9eGJg(B) JB9^G

Thus we get YJ9SG I # ' (01 < + °° f ° r a l m o s t all Ce5 with respect to \i. Thus our theorem
is proved.

REMARK. If m(L3) = 0 and if there exists a measure on L3 satisfying (*), then the
Riemann surface D/G has an unbounded positive harmonic function on it. Hence the
Fuchsian group G is of convergence type and of the first kind. But the author does not
know whether such a Fuchsian group G exists or not.

4. The Hausdorff dimension and the exponent of convergence. We denote by
H-dim (A) the Hausdorff dimension of a set A, while by d(G) we denote the exponent
of convergence of G, i.e., for an arbitrary £>0, Z^eGr(^)2(<5(G)+£) converges and
L*eG

r(0)2(<5(G)~£) diverges. We set

E(k):=UH<>).
a>k

In the same way as in the proof of Theorem 1, (1), we see that E(k) is a G-invariant
measurable set.

THEOREM 3. Let G be a Fuchsian group. Then, for fc>0,

PROOF. We may assume that the origin is not an elliptic fixed point of G. We choose
and fix an order {#„}*= 0 for the elements of G as follows: If |^,,(0)|<|gfm(0)|, we let
n<m. If |0n(O)| = 10m(O) |, but Arg0n(O)<Arg0m(O), we again let n<m, where Argz = 0
for z = rexp(i0), reR and 0<0<2n. We choose and fix an arbitrary positive number
k. For an arbitrary positive number s9 there exists N such that
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£ r(g)2«G*1+X)<E.
n>N

We set t = 2S(G)(\ + A)2/fc and k' = fc/(l + X). Let p be a positive number. Since fc' < fc and
C is a limit point, there exists n((, p)>N for each CeE(fc) such that

and r(gn(^p))
k'<p. We set ^ , p ) = {^ | h -^ n ( C , p ) ) | < r ( ^ ( C > p / ' } . Then {Aw(C>p)}C6£(fc) is an

open covering of E(k). In the following sum, we consider only distinct n(£ p).

For all p > 0 , the above inequality holds. Hence we have

Ht(E(k))<e.

where Ht() denote the r-dimensional Hausdorff measure. Thus we get H-di
2S(G)/k. The proof is complete.

Since Uk)aE(k\ we have:

COLLORARY 1. Let G be a Fuchsian group. Then, for fc>0,

k

Furthermore, we have:

COLLORARY 2. Let Gbea Fuchsian group with S(G) < 1/2. Then G is of fully accessible
type.

REMARK. In [7, Theorem 3], Patterson proved the above in the case where

PROOF. Recall that a Fuchsian group G is said to be of fully accessible type, if
m(L3) = 2n. If <5(G)<l/2, then by Theorem 3 we have H-dim(£(fc))<l/fc<l for fe>l.
This implies m(£(fc)) = 0 for k>\. Since E(k) increases as k decreasing to 1 and
Lx = \Jk> iE(k), by the continuity of the Lebesgue measure we get m(L1) = 0. Hence we
have m(L2 U L 3 ) = 2TI. By Theorem 1, (3), we see m(L2)=0. Therefore, we get m(L3) = 27c.
The proof is complete.

5. Harmonic functions on D/G. We say that a G-invariant measurable set A<=:dD
with m(y4)>0 is an indivisible set under G, if there exists no G-invariant measurable
subset B of A with m(A)>m(B)>0. If m(L3)>0, then, by Theorem I, (4), there exists a
measurable set B such that B n g(B) = 0 for all g e G\{ id} and that m(L3) = m(\JgeG g(B)).
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Let A be a G-invariant measurable set in L3 with m(y4)>0. Then A' = AnB satisfies
A'r\g(A') = 0 for all #eG\{id} and m(A) = m(\JgeGg{A')). Since m has no atom, there
exists a measurable subset C of A with m(A')>m(C)>0. We set C= LUG0( C ' ) - Then
C is a G-invariant measurable set with m(A)>m(C)>0. Hence A is not an indivisible
set under G. We saw m(L2) = 0 already. Thus, if an indivisible set exists, then it must
be in Lx. There exists a one-to-one correspondence between indivisible sets under G and
minimal bounded harmonic functions on D/G (see [3]). By OHBN (NeN)we denote the
class of Riemann surfaces on which there exist at most N linearly independent bounded
harmonic functions. We observe that OHBl = OHB is the class of Riemann surfaces on
which there exists no non-constant bounded harmonic function. If a Riemann surface
belongs to OHBJV\^HB<JV-I) (N>2), then there exist N linearly independent minimal
bounded harmonic functions on it. From the above argument, we have:

PROPOSITION 2. Let G be a Fuchsian group. IfD/GeOHBN, then m{L1) = 2n.

The converse is not true. M. Taniguchi pointed out that [8, Example 1] is the
group for which the converse of Proposition 2 does not hold.

THEOREM 4. Let G be a Fuchsian group. If D/GeOHB, then there exists fc,
2<5(G)>fc>l, such that m(Uk)) = 2n.

PROOF. By Proposition 2, m(L1) = 2n. If there is a G-invariant measurable set A,
then, by the assumption D/GeOHB, we have m(A) = 2n or m(A) = 0. Since E(k) is a
G-invariant measurable set and E(k + e)czE(k) for all e>0, there exists fc> 1 such that
m(E(k)) = 2n and m(E(k + e)) = 0 for all e>0. Hence m(Uk)) = 2%. This shows that
H-dim (L(k)) = 1. Thus, by Corollary 1 to Theorem 3, we get 2<5(G) > k > 1. This completes
the proof.

THEOREM 5. Let G be a Fuchsian group. Suppose that a Riemann surface D/G has
a minimal bounded harmonic function on it. Then S(G)> 1/2.

PROOF. Since D/G has a minimal bounded harmonic function on it, there exists
an indivisible set A under G on 3D. Such a set A is contained in Lx. Each L(fe) is a
G-invariant measurable set. Hence there exists k>\ such that m(Ar\L(k)) = m(A)>0.
Thus we have H-dim(L(fe))=l. By Corollary 1 to Theorem 3, we get S(G)>k/2> 1/2.
The proof is complete.
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