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Introduction. Let S be a minimal algebraic surface of general type defined over
the complex number field C. Castelnuovo's second inequality states that if the canonical
map of S is birational, then cl(S)>3pg(S)-Ί (see [4], [10, II, §1], [1]).

In the present paper, we study minimal algebraic surfaces of general type with
c\ = 3pg — l. These surfaces are classified into two types according to the nature of their
canonical map Φκ:

Type I: Φκ is a birational holomorphic map onto its image.
Type II: Φκ birationally induces a double covering of a ruled surface.
Historically, surfaces of type I were already known to Castelnuovo [4]. He showed

that the canonical image of a type I surface is always contained in a threefold of minimal
degree and he determined its divisor class. For a modern treatment of his argument,
see Harris [6]. On the other hand, Horikawa [9], [10, IV] has studied, among others,
surfaces of types I and II in detail when (pg, cf) = (4, 5), (5, 8). Especially he completely
determined their deformation types. Surfaces of type I with pg = 7 and cj = \4 were
recently studied by Miranda [12].

The paper consists of two parts: §§1-4 and §§5-6. The former part is devoted to
surfaces of type I. In §1, we show that surfaces with cl = 3pg — Ί are divided into two
types mentioned above and review Castelnuovo's argument to classify surfaces of type
I according to the threefold W on which the canonical image lies. We remark that, in
most cases, Wisa rational normal scroll (see, [6] and [5]). We prove that the canonical
image has only rational double points and that almost all type I surfaces have a pencil
of nonhyperelliptic curves of genus three (Theorem 1.5). Proof of some Claims needed
in §1, concerning the liftability of the canonical map to a nonsingular model of W, is
postponed to §2. The technique employed here is essentially due to Horikawa [10].
In §3 and § 4, we study deformations of type I surfaces and compute the number of
moduli (Theorem 3.2 and Proposition 4.3). Though we try to determine their deformation
types, many cases are left unsettled. In §4, we construct a family of surfaces in which
the central fiber is of type II and a general fiber is of type I.

The latter part, §§5-6, is devoted to surfaces of type II. In view of the vanishing
of irregularity of a type I surface (see, §1), we restrict ourselves to regular surfaces of
type II. Our concerns here are pencils of hyperelliptic curves. From a remarkable result
of Xiao [16], we know that a surface of type II has such a pencil of genus less than
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five provided pg>46. In §5, we construct minimal surfaces with pencils of hyperelliptic

curves of genus 3 whose invariants (pg, cj) cover a certain area in the zone of existence,

which of course contains the line c\ = 7>pg — l (Theorem 5.7). By the same method, we

can show the existence of type II surfaces with pencils of hyperelliptic curves of genus

2, 3 or 4 (Proposition 6.3).

ACKNOWLEDGEMENT. We thank the referee for pointing out several mistakes in

the earlier version. We are also informed that Professor Eiji Horikawa studied type I

surfaces more than ten years ago (unpublished).

1. Canonical map and surfaces of type I. Let S be a minimal algebraic surface

of general type defined over the complex number field C for which the geometric genus

pg(S) and the Chern number cl(S) satisfy the conditions c\ = ?>pg — Ί and pg>3. We let

Φκ: S-^P^'1 denote the rational map defined by the canonical linear system | AΓ|. We

put S' = ΦK{S) and call it the canonical image of S. We denote by φκ: S-+S' the natural

map induced by Φκ.

LEMMA 1.1. Let S be as above. Then we have the following two possibilities:

(1) I K\ is free from base points and φκ is a birational holomorphic map.

(2) φκ is a rational map of degree 2 andS' is birationally equivalent to a ruled surface.

PROOF. We remark that φκ is generically finite, since \K\ is not composite with

a pencil by [1, Lemma 5.3]. Since S' is irreducible and nondegenerate (i.e., is not

contained in any hyperplane in PPβ~1), we have the inequality

^>(deg(/> κ )(deg^)>(deg φκ)(Pg-2).

Thus we have degφκ<2. Ifdegφκ= 1, then | K\ has no base points by [10, II, Lemma

(1.1)] and [9, Lemma 2]. If d e g 0 x = 2, then we get degS"<2/? g-4. Therefore it follows

from [1, Lemma 1.4] that Sf is birationally equivalent to a ruled surface. q.e.d.

We say that S is of type I or of type II according as whether the degree of φκ is 1 or 2.

1.2. Surfaces of type I were essentially known to Castelnuovo [4]. Here we recall

his argument. Our reference is [7] and [6].

We recall fundamental properties of the Hubert function hx defined for any

projective variety XaPr by

hx(n) = dim c Im{/>: H°(Pr,

where p is the restriction map and n is a nonnegative integer. If Y is a general hyperplane

section of X, then we have for any n > 0

(1) δhx(n): = hx(n)-hx(n-l)>hγ(n).

We remark that X is protectively normal if δhx(ή) = hγ(ή) holds for any n.



ALGEBRAIC SURFACES OF GENERAL TYPE 519

Now let S be a surface of type I and put r=pg — 2. Since | K\ has no base point,

a general member Ce \K\ is irreducible nonsingular and has genus g(C) = 3r. If we put

C' = ΦK(C), then it is an irreducible nondegenerate curve in PraPr+1 and

dcgC' = K2 = 3r— 1. We letΓ denote a general hyperplane section of C . Since it is a

nondegenerate set of 3r — 1 distinct points in uniform position, we have

(2) Ar(n

Since 2K\C is the canonical divisor of C and Λc(l) = r + 1, it follows from (1) that

3r = Λ°(C, Θ(2K |c)) > hc{2) > r + 1 + h^).

This and (2) show hΓ(2) = 2r—l and hσ(2) = 3r. By a similar calculation, one gets

/z°(C, 0(nK |c)) = hc{n) and (5/zc(n) = ΛΓ(n) for any n > 0. This implies that C is projectively

normal.

We turn our attention to the canonical image S'. By the well-known formula for

pluri-genera of minimal surfaces of general type combined with (1), we get

From this, we have g(S) = 0, h°{2K) = hs{2) and δhs{2) = hc{2). By a similar calculation,

one can show hs>(ή) = h°(S, Θ(nK)\ δhs{ή) = hc{ή) for any «>0. Therefore, S' is also

projectively normal and the multiplication map SymnH°(S,(9(K))-+H0(S,Θ(nK)) is

surjective for any n > 0. This implies that the canonical ring of S is generated in degree

1 and therefore S' is isomorphic to the canonical model of S. In particular, S' has only

rational double points (RDP's, for short) as its singularity.

