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Introduction. Let S be a minimal algebraic surface of general type defined over
the complex number field C. Castelnuovo’s second inequality states that if the canonical
map of S is birational, then ¢3(S)>3p,(S)—7 (see [4], [10, I1, §1], [1]).

In the present paper, we study minimal algebraic surfaces of general type with
c3=3p,—7. These surfaces are classified into two types according to the nature of their
canonical map @g:

Type I. @ is a birational holomorphic map onto its image.

Type II: & birationally induces a double covering of a ruled surface.

Historically, surfaces of type I were already known to Castelnuovo [4]. He showed
that the canonical image of a type I surface is always contained in a threefold of minimal
degree and he determined its divisor class. For a modern treatment of his argument,
see Harris [6]. On the other hand, Horikawa [9], [10, IV] has studied, among others,
surfaces of types I and II in detail when (p,, ¢3)=(4, 5), (5, 8). Especially he completely
determined their deformation types. Surfaces of type I with p,=7 and c}=14 were
recently studied by Miranda [12].

The paper consists of two parts: §§1-4 and §§5-6. The former part is devoted to
surfaces of type I. In §1, we show that surfaces with cf=3pg—7 are divided into two
types mentioned above and review Castelnuovo’s argument to classify surfaces of type
I according to the threefold W on which the canonical image lies. We remark that, in
most cases, W is a rational normal scroll (see, [6] and [5]). We prove that the canonical
image has only rational double points and that almost all type I surfaces have a pencil
of nonhyperelliptic curves of genus three (Theorem 1.5). Proof of some Claims needed
in §1, concerning the liftability of the canonical map to a nonsingular model of W, is
postponed to §2. The technique employed here is essentially due to Horikawa [10].
In §3 and § 4, we study deformations of type I surfaces and compute the number of
moduli (Theorem 3.2 and Proposition 4.3). Though we try to determine their deformation
types, many cases are left unsettled. In §4, we construct a family of surfaces in which
the central fiber is of type II and a general fiber is of type L.

The latter part, §§5-6, is devoted to surfaces of type II. In view of the vanishing
of irregularity of a type I surface (see, §1), we restrict ourselves to regular surfaces of
type I1. Our concerns here are pencils of hyperelliptic curves. From a remarkable result
of Xiao [16], we know that a surface of type II has such a pencil of genus less than
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five provided p,>46. In §5, we construct minimal surfaces with pencils of hyperelliptic
curves of genus 3 whose invariants (p,, ¢%) cover a certain area in the zone of existence,
which of course contains the line ¢?=3p,—7 (Theorem 5.7). By the same method, we
can show the existence of type II surfaces with pencils of hyperelliptic curves of genus
2, 3 or 4 (Proposition 6.3).

ACKNOWLEDGEMENT. We thank the referee for pointing out several mistakes in
the earlier version. We are also informed that Professor Eiji Horikawa studied type I
surfaces more than ten years ago (unpublished).

1. Canonical map and surfaces of type I. Let S be a minimal algebraic surface
of general type defined over the complex number field C for which the geometric genus
p,(S) and the Chern number ¢3(S) satisfy the conditions ¢}=3p,—7 and p,>3. We let
@ : S— PP~ 1 denote the rational map defined by the canonical linear system | K|. We
put S"=®,(S) and call it the canonical image of S. We denote by ¢ : S— S’ the natural
map induced by &.

LEMMA 1.1. Let S be as above. Then we have the following two possibilities:
(1) | K] is free from base points and ¢y is a birational holomorphic map.
(2) <¢xisarationalmap of degree 2 and S' is birationally equivalent to a ruled surface.

PrOOF. We remark that ¢y is generically finite, since | K| is not composite with

a pencil by [1, Lemma 5.3]. Since S’ is irreducible and nondegenerate (i.e., is not
contained in any hyperplane in PP~ !), we have the inequality
1> (deg ¢x)(deg ) = (deg dx)(p,—2) -

Thus we have deg ¢, <2. If deg =1, then | K| has no base points by [10, II, Lemma
(1.1)] and [9, Lemma 2]. If deg ¢, =2, then we get deg S’ <2p,—4. Therefore it follows
from [1, Lemma 1.4] that S’ is birationally equivalent to a ruled surface. q.e.d.

We say that S'is of type I or of type II according as whether the degree of ¢ is 1 or 2.

1.2. Surfaces of type I were essentially known to Castelnuovo [4]. Here we recall
his argument. Our reference is [7] and [6].

We recall fundamental properties of the Hilbert function Ay defined for any
projective variety X < P" by

hy(n)=dim¢ Im{p: H°(P", O(n))~>H(X, O(n))} ,

where p is the restriction map and » is a nonnegative integer. If Y is a general hyperplane
section of X, then we have for any n>0
O] 0hy(n) : = hy(n)—hy(n—1) > hy(n) .

We remark that X is projectively normal if dhy(n)=h,(n) holds for any n.
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Now let S be a surface of type I and put r=p,—2. Since | K| has no base point,
a general member Ce| K| is irreducible nonsingular and has genus g(C)=3r. If we put
C'=®4(C), then it is an irreducible nondegenerate curve in P'cP'*! and
deg C'=K?=3r—1. We letI" denote a general hyperplane section of C’. Since it is a
nondegenerate set of 3r—1 distinct points in uniform position, we have

) he(n+1)>min{3r—1, h(n)+r—1}.
Since 2K is the canonical divisor of C and hc(1)=r+1, it follows from (1) that
3r=h%C, 02K |)) = hc{(2)=r+1+hd{2).

This and (2) show A (2)=2r—1 and hc(2)=3r. By a similar calculation, one gets
ho(C, O(nK |C)) =hc(n) and 6h.(n)= h(n) for any n > 0. This implies that C’ is projectively
normal.

We turn our attention to the canonical image S’. By the well-known formula for
pluri-genera of minimal surfaces of general type combined with (1), we get

4r+2—q(S)=h°(S, O2K)) > hs(2) > hs(1) + hc(2)=4r+2.

From this, we have g(S)=0, h°2K)=hg(2) and 6hs(2)=h(2). By a similar calculation,
one can show hg(n)=h%(S, O(nK)), dhs(n)=hc(n) for any n>0. Therefore, S’ is also
projectively normal and the multiplication map Sym"H(S, O(K))—H?°(S, O(nK)) is
surjective for any n>0. This implies that the canonical ring of S is generated in degree
1 and therefore S’ is isomorphic to the canonical model of S. In particular, S’ has only
rational double points (RDP’s, for short) as its singularity.

