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Introduction. In this paper, we continue to study the infinitesimal Torelli problem
for complete intersections in Kahler C-spaces with b2 = 1, which we began in [Ko.l]
and which is referred to as Part I.

Recall that a Kahler C-space with b2 = 1 is determined by a certain pair (g, ar) of
a complex simple Lie algebra g and a simple root ar (cf. Part I, §1). Let Y=($, ar) be an
A/-dimensional Kahler C-space with b2(Y)—l and denote by 0 y ( l ) t n e ample generator
of Pic(F). If a section of the vector bundle

dt>0

defines an irreducible nonsingular subvariety X, we call it a nonsingular complete
intersection of type (dl9 d2, * • ',dN_n).

In Part I, we showed that the infinitesimal Torelli theorem holds for X with the
ample canonical budle if Y is an irreducible Hermitian symmetric space of compact type
or a certain non-symmetric Kahler C-space with b2 = 1. Between Part I and the present
article, a big progress was made by Flenner: He developed a powerful criterion [F,
Theorem (1.1)] and completely answered the infinitesimal Torelli problem for non-
singular complete intersections in a projective space PN [F, Theorem (3.1)]. The pur-
pose of this article is to give another application of Flenner's criterion. Namely, we
show the following:

MAIN THEOREM. Let X be a nonsingular complete intersection of type
(dl9 d29 • • dN-n) in a Kahler C-space Y with b2(Y) = 1. Assume that Y is neither a pro-
jective space nor a complex quadric. Then the infinitesimal Torelli theorem holds for X
provided that

(1) the canonical bundle Kx of X is non-negative, or
(2) dt > 2 for any i and X is neither

(a) a hypersurface of degree 2 in (44 , a2), (D5, a4), (£6, a2), (£7, a j , (£8, a8),
(F4, ax) or (F4, a3), nor

(b) a complete intersection of type (2, 2) in (Bb a2), (D,, a2), (£6, a2), (£7, a^,
(£8, a8), (F4, ax) or (F4, a3).
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For the proof, we use the vanishing theorems on Kahler C-spaces developed in
[Ko.2], instead of Bott's vanishing theorem on PN which played an essential role in
the proof of [F, Theorem (3.1)]. We think that most of the exceptions in (2) are
inessential, since they seem to come from the weakness of our vanishing theorems. A
part of the result in the case (1) was independently obtained by Kasparian [Ka].

We freely use the notation in Part I throughout the paper.

1. Known results. In this section, we recall known results which we need later.
Let Y be an JV-dimensional Kahler C-space with b2(Y) = l. We denote by fc(Y) the
integer satisfying KY = (9Y( — k(Y)).

The proof of the following lemmas can be found in [ST, Lemma 2.1] and [Ki, I,
Theorem 6 and the remark after it], respectively.

1.1. LEMMA. For each positive integer a, the line bundle (9Y(a) is normally gener-
ated. In particular, the multiplication map

H°(Y, <9y(b))®H°{Y, <9Y(c))^H°(Y, &y(b + c))

is surjective for any non-negative integers b, c.

1.2. LEMMA. If q is an integer satisfying §<q<N = dxmY, then Hq(Y,&y(a))
vanishes for any aeZ.

1.3. We note that there are the following isomorphisms in addition to (1.6), Part I:

(,4(,a(+1_r)^(X,,ar), {A3,OL2)^Q\ (C2,x2)^Q\ (D4,a3)~(D4, a i ) = Q 6 ,

where QN is a quadric inPN+1. Thus it suffices for our purpose to consider the following
Kahler C-spaces:

(1) (Ah«r): 2<r</+l-rand(/,r)#(3,2).
(2) (B,,ar): 2 < r < / - l and Z>3.
(3) (C,,ar): 2<r</and/>3,
(4) (D;,ar): 2 ^ r < / - 2 and />4, (D,,*,^): l>5.
(5) (£„ ar): 6</<8 , 1 <r<l, (I, r)#(6, 5), (6,6).
(6) (F4,ar): l£r<4.
(7) (G2,a2).

The numerical invariants such as N, k(Y) can be found in Table 1, Part I.
The following can be found in [Ko.2, §4].

1.4. PROPOSITION. Let Y be as in 1.3. The group Hq(Y,Qy(a)) vanishes for any

q>Uif
(1) a, is long or Y=(Ch a2), (F4, a4): a>p>0,
(2) y=(C,,ar), 3 < r < J - l : a>min(p+l, 2 p - l ) > 0 ,
(3) Y=(F4 ,a3) :a>min(p+3,2p-l)>0.
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The following two propositions can be found in [Ko.2, §5]. See also [Ki] as for
symmetric spaces.