We show that S' is contained in an irreducible threefold W of minimal degree r— 1

in Pr+1, cut out by all quadrics through S'. Since hΓ(2) = 2r— 1, Castelnuovo's Lemma

(see, e.g., [7]) shows that Γ lies on a rational normal curve R of degree r—\ in Pr~ι

cut out by all quadrics containing Γ. From this, we get h°(Pr~1,<fΓ(2)) = h°(Pr~1,

JR(2)) = {r- l)(r-2)/2, where <fx is the ideal sheaf of X. On the other hand, we have

h%Pr + \Ssί2)) = h0(Pr+\Θ(2))-h°(S,Θ(2K))==(r-\)(r-2)/2. Therefore, the linear
system | </s>(2) | of quadrics through Sf is restricted onto | JΓ(2) \ isomorphically, and

its base locus W is an irreducible threefold of minimal degree.

1.3. To describe W, we introduce some notation. Let $ be a locally free sheaf of

rank p on Pq and let w: P($)-+Pq be the associated projective bundle. Then the Picard

group of P($) is generated by the tautological divisor Γsuch that m^Θ{T) = $ and the

pull-back F by w of a hyperplane in Pq. We note that the canonical boundle of P($)

is given by

(3) KP(S) = Θ{-pTHAtg{άtiS)-q-\)F).

According to the classification of irreducible nondegenerate threefolds of minimal degree

in P*-1 (cf. [5] or [6]), W is one of the following:
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(A) P 3 (/>, = 4).
(B) a hyperquadric (pg = 5).
(C) a cone over the Veronese surface, i.e., the image of the /^-bundle

W=F\Θp2®ΘP2{2)) under the holomorphic map Φτ induced by | T\ (pg = T).
(D) a rational normal scroll, i.e., the image of the P2-bundle Pa,b,c =

PφPi{a)®ΘP,(b)®ΘPi{c)) on P1 under the holomorphic map Φτ induced by \T\
(pg>6), where a, b, c are integers satisfying

(4) 0<a<b<c, a + b + c = pg-3.

1.4. We study S more closely in each of the above cases. Claims I-IΠ below will
be proved in the next section.

The first two may be clear:
Case (A): S' is a quintic surface in P 3 .
Case (B): S' is a complete intersection of a quadric and a quartic.

These are extensively studied by Horikawa in [9], [10, IV].
Case (C): The map Φ: W-+ W is the contraction of the divisor T^ ~ T- 2F, where

the symbol ~ means the linear equivalence.

CLAIM I. We have a holomorphic map μ: S^P2 of degree 3. Let φ: £-• W be the
natural map induced by the canonical map. Then φ can be lifted to a holomorphic map
φ: S-^W over μ such that K=ψ*T. Further, S" = ψ(S) has only RDP's.

We show that S" is linearly equivalent to 3Γ+F. Since μ is of degree 3, S" is
linearly equivalent to 3Γ+αFfor some integer α. Then, since deg£"= 14, we have

14=Γ2(3Γ+αF)=12 + 2α,

where we used the relation Γ2 = 2ΓFin the Chow ring of W. Therefore S"~3T+F.
We note that the linear system \3T+F\ is free from base points and contains an
irreducible nonsingular member.

We compute the invariants of £"' for the sake of completeness. Since Wis rational,
we have Hq(W, Θ(Kψ)) = Q for q<3. By the cohomology long exact sequence for

we get H\S'\ωs,)~H\W,Θ{T))~Hq(P2,Θ®Θ{2)) for q<2. This shows pg{S")\ =
h°{ωs,) = Ί and h1(ωs.) = h\Θs,,) = 0. Further, since ωs.. = 0s..(T), we get ωj-=14 =
3pg(S")-Ί.

Case (D): This case is divided into three subcases

(D.I): a>0 , (D.2): a = 0, b>0 , (D.3): a = b = 0 .

We remark that W is singular in the cases (D.2) and (D.3).

CLAIM II. (D.3) cannot occur. If (D.2) is the case, then there is a lifting φ : S-+POtbtC
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of the natural map S^W such that K=ψ*T. Further, S" = ψ(S) has only RDP's.

We let ψ: S->PatbtC denote the map induced by Φκ in Case (D.I) and the map in

Claim II in Case (D.2). Put S" = ψ(S). It is nothing but S' in Case (D.I). We show that

S" is linearly equivalent to 4T—(pg — 5)F. For this purpose, put S"~ccT+βF. Note that

the fibers of w | s.. are plane curves of degree α. Since S" is birational to the surface S

of general type, we have α > 4 . Recall that we have T3 = (pg — 3)T2F in the Chow ring

of PatbtC. Since degS' = 3pg-Ί, we have

3/7,-7= T2

On the other hand, it follows from (3) that KPatbte + S"~(aL-3)T+(pg-5 + β)F. Since

T and KPa bc + S" are equivalent on S", we get

0 = TS"(KPa b c + S" - T) = α(α - 4 ) Γ 3 + β(oc -4)T2F= (α -4)(αΓ 3 + β).

From these, we get S" ~4T— (pg — 5)F. The numerical invariants can be computed

similarly as in Case (C): for q<2, we have hq(ωs,,) = hq(Pa^c,Θ{T)) = h°{P\

Θ(a)®Θ(b)®Θ{c)) and thus pg(S") = a + b + c + 3=pg{S) by (4) and h\ωs^ = 0; since

ωS' = ®s-{T)> we get ω2

s,, = 3Pg-Ί.
As to the linear system \4T—(pg — 5)F\, we have the following:

CLAIM III. The linear system \4T—(pg — 5)F\ on Pabc contains an irreducible

member with only RDP's if and only if

(5) α + c<36 + 2 , b<2a + 2.

Now we get the following theorem essentially due to Castelnuovo [4]:

THEOREM 1.5. If S is a surface of type I, then the irregularity q(S) vanishes. Its

canonical image S' is projectively normal and has only RDP's as its singularity.

Furthermore, it is contained in an irreducible nondegenerate threefold of minimal degree.

S' is either

(1) a quintίc surface in P3 (pg = 4),

(2) a complete intersection of a quadric and a quartίc in PA (pg = 5),

(3) the image in the cone over the Veronese surface of a member S" e\ 3 Γ + F | on

P(Θp2®Θp2(2)) under the holomorphic map defined by \T\ (pg = 7), or

(4) the image in the rational normal scroll of a member S"e\4T—(pg — 5)F\ on

P((9Pi(a)(&Θpi(b)ξBΘpi(c)) under the holomorphic map induced by \T\, where a, b, c are

integers satisfying 0<a<b<c, a + b + c =pg — 3, a + c<3b + 2 and b<2a + 2 (pg>6).