We show that S’ is contained in an irreducible threefold W of minimal degree r— 1
in P!, cut out by all quadrics through S'. Since 4 (2)=2r— 1, Castelnuovo’s Lemma
(see, e.g., [7]) shows that I’ lies on a rational normal curve R of degree r—1 in P"~!
cut out by all quadrics containing I'. From this, we get h°%(P"" !, #,.(2))=h°(P""},
JFr(2)=(r—1)(r—2)/2, where £ is the ideal sheaf of X. On the other hand, we have
RO(P™*1, £(2)=hO(P Y, O(2)— (S, ORK))=(r—1)(r—2)/2. Therefore, the linear
system | #£5(2)| of quadrics through S’ is restricted onto |.#(2)| isomorphically, and
its base locus W is an irreducible threefold of minimal degree.

1.3. To describe W, we introduce some notation. Let & be a locally free sheaf of
rank p on P? and let w: P(6)— P? be the associated projective bundle. Then the Picard
group of P(&) is generated by the tautological divisor T such that w,0(T)=¢ and the

pull-back F by @ of a hyperplane in P?. We note that the canonical boundle of P(&)
is given by

(3) Kpgy=0(—pT+(deg(det &)—q—1)F).

According to the classification of irreducible nondegenerate threefolds of minimal degree
in PP~ 1 (cf. [5] or [6]), W is one of the following:
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(A) P (p,=4).

(B) a hyperquadric (p,=>5).

(C) a cone over the Veronese surface, i.e., the image of the P!-bundle
W= P(0p® Op=(2)) under the holomorphic map &, induced by | T| ( P,=T).

(D) a rational normal scroll, i.e., the image of the PZ2-bundle P,, =
P(Op:(a)® Opi(b)® Upi(c)) on P! under the holomorphic map &, induced by |T|
(p,=6), where a, b, c are integers satisfying

“4) 0O<a<b<c, a+b+c=p,—3.

1.4. We study S more closely in each of the above cases. Claims I-III below will
be proved in the next section.

The first two may be clear:

Case (A): S’ is a quintic surface in P3.

Case (B): S’ is a complete intersection of a quadric and a quartic.
These are extensively studied by Horikawa in [9], [10, IV].

Case (C): The map &: W— W is the contraction of the divisor T, ~ T— 2F, where
the symbol ~means the linear equivalence.

CLamm 1. We have a holomorphic map j: S—P? of degree 3. Let ¢: S— W be the
natural map induced by the canonical map. Then ¢ can be lifted to a holomorphic map
W: S—W over u such that K=y*T. Further, S” =y(S) has only RDPs.

We show that S” is linearly equivalent to 37+ F. Since u is of degree 3, S” is
linearly equivalent to 37+ aF for some integer «. Then, since deg S’ =14, we have

14=T*3T+aF)=12+2a,

where we used the relation T2=2TF in the Chow ring of W. Therefore S”~3T+F.
We note that the linear system |37+ F| is free from base points and contains an
irreducible nonsingular member.

We compute the invariants of S” for the sake of completeness. Since W is rational,
we have HY(W, O(K »))=0 for g<3. By the cohomology long exact sequence for

0-O0Kp)=»O(Kyp+ S")>ws.—0,

we get HY(S", wg)~HY(W, O(T))~HYP?, 0®0(2)) for g<2. This shows P(S"):=
h%wg)=7 and h'(wg.)=h"(Os.)=0. Further, since wg.=04(T), we get w3. =14=
3py(S")—-1.

Case (D): This case is divided into three subcases

(D.1):a>0, (D.2):a=0,6>0, (D.3):a=b=0.
We remark that W is singular in the cases (D.2) and (D.3).
Cramm II.  (D.3) cannot occur. If (D.2) is the case, then there is a lifting  : S—Py, .
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of the natural map S— W such that K=y*T. Further, S" =y(S) has only RDP’s.

We let yy: S»P,, . denote the map induced by @, in Case (D.1) and the map in
Claim II in Case (D.2). Put S” =y(S). It is nothing but S’ in Case (D.1). We show that
S” is linearly equivalent to 47 —(p,— S)F. For this purpose, put S” ~aT+ BF. Note that
the fibers of w| g are plane curves of degree a. Since S” is birational to the surface S
of general type, we have «>4. Recall that we have T3 =(p,—3)T>F in the Chow ring
of P, . Since deg S'=3p,—7, we have

3p,—T1=T*aT+BF)=(p,—3o+p.

On the other hand, it follows from (3) that Kp_, +S"~(x—3)T+(p,— 5+ B)F. Since
T and Kp, , +S" are equivalent on S”, we get

0=TS"(Kp,, +S"—T)=ala— 4T+ fla—HT*F=(a—4)YaT> +f) .

From these, we get S”~4T—(p,—5)F. The numerical invariants can be computed
similarly as in Case (C): for ¢<2, we have hws)=h(P,,. O(T))=h(P',
O(@)@O(b)®0(c)) and thus p(S")=a+b+c+3=p,S) by (4) and h'(ws-)=0; since
wg=0g(T), we get w3 =3p,—7.

As to the linear system |4T—(p,—5)F|, we have the following:

Cramv III.  The linear system |4T—(p,—5)F| on P,, . contains an irreducible
member with only RDP’s if and only if

®) a+c<3b+2, b<2a+2.

Now we get the following theorem essentially due to Castelnuovo [4]:

THEOREM 1.5. If S is a surface of type 1, then the irregularity q(S) vanishes. Its
canonical image S' is projectively normal and has only RDP’s as its singularity.
Furthermore, it is contained in an irreducible nondegenerate threefold of minimal degree.
S’ is either

(1) a quintic surface in P* (p,=4),

(2) a complete intersection of a quadric and a quartic in P* ( Py,=5),

(3) the image in the cone over the Veronese surface of a member S" €|3T+ F| on
P(Op:® Op2(2)) under the holomorphic map defined by | T| (p,=T), or

(4) the image in the rational normal scroll of a member S”€|4T—(p,—5)F| on
P(Op1(a)D Op:i(b)D Opi(c)) under the holomorphic map induced by | T|, where a, b, c are
integers satisfying 0<a<b<c, a+b+c=p,—3, a+c<3b+2 and b<2a+2 (p,=6).

2. Lifting of the canonical map. In this section, we prove Claims I, II and III
which are assumed in 1.4. We make use of the standard fact that if a surface admits a

map of degree less than three onto a ruled surface, then the canonical map cannot be
birational.
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Among others, we use the following notation. For any nonnegative integer e, we
denote by X,=P(Op: ®0p:(e)) the Hirzebruch surface of degree e. We let C, and f
denote the tautological divisor (C3=e) and a fiber, respectively.