1.5. PROPOSITION. Let Y be an irreducible Hermitian symmetric space of compact
type which is neither a projective space nor a complex quadric. Let p be any integer
satisfying 2 <p < N.

(1) Ifp + q>N9 then Hq(Y, Qp
Y{a)) vanishes for a>2p-2-k(Y) unless

y=(X4, a2), (D5, a4): (p, <?) = (2, N-1), a = 2-fc(Y).

(2) HN'P(Y9 Q
p
Y(a)) vanishes for a>2p-k(Y).

1.6. PROPOSITION. Let Ybe a Kdhler C-space with b2{Y) = 1 and is not a symmetric
space. Let p be any integer satisfying 2<p<N.

(1) Ifp + q>N+l, then Hq(Y, Qp
Y{a)) vanishes for a>2p-2-k(Y) except possibly

in the case where a = 2p — 2 — k(Y) holds for the following Y and p:
(a) (Bb a2), (Dh a2): p = 3.
(b) (£6 ,a2),(F4 ,a i),(F45a3): p = 3,4.
(c) (£ 7 , a i ) :p = 4,5.
(d) (£ 8 ,a 8 ) :4<p<7.

(2) HN~P+1(Y, Q^a)) vanishesfor a>2p-1 -k(Y) except possibly in the case where
a = 2p — 1 — fe( Y) holds for the following Y and p:

(a) (E69 a2), (F4, a j , (F4, a3): p = 3.
(b) (£ 7 , a i ) :p = 4.
(c) (£ 8 ,a 8 ) :4<p<6.

(3) HN~p(Y9Q^(a)) vanishes for a>2p—k(Y) except possibly in the case where
7=(£8 ,a8) , 4 < p < 5 and a = 2p-k(Y).

As a special case of a more general result due to Flenner [F, Theorem (1.1)], we
have the following:

1.7. THEOREM. Let X be a nonsingular complete intersection of type
(du d2i '' -9dN-n) in a Kdhler C-space Y with Z)2(7)= 1. Denote by Nx andN$ the normal
and the conormal bundles of X in Y respectively and by SmNx and SmNx

: their m-th
symmetric tensor products. Assume that the following conditions are satisfied:

(1) Hi + 1(X,SiNx®Gn
Y-i-1®Kx-

1) = 0for0<i<n-2.
(2) The multiplication map

H°(X, Sn-pNx®Kx)®H°(X, Sp-1NX®KX)-*H°{X, S""1

is surjective for some pe {1, • • • •, n}.
Then the infinitesimal period map

vp: H\X, Tx)^Homc(H
n-p(X, Qp

x\ Hn + 1~p(X9 Q^

is injective.
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2. Proof of the main theorem.

2.1. Let A" be a complete intersection in Y defined by a section xeH°{Y9 E) with
E= ®fj"OY(di). Let d: = Y^=idf T h e n t h e canonical bundle Kx of X is (9x(d-k(Y)\
The section x gives the Koszul resolution,

which in turn defines a spectral sequence

Eipq = Hq(Y9/\
pE*®V)=>Hq-p{X9 V®(9X)

for any locally free sheaf Von Y.

2.2. LEMMA. Let X be as in 2.1. The multiplication map

Ho(Ox(a))®H°(Ox(b)) >H °((9x(a + b))

is surjective for a, b>0.

PROOF. For any ceZ, we have a surjection H°((9Y(c))-^H°{(9x{c)) by Lemma 1.2
and the spectral sequence in 2.1 with V— (9Y(c). Consider the commutative diagram:

H°((9x(a))®H0((9x(b)) >H°(&x(a + b))

I I I
H°{(9Y{a))®H°{(9Y{b)) >H°(Oy(a + b)).

Since the map on the bottom row is surjective by Lemma 1.1, so is the map on the top row.

Q.E.D.

2.3. LEMMA. The multiplication map

H°(X, Sn-pNx®Kx)®H°(X, S'^NxQKx) >H°(X9 S^'N^K*)

is surjective for some pe{\, • • •, n} if one of the following conditions are satisfied:
(1) Kx is ample, i.e.,d\ = Ysdi>k(Y\
(2) dt>2for any i, l<i<N-n.

PROOF. AS for (1), we can take arbitrary p by virtue of Lemma 2.2. Consider
the case (2). If n is eveA, put n = 2p. By Lemma 2.2 again, it suffices to show that each
summand of SP~1NX®KX has non-negative degree. Since df>2, we have

forany Vi<v2< • • • <vp_t with v4e{l, 2, • • •, N — n}. We note that N>k(Y) holds, since
Y is neither a projective space nor a complex quadric (cf. Table 1, Part I). Thus the
above inequality implies the assertion. If n is odd, we take p with 2p—l=n. Then the
assertion follows from a similar argument. Q.E.D.
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2.4. LEMMA. If the condition

(V)4J: HN-i~j-1(Y9Q%-n + i+1®KY®dQtE®f\lE®SiE) = 0

is satisfied for 0<i<n-2 andO<j<N-n, then (1) in Theorem 1.7 holds.