2. Lifting of the canonical map. In this section, we prove Claims I, II and III

which are assumed in 1.4. We make use of the standard fact that if a surface admits a

map of degree less than three onto a ruled surface, then the canonical map cannot be

birational.
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Among others, we use the following notation. For any nonnegative integer e, we
denote by Σe = P[ΘPiφΘPι(e)) the Hirzebruch surface of degree e. We let Co and /
denote the tautological divisor (CQ = e) and a fiber, respectively.

2.1. In the cases (C) and (D.2), the threefold W is a cone over a nonsingular
surface V. Let Λo be the pull-back to S by Φκ of the linear system of hyperplanes
through the vertex of W. We can choose a basis {x0, xί9 — -,xp γ} of H°(S, Θ(K))
such that xu "-9xPg_1 span the module of Ao. We let G denote the fixed part of Λo

and put Λ1=Λ0 — G. Since \K\ is free from base points, we can assume that
Supp((xo))nSupp(G) = 0 . In particular, we have KG = 0. When G is not 0, we denote
by ζ the section of 0([G]) with (0 = G.

2.2. PROOF OF CLAIM I. Since V is the Veronese surface, we have a net A such
that 2HeAί for He A and K-2H+G. Since A:2 = 14 and £G = 0, we have
Ί = KH=2H2 + HG. Since KH+H2 is even, we get //2 = 1 or 3. Let μ: S - P 2 denote
the rational map induced by A. If H2=\, then μ is birational. This contradicts the
assumption that S is of general type. Therefore, we get //2 = 3, HG= 1 and G2= —2.
We claim that μ is holomorphic. Indeed, if μ is not holomorphic, then blow S up at
any base point of A and let H be the proper transform of H. Then we have H2<H2 = 3.
This means that μ is of degree <3 onto P2, contradicting the fact that S is of type I.
Therefore, μ is holomorphic and degμ = 3. The pair (ζ,x0) defines a homomorphism
ΘS^ΘS(G)®ΘS{K), which in turn gives a section σ: S-*SxvW because Supp((xo))n

Supp(G) = 0. We get a holomorphic map φ: S-> ίϊ̂  by setting ^ =/?r2 ° σ, where /?r2 is
the projection of Sx VW on the second factor. It is clear from the construction that
^*Γ00 = G. Therefore K~2H+G~2φ*F+φ*(T-2F)~φ*T. Note that W is obtained
by blowing up the vertex of W, and S" is the proper transform of S". Since 5" has only
RDP's, we see that 5" has only RDP's.

2.3. PROOF OF CLAIM IL We separately treat (D.2) and (D.3).
(D.2) 0 = 0, 6>0, b + c>3: W is a cone over K=Σ c_ b embedded into p * + c + 1 by

I Co + */ | . Let J\f be the /^-bundle Λ^2;c_bθ^Ic_b(Co + 6/)) on Σc_b. We denote by π
and Lo the projection map and the tautological divisor, respectively. Then W is the
image of X under the holomorphic map ΦLo defined by | Lo |. Let L^ be the divisor on
X which is linearly equivalent to Lo — π*(C0 + 6/). Then we have the holomorphic map
v: X->POtbtC which contracts L^ to a nonsingular rational curve Z and satisfies
ΦLO = Φ Γ ° V , V * Γ = L 0 .

We first show that φ: S-*W can be lifted to a holomorphic map φ: S^X. A1

induces a rational map μ: S^>Pb+c+ί whose image is V. We let p: S^>S denote a
composite of blowing-ups such that the proper transform A of Aγ is free from base
points. We can assume that p is the shortest among those which enjoy the property
mentioned above. Let E be the exceptional divisor of p. Then the canonical divisor K
of S is linearly equivalent to p*K+E. Further, we have p*K~μ*(C0
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where μ: S-*Σc_b is the holomorphic map induced by A and E is a sum of exceptional
curves satisfying E>E. We put L = μ*(C0 + Z>/). Then

Since degμ is at least 3, we have degμ = 3 and L(E+p*G) = 2. We also remark that

0 = (p*K)(p*G) = L(p*G) + G2 , 0 = (p*K)E=LE+E2 .

We have the following three possibilities:
(1) LE=0,L(p*G) = 2.
(2) L£=l,L(p*G)=l.
(3) LE=2,L(p*G) = 0.
If (1) is the case, then we have LE=E2 = 0. By the Hodge index theorem, we get

E=0. This means that p is the identity map. Further we have G 2 = - 2 . If (2) is the
case, then we get G 2 = — 1 which contradicts the fact that KG + G2 is even. If (3) is the
case, then we have G = 0 and £ 2 = - 2 . Since KL + L2 = 6(b + c) + 2 + LE, we see that
LE is even. Since p is the shortest, EΦQ implies the existence of a (— l)-curve Eo with
LE0 > 0 which is contained in both E and E. Thus LE is positive. From this and LE<LE,
we conclude LE=2. We see that μ(E—E) cannot be a curve, because L(E—E) = 0 and
L is the pull-back of the ample divisor Co + bf. This in particular implies (μ *f)(E—E) = 0.
Then we get a contradiction, because K(μ*f) + (μ*f)2 = 3f(C0 + bf) + (E+E)(μ*f) =
3 + 2£(μ*/)isodd.

In summary, p is the identity map and μ is holomorphic. Then, as in 2.2, we get
a lifting $:S->X such that φ*LO0 = G. We remark that K~{φoπ)*(C0 + bf) +
(?*L00^<^*L0. Thus we get the desired map φ by putting ψ = vof

By the same reasoning as in the proof of Claim I, we see that S* = φ(S) has only
RDP's. Since KG = 0, G consists of (-2)-curves. Therefore, we obtain S" from S* by
contracting some ( —2)-curves. This implies that S" has only RDP's.

(D.3) a = b = 0, c > 3: W is a generalized cone over a rational normal curve of degree
c+1 in Pc+2 and the ridge of W is a line. We let A be the pull-back to S of the linear
system of hyperplanes containing the rigde. Then it is composite with a pencil | D \ and
we have K~cD + G, where G is the fixed part of A (see, [10, I, §1]). Since
3c + 2 = K2 = cKD + KG, we get KD=l, 2 or 3. Since KD + D2 is even and
KD = cD2 + Z)G, we have the following possibilities:

(1) KD = 2, D2 = 0,DG = 2.
(2) KD = 3, D2 = 1, DG = 0 (in this case c = 3).