2.1. In the cases (C) and (D.2), the threefold W is a cone over a nonsingular
surface V. Let A, be the pull-back to S by @, of the linear system of hyperplanes
through the vertex of W. We can choose a basis {x,, x,, ---,xpv_l} of HO(S, O(K))
such that x,, - -, x, _; span the module of 4,. We let G denote the fixed part of A,
and put A;,=A4,—G. Since |K| is free from base points, we can assume that
Supp((x,)) N Supp(G)= . In particular, we have KG=0. When G is not 0, we denote
by { the section of O([G]) with ({)=G.

2.2. Proor OF CLAIM I. Since V is the Veronese surface, we have a net A such
that 2HeA, for HeA and K~2H+G. Since K*=14 and KG=0, we have
7=KH=2H?+ HG. Since KH+ H? is even, we get H>=1 or 3. Let u: S—P? denote
the rational map induced by A. If H>=1, then u is birational. This contradicts the
assumption that S is of general type. Therefore, we get H>=3, HG=1 and G*= —2.
We claim that p is holomorphic. Indeed, if u is not holomorphic, then blow S up at
any base point of A and let A be the proper transform of H. Then we have A2 < H?=3.
This means that u is of degree <3 onto P2, contradicting the fact that S is of type L.
Therefore, u is holomorphic and deg u=3. The pair ({, x,) defines a homomorphism
05— 04(G)®Og(K), which in turn gives a section g: S—Sx , W because Supp((x,))n
Supp(G)= . We get a holomorphic map s : S— W by setting y = pr, o g, where pr, is
the projection of Sx , W on the second factor. It is clear from the construction that
Yy*T,=G. Therefore K~2H+ G ~2y*F+y*(T—2F)~y*T. Note that ¥ is obtained
by blowing up the vertex of W, and S” is the proper transform of S’. Since S’ has only
RDP’s, we see that S” has only RDP’s.

2.3. Proor ofF CLAIM II. We separately treat (D.2) and (D.3).

(D.2) a=0, b>0, b+c>3: Wis a cone over V=2X,_, embedded into P**¢*! by
| Co+bf|. Let X be the P'-bundle P(O;, @05, (Co+bf)) on X,_,. We denote by =
and L, the projection map and the tautological divisor, respectively. Then W is the
image of X under the holomorphic map &, defined by | L, |. Let L, be the divisor on
X which is linearly equivalent to L,—n*(C,+ bf). Then we have the holomorphic map
v: X—>P,, . which contracts L, to a nonsingular rational curve Z and satisfies
D =Prov, v¥T=L,.

We first show that ¢: S—W can be lifted to a holomorphic map ¢: S—X. A,
induces a rational map u: S—»P®*<*! whose image is V. We let p: S-S denote a
composite of blowing-ups such that the proper transform A of A, is free from base
points. We can assume that p is the shortest among those which enjoy the property
mentioned above. Let E be the exceptional divisor of p. Then the canonical divisor K
of § is linearly equivalent to p*K+ E. Further, we have p*K~ g*(C,+bf)+ E+p*G,
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where ji: §—Z,_, is the holomorphic map induced by A and E is a sum of exceptional
curves satisfying £> E. We put L=ji*(C,+bf). Then
3b+c)+2=(p*K)*=L*+ L(E+p*G)>L*=(deg ji)b+c) .
Since deg /i is at least 3, we have degfi=3 and L(E+ p*G)=2. We also remark that
0=(p*K)p*G)=L(p*G)+G?*, 0=(p*K)E=LE+E?.
We have the following three possibilities:

(1) LE=0, L(p*G)=2.

Q) LE=1,L(p*G)=1.

(3) LE=2, L(p*G)=0.

If (1) is the case, then we have LE=E2?=0. By the Hodge index theorem, we get
E=0. This means that p is the identity map. Further we have G?= —2. If (2) is the
case, then we get G2= — 1 which contradicts the fact that KG+ G2 is even. If (3) is the
case, then we have G=0 and E?= —2. Since KL+ L*=6(b+c)+2+ LE, we see that
LE is even. Since p is the shortest, £#0 implies the existence of a (— 1)-curve E, with
LE,> 0 which is contained in both £ and E. Thus LE is positive. From this and LE<LE,
we conclude LE=2. We see that fi(E— E) cannot be a curve, because L(E— E)=0 and
L is the pull-back of the ample divisor C,, + bf. This in particular implies (i* fE— E)=0.
Then we get a contradiction, because K(i*f)+(i*f)?=3f(Co+bf)+(E+E)ji*f)=
3+ 2E(*/f) is odd.

In summary, p is the identity map and p is holomorphic. Then, as in 2.2, we get
a lifting §: S—»X such that ¢*L_ =G. We remark that K~ (Fon)*(Co+bf)+
¢*L . ~P*L,. Thus we get the desired map ¥ by putting Yy =vo .

By the same reasoning as in the proof of Claim I, we see that $*=¢(S) has only
RDP’s. Since KG=0, G consists of (—2)-curves. Therefore, we obtain S” from S* by
contracting some (—2)-curves. This implies that S” has only RDP’s.

(D.3) a=b=0, c>3: Wis a generalized cone over a rational normal curve of degree
c+1in P°*2 and the ridge of W is a line. We let A be the pull-back to S of the linear
system of hyperplanes containing the rigde. Then it is composite with a pencil | D| and
we have K~cD+G, where G is the fixed part of A (see, [10, I, §1]). Since

3c+2=K?=cKD+KG, we get KD=1, 2 or 3. Since KD+D? is even and
 KD=cD*+ DG, we have the following possibilities:

(1) KD=2, D*=0, DG=2.

(2) KD=3, D>*=1, DG=0 (in this case c=3).

If (1) is the case, then S has a pencil of curves of genus two, a contradiction. If (2) is
the case, then we get G>=2 by 11=K?=9D?+6DG + G?2. Since DG =0, this contradicts
the Hodge index theorem. Therefore the case (DD.3) cannot occur.

2.4. Proor ofF CLamm III.  We choose sections X, X; and X, of T—aF, T—bF
and T—cF, respectively, in such a way that they form a system of homogeneous fiber



524 T. ASHIKAGA AND K. KONNO

coordinates on each fiber of P,,. Then any ¥YeH°P,,. O@4T—(p,—5F) =~
HO(P', Sym*(0(a)® O(b)® O(c))® O(—p,+5)) can be written as

6 Y= Y ¥XeTXXY,

i,j20,i+j<4
where ;; is a homogeneous form of degree (4—i—ja+ib+jc—(p,—5) on P'. If
4b<p,—5, then we can divide ¥ by X, and, therefore, the divisor (¥) is reducible. If
3a+c<p,—5, then () is singular along the curve Z defined by X; =X, =0. Thus the
condition (5) is necessary.