PROOF. Since NX = E\X and Kx = (KY®detE)\x, we see from 2.1 that

Hi+j + 1(Y, Qn
Y-i-1®SiE*(g)(KY®detEy1(g)/\jE*) = O for 0<j<N-n implies

Hi+1(X9 Qn
Y~i~1®SiNx®Kx

1) = 0. By the Serre duality, we get the assertion.
Q.E.D.

2.5. COROLLARY. If Kx is ample, then the following condition is sufficient for (1)
in Theorem 1.7 to hold:

forO<i<n-2.

PROOF. Consider the condition in Lemma 2.4 and assume that j <N — n. Then we
have (N-i-j-l) + (N-n + i + l)>N. Since KY® det£® S ' E ® / ^ ; is a direct sum
of ample line bundles, we see that the cohomology groups in question vanish by the
vanishing theorem of Kodaira-Nakano. Q.E.D.

Now, we get our main theorem in the Introduction by the following two theorems:

2.6. THEOREM. The infinitesimal Torelli theorem holds for a non-singular complete
intersection X in a Kdhler C-space Y with b2(Y)= 1, if Kx is ample or trivial.

2.7. THEOREM. Let X be a nonsingular complete intersection of type (du d29 ' • *,
dN_n), di>2, in a Kdhler C-space Y with b2(Y)=l. Suppose that Y is neither a
projectile space nor a complex quadric. Then the infinitesimal Torelli theorem holds for
X except possibly in the following cases:

(1) X is a hypersurface of degree 2 in (AA9 a2), (D5, a4), (£6, a2), (El9 ax), (Es, a8),
(F4, ax) or (F4, a3).

(2) X is a complete intersection of type (2, 2) in (Bl9 a2), (Dh a2), (E6, a2), (El9 ax),
(£8, a8), (F4, ax) or (F4, a3).

PROOF OF THEOREM 2.6. If K x is trivial, then the infinitesimal Torelli theorem
trivially holds. Further, in Theorem (3.11), Part I, we already dealt with the case where
Y is (Cl9 ar), (F4, a4) or an irreducible Hermitian symmetric space of compact type. Thus
we assume that Y is none of the above and Kx is ample. Let Y=(& ar) and suppose
that ar is a long root. Then we can easily check the condition (V\N-n in Corollary 2.5
by using Proposition 1.4, since we have

2d-k(Y) + dVl+dV2+ - • • +dVi>(N-n) + i + (d-k(Y))>N-n + i+l,

for any v x < v 2 < • • • <v( with v7-6{l,2, —'9N — ri}. This and Lemma 2.3 show the

assertion by virtue of Theorem 1.7. Next, suppose that 7 = ( F 4 , a3). We see that (3.8),
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Part I, works for n>8. If n<7, then N — n> 13 and we have

2d-fc(Y) + dVl+ • • • +dVi>N-n + i + (N-n-k(Y))>N-

Thus we are done as in the above case. Q.E.D.

PROOF OF THEOREM 2.7. We only have to check the condition (V)fJ in Lemma 2.4.
Let 7 be as in 1.3. Assume first that Y is symmetric. We put p = N—n + i+1 and
q = N-i-j-l. Suppose first t h a t ^ J V - n . Then we have p + q>N. Moreover, since
dv>2 for any v, we have

d-k(Y) + dVl+- • • + < + ̂ + • • • + dtlj>2(N-n + i+j)-k(Y)>2p-2-k(Y)

for any vx < • • • <vf and fit < • • • <//,-. Thus (1) of Proposition 1.5 implies that (V)fJ

holds for j < N—n except when Y=(A4., a2), (D5, a4) and p = 2. We note that, in the
above inequality, the equality holds only if 1=7 = 0. Thus, in the exceptional case, we
have n = N—l and d = 2. Next put j = N — n. Then we have p + q = N and

2d-k(Y) + dVl+ • • • +dVi>4(N-n) + 2i-k(Y)>2p-k{Y).

Thus we can apply (2) of Proposition 1.5 to see (V), N_n holds. This completes the
proof for the case where Y is a symmetric space. If Y is not a symmetric space, we
apply Proposition 1.6 to check (V)tj. Then a similar calculation to the one above
show the assertion. Q.E.D.
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