If (1) is the case, then S has a pencil of curves of genus two, a contradiction. If (2) is
the case, then we get G 2 = 2 by 11 = K2 = 9D2 + βDG + G 2. Since Z>G = 0, this contradicts
the Hodge index theorem. Therefore the case (D.3) cannot occur.

2.4. PROOF OF CLAIM III. We choose sections Xθ9 Xx and X2 of T-aF, T-bF
and T— cF, respectively, in such a way that they form a system of homogeneous fiber
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coordinates on each fiber of Pa^c. Then any ΨeH°(PabfC, Θ(4T-(pg-5)F))~
H°(P\ Sym\Θ{a)®Θ{b)®Θ{c))®Θ{-pg + 5)) can be written as '

(6) ψ= Σ

where φtj is a homogeneous form of degree (4 — i—j)a + ib+jc — (pg — 5) on P1. If
4b<pg — 5, then we can divide Ψ by X2 and, therefore, the divisor (Ψ) is reducible. If
3a + c<pg — 5, then (Ψ) is singular along the curve Z defined by Xί=X2=0. Thus the
condition (5) is necessary.

Conversely, assume that (5) holds. If 4a>pg — 5, then the linear system
\4T— (pg — 5)F\ has no base locus and contains an irreducible nonsingular member.
So we assume 4a<pg — 5. Then (Ψ) contains Z, and \4T—(pg — 5)F\ has no base locus
outside it by (5). Thus it suffices to consider the singularity of (Ψ) in a neighborhood
of Z. We shall identify Z with the base curve P1 of POtbtC. If 3a + b >pg — 5, then we can
assume that φί0 and φOί have no common zero. Then (Ψ) is nonsingular in a
neighborhood of Z. We next assume 3a + b <pg — 5.H3a + c=pg — 5, then φOί is constant.
Unless it is identically zero, (Ψ) is nonsingular along Z. If 3a + c>pg — 5, that is, ^ 0 1

is of positive degree, then we can assume that it has only simple zeros. Then in a
neighborhood of a zero P of φ01 on Z, ¥* can be expressed locally as

where xt = XJXQ and ί is a local parameter of Z at P. Thus (!P) is defined locally by

This shows that P is an RDP if Ψ is general. Thus (5) is also sufficient.
We close this section with the following:

PROPOSITION 2.5. Let S be a type I surface with pg = 4 and Sr its canonical image.

S has a pencil of nonhyper elliptic curves of genus 3 if and only if Sf contains a line.

PROOF. Assume that Sf contains a line /. We blow P 3 up along / to get /\>,o,i
Then the proper transform S" of S' is linearly equivalent to 4 Γ + F and has a pencil
of nonhyperelliptic curves of genus 3 induced by the projection map of /\>,o,i

Conversely, assume that S has a pencil | D \ as in the statement. Then we have
AT) = 4, D2 = 0. We choose a general De\D\ and consider the exact sequence

for ι = 0, 1. Since Φκ is birational, H°(K)^H°(KD) is surjective. Thus h°(K-D)= 1. We
show H°(K—2D) = 0. For this purpose, we take a general Ce\K\ and consider

We have H°(-2D) = 0. Further, since C(K-2D)= - 3 , we have H°(C, Θc(K-2D)) = 0.
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Thus H°(K-2D) = 0. We can take woeH°(K-D) and wl9 w2eH°(K) so that they span

H°(KD). Then, by using the triple (vv0, w l 9 w2), we can lift the canonical map to

φ : S-+POtOtί

 a n d h a v e K=Ψ*T. Then S" : = φ(S) is linearly equivalent to 4Γ+i% since

φ(D) is a plane curve of degree 4 (cf. §1). Φκ is the composite of φ and the map Φ τ

induced by \T\. Since # % P θ 5 θ 4 , 0 ( Γ ) ) ~ / f V S 0Θ#Θ#(1)), we can take {XO,XU

Z Q ^ , zγX2) as a basis, where (Xo, Xl9 X2) is the same as that in 2.4 and (z0, zx) is a

homogeneous coordinate system of P1. Φτ contracts the rational curve Xί = X2 = 0. If

(Co: Ci C2 : C3) is a homogeneous coordinate system on P 3 and if Φτ is given by

then, by substituting these to (6), we find that the equation of S' can be written as

where α, β9 7, <5 and ε are homogeneous forms of respective degrees 1, 2, 3, 4 and 5 in

ζ 2, C3. Therefore S' contains a line / defined by ζ2 = ζ3:=0. q.e.d.

3. Number of moduli. In this and the next sections, we study deformations of

surfaces of type I. Since we have Horikawa's works [9] and [10, IV] for pg<5, we

assumep g >6 throughout. Further, we restrict ourselves to the case (D) in §1, because

the case (C) can be found in [12]. Our main result here is Theorem 3.2 below. For a

complex manifold M, we denote by ΘM the tangent sheaf of M.

3.1. We say that S is a Castelnuovo surface of type (α, b, c) if W (or its nonsingular

model) is P α , M , where the integers a, 6, c satisfy the conditions (4) and (5). For the sake

of simplicity, we put W=Pahc even if 0 = 0. We say S to be generic if it is the minimal

resolution of a general member of 14T—(pg — 5)F\.

THEOREM 3.2. Let Sbea generic Castelnuovo surface of type (α, b, c) with c<2a + 2.

Then

'+18 " ">0

> , + 19, if a-0.

Further, the Kuranis hi space is nonsingular of dimension hΐ(Θs) = 5pg+\% ifa>0.

For the proof, we need some lemmas.

LEMMA 3.3. Let Sbea Castelnuovo surface of type (a, b, c) and assume thatpg(S) > 6.

Let \D\be the pencil of curves of genus 3onS induced by the projection map of W— PafbtC.

(1) Ifa>09 then h°(2D) = 3,h\2D) = 0 and h\2D)=pg-6.

(2) //a = 0, then h°(2D) = 3, h\2D) = 1 and h\2D) =pg-5.

PROOF. Let S" be the image of S in PatbtC described in § 1. Since it has only RDP's,
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we have ψ*&s — &s" a n d ^V*^s = 0 f°Γ a>® > where ψ: S->S"' is the natural map. Thus
HP(S, Θ(2D))~HP(S\ O(2F\.S..)) for any p. We consider the cohomology long exact
sequence for

We have HP(W, Θw(2F))~Hp(Pι, 0(2)) and Hp(2F-S"))~H3-p(Θw(Kw + S"-2F))* by
the Serre duality. Since S"~4T-(pg-5)F and a + b + c=pβ — 3, we have Kw +
S"-2F~T-2F. Thus H^-p(Θw(Kw^S"-2F))^H2>~P(P\ Θ(a-2)@Θ(b-2)®Θ(c-
2)). From these, Lemma 3.3 follows. q.e.d.