Conversely, assume that (5) holds. If 4a>p,—5, then the linear system
|4T—(p,— 5)F| has no base locus and contains an irreducible nonsingular member.
So we assume 4a<p,—5. Then (¥) contains Z, and |4T—(p,— 5)F| has no base locus
outside it by (5). Thus it suffices to consider the singularity of (¥) in a neighborhood
of Z. We shall identify Z with the base curve P' of P, , . If 3a+b>p,—5, then we can
assume that ,, and ,; have no common zero. Then (¥) is nonsingular in a
neighborhood of Z. We next assume 3a+b<p,—5.If 3a+c=p,— 5, then 4, is constant.
Unless it is identically zero, (¥) is nonsingular along Z. If 3a+c>p,—35, that is, Yo,
is of positive degree, then we can assume that it has only simple zeros. Then in a
neighborhood of a zero P of Yy, on Z, ¥ can be expressed locally as

¥=1tx,+Yo0(x T+ 11 (0% 0, +Wos(OX5+ - - -,
where x;= X;/X, and ¢ is a local parameter of Z at P. Thus () is defined locally by
Xt (Ox 4 ) FWa0(0x] +Pa0()xT + Yao(t)xT=0.

This shows that P is an RDP if ¥ is general. Thus (5) is also sufficient.
We close this section with the following:

PROPOSITION 2.5. Let S be a type 1 surface with p,=4 and S’ its canonical image.
S has a pencil of nonhyperelliptic curves of genus 3 if and only if S’ contains a line.

PROOF. Assume that S’ contains a line /. We blow P? up along / to get Py ;.
Then the proper transform S” of S’ is linearly equivalent to 47+ F and has a pencil
of nonhyperelliptic curves of genus 3 induced by the projection map of P, ;.

Conversely, assume that S has a pencil | D| as in the statement. Then we have
KD=4, D>*=0. We choose a general De|D| and consider the exact sequence

0->0O(K—(i+1)D)—»0O(K—iD)—0p(Kp)—0,
for i=0, 1. Since @y is birational, H°(K)— H°(K) is surjective. Thus A/°(K—D)=1. We
show H%(K—2D)=0. For this purpose, we take a general Ce| K| and consider
0->0(—2D)—»O(K—2D)»0OAK—2D)-0.

We have H%(—2D)=0. Further, since C(K—2D)= —3, we have H°(C, O(K —2D))=0.
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Thus H%(K—2D)=0. We can take woe H%(K— D) and w,, w, € H%(K) so that they span
H°K,). Then, by using the triple (wq, w;, w,), we can lift the canonical map to
Y : S-P,,,, and have K=y *T. Then S”:=y(S) is linearly equivalent to 47+ F, since
Y(D) is a plane curve of degree 4 (cf. §1). @ is the composite of  and the map @,
induced by | T|. Since H%(Py .1, O(T))~H(P', 0®ODO(1)), we can take {X,, X,
2oX,, 2, X,} as a basis, where (X,, X;, X,) is the same as that in 2.4 and (z,, z,) is a
homogeneous coordinate system of P!. @ contracts the rational curve X; =X,=0. If
(€o:¢,:¢,:¢3) is a homogeneous coordinate system on P* and if @ is given by

lo=Xo, (i=X1, O=20X;, (3=2,X,,
then, by substituting these to (6), we find that the equation of S’ can be written as
“1(8‘*‘“253(1+°‘3C(2)Cf+“4C0C?+“5C1+31C3+52C%C1+ﬂ3CoC%+B4C?+71C(2)
+920081 +73L3 + 010+ 0,{, +£=0,

where a, f, y, 6 and ¢ are homogeneous forms of respective degrees 1, 2, 3, 4 and 5 in
5, (5. Therefore S’ contains a line / defined by {,={;=0. q.e.d.

3. Number of moduli. In this and the next sections, we study deformations of
surfaces of type I. Since we have Horikawa’s works [9] and [10, IV] for p, <5, we
assume p, > 6 throughout. Further, we restrict ourselves to the case (D) in §1, because
the case (C) can be found in [12]. Our main result here is Theorem 3.2 below. For a
complex manifold M, we denote by ©@,, the tangent sheaf of M.

3.1. Wesay that Sis a Castelnuovo surface of type (a, b, c) if W (or its nonsingular
model) is P, , ., where the integers a, b, c satisfy the conditions (4) and (5). For the sake
of simplicity, we put W=P, , . even if a=0. We say S to be generic if it is the minimal
resolution of a general member of |4T—(p,— 5)F|.

THEOREM 3.2. Let S be a generic Castelnuovo surface of type (a, b, ¢) withc<2a+2.
Then

Sp,+18,  if a>0,
5p,+19, if a=0.

Further, the Kuranishi space is nonsingular of dimension h'(©g)=5p,+18 if a>0.

h'(S, @s)={

For the proof, we need some lemmas.

LeEmMMA 3.3. Let S be a Castelnuovo surface of type(a, b, c) and assume that p,(S)> 6.
Let| D\ be the pencil of curves of genus 3 on S induced by the projectionmap of W=P,,, .

(1) If a>0, then h°(2D)=3, h*(2D)=0 and h*(2D)=p,—6.

(2) Ifa=0, then K°(2D)=3, h'(2D)=1 and h*(2D)=p,—5.

Proor. Let S” be the image of Sin P, , . described in §1. Since it has only RDP’s,
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we have ¥ 05~ 0s.. and R, 0Os=0 for g>0, where y : S—S" is the natural map. Thus
H"(S, O2D)~H"(S", OQ2F | s)) for any p. We consider the cohomology long exact
sequence for

00y (2F — S") = O(2F)— 05 (2F)—0 .

We have H?(W, 0(2F))~H"(P*, 0(2)) and HPQ2F—S"))~ H* ?(Oy(Ky + S” —2F))* by
the Serre duality. Since S§”"~4T—(p,—5)F and a+b+c=p,—3, we have Ky+
S”" —2F~T—2F. Thus H* P(Ow(Kyw+S"—2F)~H*"P(P!, O(a—2)@0O(b—2)®O(c—
2)). From these, Lemma 3.3 follows. q.ed.

Lemma 34. If W=P,, , then
2Ac—a)+8+(a—b+1)" +(@a—c+ )" +(b—c+1)*, (¢=0),
h(W,0p)=1 (b—a—1)"+(c—a—1)"+(c—b-1)", (g=1),
0, (¢=2),
where m* =max(m, 0).