LEMMA 3.4. IfW=Pa^c, then

r 2(c-α) + 8 + (^-i+ 1)+ +(a-c+ 1)+ +(ft-c+ 1)+ , (q = 0),

h«(W,Θw)=\ (b-a-l)

l
+ = max(m, 0).

PROOF. We recall the fundamental exact sequences

(7) 0->Θw/pι^Θw^m*Θpί^0

and

(8) Q^Θ

where Θw/Pι is the relative tangent sheaf. Since any automorphism of P1 preserves
Θ(a)®Θ(b)®Θ(c\ the natural map Ku^W^Kw^P1) is surjective, hence so is the map
H°(Θw)^>H°(m*ΘPi). By (7) and the isomorphism Hq(m*Θpl)~Hq(Θpί), we have
h°(Θw) = h°(Θw/pι) + 3 and hq(Θw) = hq(Θw/pl) for q>0. Then a calculation using (8)
shows Lemma 3.4. q.e.d.

LEMMA 3.5. Let S be as in Lemma 3.3 and consider the linear map

ψ*
(1) Ifa>0, then φ* is bijectiveforp<\ andh2(ι//*Θw)=pg — 6.
(2) If α = 0, then φ* is bijective for /> = 0 and is injective for p=\. Furthermore,

\φ*Θw) = h\Θw)+\, h2(Ψ*Θw)=pg-5.

PROOF. We use the commutative diagram

H"(ψ*Θw/P,) - H"(φ*Θw)

T ί

where the bottom row comes from the exact sequence (7). By Lemmas 3.3 and 3.4, it
suffices to show that Hp(Θwlpi)^Hp(φ*ΘWIPι) is bijective for any p. Since we have
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Hp(ψ*Θw/pι)~Hp(S", Θw/pι), we only have to show HP(W, Θw/pι(-S")) = 0 for any/?

in view of the exact sequence

0—>ΘW / Pι( — S")^>ΘWjPι—>ΘWipi \S"->0 .

If Ωw/pl is the relative cotangent sheaf, we get Hp(Θw/pί(-S"))*czH3-p(ΩW(pl{T)) by

the Serre duality. We recall that Hq(P2, Ω1^)) vanishes for any q. Thus we get

Rqw^w/pl(T) = 0 for any q. Then it follows from the Leray spectral sequence that

H3-p(Ωw/pι(T)) = 0 for any p. q.e.d.

LEMMA 3.6. Let S be as in Theorem 3.2 and denote by &~S/w t n e cokernel of the

natural map Θs^nj/*ΘW. Then H2(S, &~s/w) = 0. Further, the composite Poφ* of

ψϊ : H\W, ΘW)->H\S, \I/*ΘW) andP: H\S, ψ*Θw)-*H\S, Fsιw) is surjective.

PROOF. We first assume that 4a >pg — 5. As we have seen in 2.4, a general member

of \4T—(pg — 5)F\ is irreducible and nonsingular. Thus we can assume Se\4T—(pg —

5)F\. Then &~S/w is nothing but the normal sheaf Ns/W. Consider the cohomology long

exact sequence for

We see that Hq(S, Ns/w) = 0 for q>0, because we have Hq(W, Θ(4T-(pg-5)F)) = 0 for

q>0 by the assumption 4a>pg — 5.

We next consider the case 4a<pg-5. As we have seen in 2.4, S" = ψ(S) contains

a rational curve Z defined by X1 = X2 = 0. We denote by v: X-^PatbtC the blowing-up

along Z. It is easy to see that X is the total space of the P1 -bundle

π: P(G(BO(Co + {b — a)f))->Σc-b. We denote by Lo the tautological divisor of X. If we

let L^ be the unique divisor linearly equivalent to L o — π*(C0 + (b — a)f), then

L00 = v" 1(Z). The proper transform of 5"' is in |3L 0 + π*(C 0 + (2α-c + 2)/) | . Since

this linear system has no base points. Thus we can assume 5 G | 3 L 0 +

By a simple calculation, we have Hq{X, Θ(S)) = 0 for q>0. This implies

Hq(S, Ns/x) = 0 for q>0. Then by the exact sequence

we have Hq(S, $~s/w)~Hq{S, &~χ/w\s) f°Γ a>^ Since &'x/w\s is supported on a curve,
we have h2{£~SfW) = h\βΓxιw | s) = 0. By [10, III, p. 235], the following sequence is exact:

We identify Z and L^ with P 1 and Σ c_&, respectively. Then we have

Nz/w^Θ(a-b)@Θ(a-c) and NLoolx~Θ{-C0-{b-a)f). Thus ΓXfWc*v*(detNz/x)®
NtO(C()f)

To show the surjectivity of P°ψ*, it suffices to show that the map

H\X9 v*Θw)-+H1{S, &~χ/w\s) is surjective, since φf is injective by Lemma 3.5. Note
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that we have H2(X, Θx) = 0 by the exact sequence

Thus Hι(X, v*Θw)-+H1(X, έ7~x/w) is surjective. Consider the exact sequence

0->^χ/w(~S)-*$~xjw^**^xιw\s~*v .

Since S | L o o ~C 0 + (2α-c + 2)/, we have 3Γχ/w{-S)^Θ(-(a + 2)f). Then H2(X,
^x/w(-S)) = 0 and thus H\X9 3~XIW)-+H\S, Fx,w \s) is surjective. q.e.d.

3.7. PROOF OF THEOREM 3.2. By Lemmas 3.5 and 3.6, we have

- 6 , if a>0,
h2(S,θs) = <

l/y-5, if a = 0.
Since S is of general type, we have H°(S, Θs) = 0. Thus the formula for hι{Θs) follows

from the Riemann-Roch theorem.

In order to show the second assertion, we use Horikawa's deformation theory of

holomorphic maps [8]. By Lemma 3.3, we have Hί(2D) = 0. Thus it follows from [8,

II, Theoren 4.4] that there is a family p: ^ - • M of deformations of S=p~1(o), oeM,

such that the characteristic map τ : T0M-+DSfPι is bijective. Further, we see from [8,

II, Lemma 4.2] that the Kodaira-Spencer map p: TOM-+H1(ΘS) is surjective. Note that

the parameter space M is nonsingular. Thus we can choose a submanifold N of M

passing through o such that the Kodaira-Spencer map p: TON^HX(GS) is bijective.

This completes the proof.

COROLLARY 3.8. Let S be as in Theorem 3.2. Then the infinitesimal Torelli theorem

holds for S.

PROOF. By the criterion of Kii [11], we only have to show ho(Ω^(K))<pg-2.

Since h°(Ωs(K)) = h2(Θs) <pg - 5, we are done. q.e.d.

4. A remark on deformations.

4.1. We construct a family of deformations of Pa^c (for a geometric treatment

of deformations of scrolls, see [6]). We denote by d the greatest integer not exceeding

(a + b + c)/3. By Lemma 3.3, we can assume (a, b, c)φ(d, d, d), (d, d, d+ 1), (d9 d+ 1, d-{-1),

since in these cases Pabc is rigid.

Let U1 and U2 be two copies of CxP2. We denote by (z; Xθ9 Xί9 X2) and

(z; Xo, Xl9 X2) the coordinates of U1 and £/2, respectively. Then we can construct PaA)C

from Ux u U2 by identifying (z; Xo, Xί9 X2) with (z; Xθ9 Xί9 X2) if and only if

(9) Xo

We let / be a complex parameter and identify (z; Xo, Xl9 X2) with (z; Xo, Xu X2)

if and only if
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(10) X0 = zaX0, Xx=zhXl9 X2 = zcX2 + tza+kX09 z ί = l ,

where k is an integer satisfying 0<k<c — a. Then we get a family {Wt} of P2-bundles

on P 1. For ί^O, we put

Yo = ίX2 , Fi = X1 , / 2 =

fo=r2jeo+/fc- f l- f cje2, f ^ ^ , Ϋ2=X2.

Then we get Y0 = za+kΫ0, Yx=SbYl9 F2 = fc-kF2.Thus Wt^Pa+kthtC.kiftf0. Similarly,

if we consider the families

(11) Xo = zaXθ9 X1=zbX1 + tza+hX0, X2 = zcX2, zz=\

and

(12) ^ 0 = fΛZ 0, Xx=zh1tl9 X2 = zcX2 + tzh+kXx, zz=\

for a suitable fc, then we see that POjbjC is a deformation of Pa+k,b-k,c and Pa,b+kfC-k,

respectively. Thus we get:

PROPOSITION 4.2. The P2-bundle Pa%htC is a deformation of Pi44, Pd,d,d+i o r

Pd,d+i,d+i according as a + b + c is 0, 1 or 2 modulo 3.

PROPOSITION 4.3. Let S be a Castelnuovo surface of type (α, b, c) and assume that

c<2a + 3. Then S is a deformation of a Castelnuovo surface of type (d9 d, d\ (d, d9 d+1)

or(d,d+l,d+l).

PROOF. We showed in §1 that S is a minimal resolution of a surface

S"~4T-(pg-5)FonPa,b,c.

If 3α+l>6 + c, thentfHΛ.ft.o ^(4Γ-(/?g-5)F)) = 0. Thus if je#°(4Γ-(/>,-5)F)

defines 5"', then it can be extended to any family of deformations of Pabc. Thus we get

a family {S?} with S" = S'ό from the family (10) for example. Since S" has only RDP's,

so does S" provided that t is sufficiently small. We simultaneously resolve RDP's (cf.

[2] and [3]) and get a family {St} of deformations of S=S0. This family shows that

S is a specialization of a Castelnuovo surface of type (α + fc, b, c — k). Continuing this

procedure using (10), (11) or (12), we get the desired result.

If 3a + 1 < b + c but c < 2a + 3, we consider the P1 "bundle X in the proof of Lemma

3.6 instead of POtbtC. Since X is a monoidal transform of POtbtC9 a sufficiently small

deformation of the former is a monoidal transform of a deformation of the latter (see,

[8, III]). Indeed, by blowing up the rational curve defined by Xx = X2 = 0 in the family

(12) simultaneously, we get a family {Xt} of deformations of X=X0. We remark that

H\X, Θ(3L0 + π*{C0 + {2a-c + 2)f))) = 0 if c<2a + 3. Thus similar arguments also

work. q.e.d.

REMARK 4.4. The moduli space of Castelnuovo surfaces has several components
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in general. To see this, let μ = dhn\4T-(pg-5)F\-h°(PatbtC9 Θ) be the number of

parameters on which Castelnuovo surfaces of type (α, b, c) depend. Then μ is sometimes

strictly greater than the number 5/^+18 of moduli of a generic Castelnuovo surface as

in Theorem 3.2. For example, if pg= 12, we have

(α,fr,c;μ) = (3,3,3;78), (2, 3,4; 77), (2,2, 5; 74), (1,2, 6; 74),

(1,3, 5; 75), (1,4, 4; 76), (0,2, 7; 79).

4.5. Here we give a family of surfaces with c\ = Zpg — Ί such that the central fiber

is of type II while a general fiber is of type I.

We let W be the /^-bundle PatbtC, where a, b, c are integers satisfying (4) and (5).

We assume that pg is odd and put 2k=pg-5. The linear system \L\, L = 2T—kF, is

free from base points if 2a — k>0, i.e., 3a + 2>b + c. We assume this condition for the

sake of simplicity. We choose ηeH°(W, Θ{L)) which defines an irreducible nonsingular

divisor Y. Let W be the /^-bundle P{ΘW®ΘW{L)) on W. We put Δε = {teC; \t\<ε},

where ε is a sufficiently small positive number. Consider a family {St}, teAε, of

subvarieties of W given by the equation

c f g + α 1 0 1 + α 2 ? 0
(13) St:< , teA

UZ X

<
UZ0 = t9

where (Z o , Z λ ) is a system of homogeneous fiber coordinates on Wand αf e H°( W, Θ(iL)),

1 <i<2. We assume that α's are general.

If tφO, then St is biholomorphically equivalent to a surface in W defined by the

equation yy2 + /α1?y + / 2 α 2 = O. Thus Ste\4T-(pg-5)F\ and it is of type I.

On the other hand, 5Ό is a double covering of Y via the projection map of W.

Since Y is a conic bundle on P1, So has a pencil of hyperelliptic curves of genus three.

Thus it is of type II.

5. Surfaces with hyperelliptic pencils of genus 3. We call a pencil on a surface

a hyperelliptic pencil of genus g if its general member is a nonsingular hyperelliptic curve

of genus g. In this section, we study the geography of surfaces with hyperelliptic linear

pencils of genus 3.