ProOF. We recall the fundamental exact sequences

@) 0Oy p1—Op—->w*O@p, -0
and
®) 0->0-0(T—aF)®O(T—bF)®U(T—cF)—>Oy;p:—0,

where @y p: is the relative tangent sheaf. Since any automorphism of P! preserves
O(a)® O(b)® O(c), the natural map Aut(W)— Aut(P?) is surjective, hence so is the map
H%@y)—> Hw*Op:). By (7) and the isomorphism HY(w*®p.)~ H%O,:), we have
h2(Ow)=h"Op1)+3 and h(©Oy)=h%Oy p:) for g>0. Then a calculation using (8)
shows Lemma 3.4. q.e.d.

LEMMA 3.5. Let S be as in Lemma 3.3 and consider the linear map
Yp: HA(W, Oy)>H(S, Y *Oy).

(1) Ifa>0, then y ¥ is bijective for p<1 and h*(Y *@y)=p,—6.

(2) If a=0, then '} is bijective for p=0 and is injective for p=1. Furthermore,
R (Y *On)=h'(Oy)+1, (Y *Op)=p,—5.

PrOOF. We use the commutative diagram
HP(y*Owp1) > H?(Y *Oy) - H?(2D)
T T T
H”(@W/,,) - HY(Oy) > H"(2F),

where the bottom row comes from the exact sequence (7). By Lemmas 3.3 and 3.4, it
suffices to show that H?(Oy p:)—>H(Y *Oy p:) is bijective for any p. Since we have
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H(Y*O p:)~H"(S", Oy p:), we only have to show HP(W, Oy p:(—S"))=0 for any p
in view of the exact sequence

0_’ @W/’l( - S”)_’ @Wlpl _>@W/P1 IS" —')0 .

If Qy p: is the relative cotangent sheaf, we get H(Oy,pi(—S"))* ~ H> " P(Qy p:(T)) by
the Serre duality. We recall that HYP?, Q'(1)) vanishes for any g. Thus we get
Riw Qwp:(T)=0 for any g. Then it follows from the Leray spectral sequence that
H?™P(Qyp:(T))=0 for any p. q.e.d.

LEMMA 3.6. Let S be as in Theorem 3.2 and denote by T sy the cokernel of the
natural map Os—Y*Oy. Then H*(S, T 53)=0. Further, the composite Poy* of
Yt H(W, Oy)>H'(S, Y *Oy) and P: H'(S, Yy*Oy)—H'(S, T 5w) is surjective.

PrROOF. We first assume that 4a>p,— 5. As we have seen in 2.4, a general member
of |4T—(p,—5)F| is irreducible and nonsingular. Thus we can assume Se€|4T—(p,—

5)F|. Then J g is nothing but the normal sheaf Ng,. Consider the cohomology long
exact sequence for

We see that HY(S, Ng»)=0 for ¢>0, because we have HYW, O(4T—(p,— 5)F))=0 for
g>0 by the assumption 4a>p, —5.

We next consider the case 4a<p,— 5. As we have seen in 2.4, S”=y/(S) contains
a rational curve Z defined by X, =X,=0. We denote by v: X—>P,,  the blowing-up
along Z. It is easy to see that X is the total space of the P!-bundle
n: PODO(Cy+(b—a)f))—2._,. We denote by L, the tautological divisor of X. If we
let L, be the unique divisor linearly equivalent to L,—n*(Co+(b—a)f), then
L,=v~}(Z). The proper transform of S” is in |3Ly+n*(Co+(2a—c+2)f)|. Since
c¢<2a+?2, this linear system has no base points. Thus we can assume Se|3L,+
n*(Co+(2a—c+2)f)I.

By a simple calculation, we have HYX, O(S))=0 for ¢>0. This implies
HY(S, Ng;x)=0 for g>0. Then by the exact sequence

0—’NS/X_)'9-S/W_'9—X/W|S_’O s
we have HY(S, 7 sw)~ HYS, 7 xw|s) for ¢>0. Since Ty |5 is supported on a curve,
we have h*(T sp) = h (T W |s) =0.By[10,III, p. 235], the following sequence is exact:
O*NLm/X*V*NZ/W_’g-X/W""O .

We identify Z and L, with P' and ZX._,, respectively. Then we have
Nzw=0a—b)®0a—c) and Np_x~0(—Co—(b—a)f). Thus T yp=v*(det Ny x)®
N%,x=0(Co—(c—a)f).

To show the surjectivity of Poy¥, it suffices to show that the map
HY(X, v*O@y)—>H(S, 7 x,w|s) is surjective, since Y ¥ is injective by Lemma 3.5. Note
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that we have H(X, ©,)=0 by the exact sequence
0-0Q2Ly—n*Co+(b—a)f)»Ox—>n*O;, _,—0.
Thus H'(X, v*@y)—H'(X, 7 y,w) is surjective. Consider the exact sequence
0—’7X/1V(—S)—"7X/W—’-7X/W|s‘*0-

Since S|, ~Co+Qa—c+2)f, we have I yu(—S)~0(—(a+2)f). Then H?*X,
T xw(—S8))=0 and thus H(X, 7 xu)>H (S, 7 xw|s) is surjective. q.ed.

3.7. ProOF oF THEOREM 3.2. By Lemmas 3.5 and 3.6, we have

WS, @s)={pg—6, if a>0,

P,—5, if a=0.
Since S is of general type, we have H°(S, O5)=0. Thus the formula for 4}(@g) follows
from the Riemann-Roch theorem.

In order to show the second assertion, we use Horikawa’s deformation theory of
holomorphic maps [8]. By Lemma 3.3, we have H'(2D)=0. Thus it follows from [8,
11, Theoren 4.4] that there is a family p: ¥ — M of deformations of S=p~1(0), 0e M,
such that the characteristic map t: T,M— Dgp: is bijective. Further, we see from [8,
I1, Lemma 4.2] that the Kodaira-Spencer map p: T,M — H(Oy) is surjective. Note that
the parameter space M is nonsingular. Thus we can choose a submanifold N of M
passing through o such that the Kodaira-Spencer map p: T,N— H'(@j) is bijective.
This completes the proof.

COROLLARY 3.8. Let S be as in Theorem 3.2. Then the infinitesimal Torelli theorem
holds for S.

ProoF. By the criterion of Kii [11], we only have to show h%Q3(K))<p,—2.
Since h%(Q25(K))=h*(O@5)<p,— 5, we are done. q.ed.

4. A remark on deformations.

4.1. We construct a family of deformations of P,, . (for a geometric treatment
of deformations of scrolls, see [6]). We denote by d the greatest integer not exceeding
(a+b+c)/3. By Lemma 3.3, we can assume (a, b, ¢)#(d, d, d),d, d, d+1),(d,d+1,d+1),
since in these cases P, , . is rigid.