5.1. Let V be a normal Gorenstein surface and denote by σ: V'^V the minimal

resolution of an isolated singularity ξ of V. Then there exists an effective divisor Zξ on

V supported on σ~1(ξ) such that ωv>~σ*ωv®Θ( — Zξ) (e.g., [14]). Then we have

ω\. = ω % + Z\. On the other hand, the spectral sequence Hp( V, Rqσ^Θv) ^>Hp+q( V, Θv)

implies that χ{Θv) = χ{Θv)— pg(ξ\ where pg(ξ) = h°(V, RισJDv) is the geometric genus

of ξ. We call (pg(ξ): —Zf) the type of singularity ξ. If ξ is a double point, then

its type can be easily calculated by Horikawa's canonical resolution ([9, § 2] or

[13, §1]).

Let {ζi}ι<i<s be a set of isolated singularities of V and assume that ξt is of type
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(mh Πi). If K*->K is the minimal resolution of these singularities, then we have

(14) χ(&v*) = χ(&v)- Σ mh ωv* = ωv- £ nt
i=ί i = l

We list the types of the singularities which we shall need later:

(i) If ξ is an RDP, then Zξ = 0. Thus ξ is of type (0:0).

(ii) If ξ is a simple elliptic singularity of type Es or EΊ (see [15]), then Zξ = E,

where E is the exceptional elliptic curve. Thus ξ is of type (1:1) or (1:2) according as

whether it is E8 or EΊ.

5.2. Let π 0 : Y = Σe-^P1 be the Hirzebruch surface of degree e. Put L: = 4C 0 + βf,

where β is an integer satisfying

(15) e+β>2.

We consider the P1 -bundle

π: X=P(ΘY®ΘY{L))->Y,

and set LO = 0X(1), D0 = n*C0 and F=π*f.

LEMMA 5.3. Let V be an irreducible reduced divisor on X linearly equivalent to 2L0.

Then,

(1) ωv

(2) ωl

(3) ^ ( ^ = 6^ + 3 ) 8 - 3 , ^ ^ =

PROOF. Since Kx~ - 2 L 0 + π*(A:y + L) and ω κ ^ C K * + K ) | κ , we get (1). Since

L0Dl = e, L0D0F= 1 and L 0 F 2 = 0, we get (2) by (1). Considering the cohomology long

exact sequence for 0^>Θ(Kx)^Θ(Kx+ F ) - > ω κ ^ 0 , we easily obtain (3) by (15).

q.e.d.

5.4. Let V be as above. By a suitable system of homogeneous fiber coordinates

(Xo \X{) of π : X-> Y, the equation φ of V can be written as

(16) Φ = XI + Φ2LX2I,

where φ2LeH°(Y, Θ(2L)). We note that V is a double covering of Y via π\v and its

branch locus is Bv = (φ2L). We assume that Bv is reduced. Then V is normal. Set

λ = π 0 o π I κ : F-^P 1 . Then, by the Hurwitz formula, a general fiber of λ is a hyperelliptic

curve of genus 3. Assume further that

(*) Bv has k infinitely close triple points (cf. [13, § 1]) and / ordinary quadruple

points, and the other singularities of Bv are at most double points.

The V is a normal Gorenstein surface with k singular points of type E8 and /

singular points of type EΊ. We remark that the other singularities are at most RDP's.

Let σ: K*-» V be the minimal resolution of all singularities of V. Then by (14), (i) and
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(ii) of 5.1 and Lemma 5.3, we have

(17) χ(Θv*) = 6e + 3β-2-k-l, ω\.= 16e + 8jS- \6-k-2l.

In order to construct Bv satisfying (*), we use the method essentially due to Persson

[13]. For an integer r > 0 , any φeH°{Y, Θ(2C0 + rf)) can be written as

ψ=ψrγ
2

0+ψr+eγ0γί+ψr+2eγ
2

1

where (Yo: Yx) is a system of homogeneous fiber coordinates of π 0 : Y-+P1 and

φr+ieeH°(P\Θ(r + ie)), 0<i<2. We put C0 = (Y0) and CO0=(Y1). We often identify

them with the base curve P1 of Y.

We define a sublinear system of 12C0 + rf | by

and call it Persson's system. As is easily seen, it has the following properties:

(a) Put φ e 12C0 + rf \ P. If φr+2e and φr have simple zeros only and if they have

no common zero, then (φ) is nonsingular. We regard (φr+2e)
 a n d (φr)

 a s reduced divisors

on C o and C^ respectively. Set (ψr+2J = Σΐ*ϊr pt and 0/O = Σ?=2"X+i Λ Then the

tangent line TP.((φ)) oϊ(φ) at Pt is vertical for 1 </<2e + 2r, i.e., TP. coincides with the

fiber of π 0 passing through Pt.

(b) Let k0, k^ and / be nonnegative integers satisfying ko<2e + r, k^^r and

l<2e-\-2r — k0 — kO0 — \. Let Pί9 , Pko and Qί9 , Qkoo be mutually distinct points

on C o and C^, respectively, and let Ru , Rt be generic points on F \ ( C o u C J . Let

A be the linear subsystem of 12C0 + rf \ P consisting of those elements passing through

all the k§ + k^ + l points Ph Qp Rk. Then a general member of A is nonsingular, and

we have dimA = 2e-\-2r — ko — kao — l>\. Moreover, the system A has no base point

except Pi9 Qp Rk.

By using these properties, we can show the following:

LEMMA 5.5. Fix a nonnegative integer I and put

* w = max {[(2/3)(4* + β-21, -2)] + [(2/3)08-2/2)]} ,

where lx and l2 run through nonnegative integers satisfying I1 + l2 = l,4e + β — 2l1—2>θ

and β — 2l2>0, and \_q] is the greatest integer not exceeding q. Then, for any integer k

with 0<k<kmΛX, there exists a reduced divisor B on Y such that

(1) B~SC0 + 2βf,

(2) B has k infinitely close triple points and I ordinary quadruple points. The other

singularities of B are at most double points.

PROOF. Let k0, k^ be nonnegative integers satisfying

(18) k = k0 + kO0,
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We choose mutually distinct points Pu , Pko on C o and Qu , Qkoo on C^. We

also choose general points Rί9 , Rt on Y\(CovCao)

When β is even, we set rt = [jS/2] for 1 < i < 4. When β is odd, we set rx = r 2 = [β/2] + 1

and r 3 = r 4 = [/J/2]. By (18), we can choose nonnegative integers ko(i) and kjj) for

1 <i<4 such that

(i) MO < 2e + r, -1, - 1, kjft < n -12,

(ii) there are subsets {Pψ, , P^} and {Qψ, , ρ^ ( i )} of {Pβ 1 <7</τ0}

and {ρ^ l ^ ^ ^ } , respectively, such that Σΐ=i(pf+ ''' + / > M O ) = 3 Σ * ° = I / > ;
 a n d

Let A-x be the subsystem of 12C0 + r f / \P consisting of elements passing through all

the koiή + kjή + l points Pψ, , ^ ( 0 , Qψ, , β < % and Rl9 •••,/?,. Let Λ, be a

general member of A{ and set ^ = X ^ = 1 5 , . Then B satisfies (1) and (2). q.e.d.