Let U, and U, be two copies of Cx P?. We denote by (z; X,, Xy, X,) and
(¢; X,, X,, X,) the coordinates of U, and U,, respectively. Then we can construct P,
from U, u U, by identifying (z; X,, X,, X,) with (£; X,, X,, X,) if and only if
) Xo=2Ky, X, =2"X,, X, =2X,,25=1.

We let ¢ be a complex parameter and identify (z; X,, X, X,) with (£; X,, X, X;)
if and only if
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(10) Xo=2Xy, X,=2X,, X,=2X,+1°**%,, z:=1,

where k is an integer satisfying 0 <k <c—a. Then we get a family {W,} of P2-bundles
on P!. For t#0, we put

Yo=tX,, Y,=X,, Y,=2*X,—tX,,
?0=t2XAo+t2c_a_kXAz, i}l:Xl, Y2=X‘2.

Then we get Y, =2%*Y,, Y, =5Y,, Y,=2°"*Y,. Thus W,~ P, , .« if t #0. Similarly,
if we consider the families

) Xo=2X,, X,=2"X,+12°*kX,, X,=:%X,, zt=1
and
(12) Xo=2%,, X,=2'X,, X,=:2X,+1:***X,, zi=1

for a suitable k, then we see that P,, . is a deformation of P,.; ;. and P, .4
respectively. Thus we get:

PROPOSITION 4.2. The P*-bundle P,,. is a deformation of P44 Piaa+1 oF
P,411.a+1 according as a+b+c is 0, 1 or 2 modulo 3.

PROPOSITION 4.3. Let S be a Castelnuovo surface of type (a, b, ¢) and assume that

c¢<2a+3. Then S is a deformation of a Castelnuovo surface of type (d,d,d),(d, d,d+1)
or(d,d+1,d+1).

ProOF. We showed in §1 that S is a minimal resolution of a surface
S"~4T—(p,—S5)Fon P, .
If 3a+1>b+c, then H'(P,, ., O(AT—(p,—5)F))=0. Thus if se H°(4T—(pg —S)F)
- defines §”, then it can be extended to any family of deformations of P, .. Thus we get
a family {S;} with S” =S¢ from the family (10) for example. Since S” has only RDP’s,
so does S} provided that ¢ is sufficiently small. We simultaneously resolve RDP’s (cf.
" [2] and [3]) and get a family {S,} of deformations of S=S,. This family shows that
S is a specialization of a Castelnuovo surface of type (a+k, b, c—k). Continuing this
procedure using (10), (11) or (12), we get the desired result.
If 3a+1<b+c but c<2a+3, we consider the P"bundle X in the proof of Lemma
3.6 instead of P,, .. Since X is a monoidal transform of P,, . a sufficiently small
deformation of the former is a monoidal transform of a deformation of the latter (see,
[8, III]). Indeed, by blowing up the rational curve defined by X; =X, =0 in the family
(12) simultaneously, we get a family {X,} of deformations of X=X,. We remark that

HYX, OBLy+7*(Cy+(Q2a—c+2)f))=0 if ¢c<2a+3. Thus similar arguments also
work. q.e.d.

REMARK 4.4. The moduli space of Castelnuovo surfaces has several components
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in general. To see this, let u=dim|4T—(p,—5)F|—h%P,, ., ©) be the number of
parameters on which Castelnuovo surfaces of type (a, b, c) depend. Then yu is sometimes
strictly greater than the number 5p,+ 18 of moduli of a generic Castelnuovo surface as
in Theorem 3.2. For example, if p,=12, we have

@b, c;p)=3,3,378), (23,477, (2,2,574), (1,2,6,74),
(1,3,575), (1,4,4,76), (0,2,7,79).

4.5. Here we give a family of surfaces with ¢ =3p,—7 such that the central fiber
is of type II while a general fiber is of type I.

We let W be the P2-bundle P, , ., where a, b, c are integers satisfying (4) and (5).
We assume that p, is odd and put 2k =p,—5. The linear system |L|, L=2T—KF, is
free from base points if 2a—k>0, i.e., 3a+2>b+c. We assume this condition for the
sake of simplicity. We choose n € H%(W, O(L)) which defines an irreducible nonsingular
divisor Y. Let W be the P'-bundle P(Oy @ Oy(L)) on W. We put 4,={teC,|t|<e},
where ¢ is a sufficiently small positive number. Consider a family {S,}, ted,, of
subvarieties of W given by the equation

Zi+o,ZyZ,+a,Z%2=0
(13) { 0T X1 Lol TX24L,

) , ted,,
1Zy=nX,

where (Z,, Z,) is a system of homogeneous fiber coordinates on W and a;€ HY(W, O(iL)),
1 <i<2. We assume that o’s are general.

If t#0, then S, is biholomorphically equivalent to a surface in W defined by the
equation >+ o7+ 12a, =0. Thus S,e€|4T—(p,—5)F| and it is of type I.

On the other hand, S, is a double covering of Y via the projection map of W.
Since Y is a conic bundle on P!, S, has a pencil of hyperelliptic curves of genus three.
Thus it is of type IIL.

5. Surfaces with hyperelliptic pencils of genus 3. We call a pencil on a surface
a hyperelliptic pencil of genus g if its general member is a nonsingular hyperelliptic curve
of genus g. In this section, we study the geography of surfaces with hyperelliptic linear
pencils of genus 3.

5.1. Let V be a normal Gorenstein surface and denote by ¢: V'— V' the minimal
resolution of an isolated singularity £ of V. Then there exists an effective divisor Z, on
V' supported on ¢~ !(£) such that w, ~0*w,®0(—Z,) (e.g., [14]). Then we have
w}. =w}+ Z%. On the other hand, the spectral sequence H?(V, R%,0,) = H"*4(V", 0y.)
implies that y(0y.)=x(Oy)—p,(&), where p,(£)=h"(V, R'0,0,.) is the geometric genus
of & We call (p(&): —Z}) the type of singularity . If & is a double point, then
its type can be easily calculated by Horikawa’s canonical resolution ([9,§2] or
[13,81D.

Let {£;}, <i<s be a set of isolated singularities of ¥ and assume that &; is of type
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(m;, n)). If V*>V is the minimal resolution of these singularities, then we have

(14) 1O =10~ 3 my b=} Y ni.

We list the types of the singularities which we shall need later:

(i) If ¢ is an RDP, then Z,=0. Thus ¢ is of type (0:0).

(i) If & is a simple elliptic singularity of type Eg or E, (see [15]), then Z,=E,
where E is the exceptional elliptic curve. Thus ¢ is of type (1:1) or (1:2) according as
whether it is Eg or E;.

5.2. Letmy: Y=2X,— P! be the Hirzebruch surface of degree e. Put L:=4C, + ff,
where f is an integer satisfying

(15) et+f>2.
We consider the P'-bundle

n: X=POy®0y(L)-Y,
and set Lo=04(1), Dg=n*C, and F=n*f.

LEMMA 5.3. Let V be an irreducible reduced divisor on X linearly equivalent to 2L,.
Then,

() wy>a*(Ky+L)|,~n*Q2Co+(B+e—2)f)

Q) wi=16e+8Bp—16,

3) p(V)=6e+3B-3,q(V)=0.

PrOOF. Since Ky~ —2Ly+7n*(Ky+L) and o, ~(Kx+ V)|V, we get (1). Since

LoD%i=e, LyDyF=1 and LyF*=0, we get (2) by (1). Considering the cohomology long
exact sequence for 0—0(Ky)— O(Ky + V)—-w,—0, we easily obtain (3) by (15).

Vs

q.e.d.

5.4. Let V be as above. By a suitable system of homogeneous fiber coordinates
(Xo:X,) of m: X— 7, the equation ¢ of V' can be written as

(16) d=Xi+¢, X3,

where ¢,, € H(Y, O(2L)). We note that V is a double covering of Y via nly and its
branch locus is By, =(¢,;). We assume that B, is reduced. Then V is normal. Set
A=mgom IV : V- P*. Then, by the Hurwitz formula, a general fiber of 1 is a hyperelliptic
curve of genus 3. Assume further that

(*) By has k infinitely close triple points (cf. [13, §1]) and / ordinary quadruple

points, and the other singularities of B, are at most double points.

The V is a normal Gorenstein surface with k singular points of type Eg and I
singular points of type E,. We remark that the other singularities are at most RDP’s.
Let o: V*— 1 be the minimal resolution of all singularities of V. Then by (14), (i) and
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(ii) of 5.1 and Lemma 5.3, we have
17) xwOp)=6e+3p—2—k—1, wp.=16e+88—16—k—2I.

In order to construct B, satisfying ( * ), we use the method essentially due to Persson
[13]. For an integer r>0, any ¢ € H%(Y, O(2C,+rf)) can be written as

l/’=‘/er(2)+‘//r+eY0Yl_i'l//r+Zer

where (Y,:Y,) is a system of homogeneous fiber coordinates of =,: Y—P' and
U, +i.€ HOP, O(r+ie)), 0<i<2. We put Cy=(Y,) and C,=(Y;). We often identify
them with the base curve P! of Y.

We define a sublinear system of |2C,+rf | by

|2C0+rf|P={(l//) l//=!//rY(2)+lpr+ZeY§}

and call it Persson’s system. As is easily seen, it has the following properties:

(a) Putye|2Cy+rf|p. If Y, ,. and ¢, have simple zeros only and if they have
no common zero, then () is nonsingular. We regard (¢, , ,.) and (,) as reduced divisors
on C, and C,, respectively. Set (y,,,)=Y 1" P, and (y,)= fi;j;, +1 P Then the
tangent line T () of () at P; is vertical for 1 <i<2e+2r, i.e., Tp, coincides with the
fiber of m, passing through P;.

(b) Let ky, k,, and / be nonnegative integers satisfying k,<2e+r, k,<r and
I<2e+2r—ko—k,—1. Let Py, ---, P,, and Q, - -, Q,  be mutually distinct points
on Cy and C, respectively, and let R,, - - -, R, be generic points on Y\ (Cou C,). Let
A be the linear subsystem of |2C,+rf | p consisting of those elements passing through
all the ky+k,, +! points P;, Q;, R,. Then a general member of A is nonsingular, and
we have dim A =2e+2r—ky—k,—I>1. Moreover, the system A has no base point
except P, Q;, R;.

By using these properties, we can show the following:

LemMA 5.5. Fix a nonnegative integer | and put

Kmax = max {[2/3)@de+p—21, =T+ [(2/3)(B—-21)]1}

where [, and [, run through nonnegative integers satisfying I, +1,=1,4e+p—2/,—2>0
and B—21,>0, and [q] is the greatest integer not exceeding q. Then, for any integer k
with 0<k <k, there exists a reduced divisor B on Y such that

(1) B~8Co+28f,

(2) B has k infinitely close triple points and | ordinary quadruple points. The other
singularities of B are at most double points.

PrROOF. Let ky, k,, be nonnegative integers satisfying

(18) k=kotke, ko<[(2/3)d4e+B—21,—-2)], ko<[2/3(B—2L)].



ALGEBRAIC SURFACES OF GENERAL TYPE 533

We choose mutually distinct points Py, ---, P,, on Cy and Q,, -+-,Q, on C,. We
also choose general points Ry, -+, R, on Y\ (CouC,).
When Siseven, weset r;=[f/2] for 1 <i<4. When fisodd, wesetr, =r,=[f/2]+1

and ry=r,=[f$/2]. By (18), we can choose nonnegative integers ky(i) and k(i) for
1 <i<4 such that

W) ko)<2e+r,—1,—1 km(i)<r —1,,

(i) there are subsets {P{, -, PP} and {QY), -- }:’ 00 o) of {P;1<j<ky}
and {Q; 1<j<k,}, respectively, such that Y7 (P “’+ + PP = 32 P; and
Y1 @P+ - +00 ) =3152.0"

Let A; be the subsystem of | 2Co +r; f | p consisting of elements passing through all
the ko(i)+ k(i) +! points P, -- }:g(,,, 09, ---,00:and Ry, ---, R,. Let B, be a
general member of A; and set B= Z:= B;. Then B satisfies (1) and (2). q.e.d.

Take k,/ and B as in Lemma 5.5 and let p:=n|,: ¥>Y be the double cover
branched along B. V has k, (resp. k) singular points of type Eg on u~*(C,) (resp.
p~YC,)) with k=k,+k, and [ singular points of type E, on u~{(¥Y\(CouCy)).
Moreover the other singularities of V are at most RDP’s. We let : V*—V be the
minimal resolution.

PROPOSITION 5.6. Assumethatkyo<3e+p—2, k. <e+f—2andk+I1<6e+3p—1.
Then, we have:

(1) p(V*)=p,(V)—k—1 and q(V*)=0.

(2) | Kys| is free from fixed components, and has exactly k base points. Especially
V* is relatively minimal.

(3) The canonical map of V* is generically 2:1 map onto its image.

PROOF. Setji=aop, {ny, My ={Py, " ", P, Q1,7 O.r Ry, -+, R} and
&;=pn" (n,) for the sake of brevity. By (i) and (ii) of 5.1 and Lemma 5.3, we have

i=1

(19) KV*:;I*(KY+L)®(9V*<—’C§ Ei> ,

where E;=¢"!(&) is the exceptional elliptic curve. Hence from the exact sequence
0 O(Ky»)—~>0(a*(Ky+ L)) > D E—0,

we get the exact sequence l

(20) 0—HO(V*, Ky)—> HOV*, i*(Ky+ L) 5 @ Cy,,

where Cy, is the sheaf of constant functions on E;.

Since V is normal, ¢,0y,.~0,. Thus we have [, i*Oy(Ky+L)~p, (u*OyKy+
L)®0,0y)~0y(Ky+ L)@, 0y > Oy(Ky+ L)YR(Oy® Oy(— L)) ~ Oy(Ky + L)D Oy(Ky).
Hence H°(V*, i*(Ky+ L)) is isomorphic to H(Y, Ky+ L) and its dimension is p,(V).



534 T. ASHIKAGA AND K. KONNO

We show that p in (20) is surjective. Forany y € H)(Y, Ky + L)~ HO(V*, i*(Ky+ L)),
the map p is given by

pW)=W,), - ¥+ )) € D Cy,

where Y(n,) is the value of Y at ,.

Denote by M;, 0<i<k+]1, the linear subsystem of | Ky + L| consisting of elements
passing through #,, - - -, n;. If n;,, does not belong to the base locus of M, then the
descending filtration

|Ky+L|=M¢>M,> " >My,

satisfies dim M, , ; =dim M;—1 for any i.
On the other hand, for any (¢)e| Ky + L |=|2Cy+(e+ B —2)f |, ¢ can be written as

O=0osp-2Yo+P2045-2Y0Y) +¢Se+ﬂ—2Y% )

where ¢, 5-,€ H(P', O(ie+ f—2)). Thus from our construction and assumption, it is
easy to see that, for each 0<j<k+1/, M; separates points on Y\ {n;, - - -, ;}, that is,
for any points P, Qe Y\ {n,, - --,n;}, there exists (¢)e M; such that ¢(P)=0 and
$(Q)#0. Especially the base locus of M coincides with {#;, - - -, #;}. Thus p is surjective.
Then, by (20), we get (1). Moreover, since the rational map of Y associated with M,
is birational onto its image, (3) follows.

It remains to prove (2). By the above argument, the base locus of | K| is contained
in Uf;'i E,. Since a generic member of M, ., passes through #; (1<i<k+/) smoothly,
E;isnot a fixed component of | K. | by (19). Thus | K. | is free from fixed components.

Let n; be an infinitely close triple point of B. Let C be a member of M, ,, and C*
the proper transform of u~!(C) by a. When C varies in M, ,,, C* passes through the
unique point on E;. (This is easily observed by means of the canonical resolution.)
However, it is not the case when # is an ordinary quadruple point. Thus | K,.| has
exactly k base points. q.e.d.

THEOREM 5.7. Let x, y be any pair of integers satisfying one of the following two
conditions:

(@) B3)x—8<y<dx—16, y#(1/3)(8x—i) (i=21, 23).

(b) y=4x—i,x>6 and x is equivalent modulo 5 to j, where (i, j)=(8, 0), (9, 2),
(10, 2), (10, 4), (11, 1), (11, 4), (12, 1), (12, 3), (12, 4), (13, 0), (13, 1), (13, 3), (14, 0), (14, 1),
(14, 3), (14, 4), (15, 0), (15, 2), (15, 3), (15, 4).

Then there exists a minimal surface S such that

(1) py(S)=x, q(S)=0 and ci(S)=y,

(2) thereisafibration J: S— P whose general fiber is a hyperelliptic curve of genus 3,

(3) |Ks| is free from fixed components and @y is of degree 2 onto its image.

PrOOF. Weset 0</<4, e+ >3 and (e, B, k) #(0, 3, 0). Then the assumptions in
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Proposition 5.6 are satisfied. Under these conditions, we let k vary with 0<k<k_,,,.

By (17), Lemma 5.5 and Proposition 5.6, a calculation shows that the invariants of our
surfaces cover the area (a) and (b). q.e.d.

REMARK 5.8. If a regular surface has a hyperelliptic pencil of genus 3, then it
satisfies ¢} >(8/3)p, —8. See, [10, V] or [13].

6. Surfaces of type II. In this section, we give some remarks on surfaces of type
II. Let S be a minimal surface of type II in the sense of §1. We assume that the
irregularity of S vanishes. Then the canonical image S’ is a rational ruled surface. Thus
S has a hyperelliptic pencil induced by the canonical map and the ruling of S’

For the hyperelliptic structure of S, we have the following theorem due to Xiao

[16, §17:

THEOREM 6.1 (Xiao). Let S be a regular minimal surface of general type with a
hyperelliptic pencil. Suppose that the invariants of S satisfy

PS)>(2g—1)(g+1)+1, c1(S)<(@g/(g+ DN p(S)—g—1)

for some integer g>2. Then S has a hyperelliptic pencil of genus g. Moreover, the
hyperelliptic pencil of genus less than g+ 1 is unique.

COROLLARY 6.2. Assume that S is a regular surface of type 1 with ¢} =3p,—1. If
p,(S)=46, then it has a hyperelliptic linear pencil of genus less than 5.

For the existence of surfaces of type II with hyperelliptic pencils of genus less than
5, we have the following:

PROPOSITION 6.3. Let g be 2, 3 or 4. Then, for any pair of integers (x, y) satisfying
y=3x—"7 and x>4, there exists a minimal surface S with a hyperelliptic linear pencil
of genus g such that p(S)=x, g(S)=0 any c}(S)=y.

Proor. The case g=2 follows from a more general result of Persson [13, §3].
The case g=3 with p,>6 follows from Theorem 5.7. For p,=4, 5, consult [9] and [10,
Iv].

We consider the case g=4. Set (k, /)=(1, 3) or (2, 1). By an argument similar to
that in §5, there exists a reduced divisor B on Y=2, such that

(i) B~10C,+26f (8=0),

(ii) B has k infinitely close triple points and / ordinary quadruple points, and the
other singularities are at most double points.

Let V be the double covering of Y branched along B. If S is the minimal resolution
of V, then

PS)=10e+4(B—1)—k—1, ¢(S)=0,
cX(S)=30e+ 12(8—2)—k—2I=3p,(S)—7,
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and S has the desired properties. q.e.d.

REMARK 6.4. For a given g>2, there exists a regular surface of type II with a
hyperelliptic pencil of genus g. Indeed, we have constructed in the proof of Proposition
6.3 a surface S using the double covering ¥V of Y=P! x P! whose branch locus B is
linearly equivalent to 10C,+2ff for any f>3. The second projection of Y induces on
S another hyperelliptic pencil of genus g’=f—1. So we cannot give an upper bound
on the genus of hyperelliptic pencils.
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