Take k, I and B as in Lemma 5.5 and let μ: = π | κ : V^Y be the double cover

branched along B. V has k0 (resp. k^) singular points of type Es on μ~x(C0) (resp.

μ'HCΌo)) with k = k0 + ko0 and / singular points of type £*7 on μ~1(Y\(C0uC00)).

Moreover the other singularities of V are at most RDP's. We let σ: F*->K be the

minimal resolution.

PROPOSITION 5.6. Assume that ko<?>e + β-2,ka,<e + β-2 andk + l<6e + 30 - 7.

77ien, we have:

(1) pβ(K )=/ιβ(K)-fc-/α«rf^(K ) = O.

(2) I Kv* I is free from fixed components, and has exactly k base points. Especially

V* is relatively minimal.

(3) The canonical map of V* is generically 2:1 map onto its image.

PROOF. Set/2 = σoμ, {ηl9 , ηh+ι} = {Pl9 , Pko, Qu , βk a o, Λ l s , Λ,} and

ζi = μ~1(rji) for the sake of brevity. By (i) and (ii) of 5.1 and Lemma 5.3, we have

(19)

where E ^ σ " ^ ^ ) is the exceptional elliptic curve. Hence from the exact sequence

we get the exact sequence

(20) 0->/f°(K*, ^ ) - ^ i / ° ( K * , fi*(Kγ + L)) Λ

where C£. is the sheaf of constant functions on Et.

Since V is normal, σ^Θv*~Θv. Thus we have μί|t/ϊ

Hence /f°(F*, /2*(Jfy + L)) is isomorphic to H°(Y, Kγ + L) and its dimension is pg(V).
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We show that p in (20) is surjective. For any φ e H°( Y, Kγ + L)~ H°{ V*, fi*(Kγ + L)),

the map p is given by

p(Φ) = (Φ(iι), •••,φ(ηk+l))e@CEi
i

where ψ(ηύ is the value of φ at ηt.

Denote by Mh 0<i<k + l, the linear subsystem of \KY + L\ consisting of elements

passing through ηu , η(. If ηi+ί does not belong to the base locus of Mh then the

descending filtration

satisfies d i m M i + ί = dim Mt — 1 for any /.

On the other hand, for any (φ) e | Kγ + L \ = \ 2C0 + (e + β - 2)/1, φ can be written as

where 0 ί e + / ? _ 2 e// o (/ > 1 , Θ(ie + β — 2)). Thus from our construction and assumption, it is

easy to see that, for each 0 </</: + /, Mi separates points on F\{^ 1 ? , η3), that is,

for any points P,QeY\{ηl9 •• ,^ J }, there exists (φ)eMj such that φ(P) = 0 and

Φ(Q) #0- Especially the base locus of Mj coincides with {ηu , ̂ } . Thus pis surjective.

Then, by (20), we get (1). Moreover, since the rational map of Y associated with Mk+ι

is birational onto its image, (3) follows.

It remains to prove (2). By the above argument, the base locus of | Kv* | is contained

in U*=ί Ei Since a generic member of Mk+ι passes through η( (1 <i<k + l) smoothly,

Eι is not a fixed component of | Kv* | by (19). Thus | Kv* \ is free from fixed components.

Let r\i be an infinitely close triple point of B. Let C be a member of Mk+ι and C*

the proper transform of μ~1(C) by σ. When C varies in Mk + h C* passes through the

unique point on Et. (This is easily observed by means of the canonical resolution.)

However, it is not the case when η is an ordinary quadruple point. Thus | Kv* | has

exactly k base points. q.e.d.

THEOREM 5.7. Let x, y be any pair of integers satisfying one of the following two

conditions'.

(a) ( 8 / 3 ) J C - 8 < 7 < 4 X - 1 6 , ^ ^ ( 1 / 3 ) ( 8 X - / ) ( / = 2 1 , 2 3 ) .

(b) y = 4x — i, x>6 and x is equivalent modulo 5 to j, where (iJ) = (S, 0), (9,2),

(10, 2), (10, 4), (11, 1), (11, 4), (12, 1), (12, 3), (12, 4), (13, 0), (13, 1), (13, 3), (14, 0), (14, 1),

(14, 3), (14, 4), (15, 0), (15, 2), (15, 3), (15, 4).

Then there exists a minimal surface S such that

(1) Pg(S) = x9q(S) = 0andc2

1(S)=y,

(2) there is afibration λ: S-+P1 whose general fiber is a hyper elliptic curve of genus 3,

(3) I Ks I is free from fixed components and ΦKs is of degree 2 onto its image.

PROOF. We set 0</<4, e + β>3 and (e, β, k)Φ(0, 3, 0). Then the assumptions in
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Proposition 5.6 are satisfied. Under these conditions, we let k vary with 0<λ;<Λ:max.

By (17), Lemma 5.5 and Proposition 5.6, a calculation shows that the invariants of our

surfaces cover the area (a) and (b). q.e.d.

REMARK 5.8. If a regular surface has a hyperelliptic pencil of genus 3, then it

satisfies c2

1>(S/3)pg-S. See, [10, V] or [13].

6. Surfaces of type II. In this section, we give some remarks on surfaces of type

II. Let S be a minimal surface of type II in the sense of §1. We assume that the

irregularity of S vanishes. Then the canonical image Sf is a rational ruled surface. Thus

S has a hyperelliptic pencil induced by the canonical map and the ruling of Sf.

For the hyperelliptic structure of S, we have the following theorem due to Xiao

[16, §1]:

THEOREM 6.1 (Xiao). Let S be a regular minimal surface of general type with a

hyperelliptic pencil. Suppose that the invariants of S satisfy

pJtS)>(20-lXflf + 1) + 1, c*{S)<{4g/(g + \))(pg(S)-g-\)

for some integer g>2. Then S has a hyperelliptic pencil of genus g. Moreover, the

hyperelliptic pencil of genus less than g+l is unique.

COROLLARY 6.2. Assume that S is a regular surface of type II with c\ = 3pg — Ί. If

pg(S)> 46, then it has a hyperelliptic linear pencil of genus less than 5.

For the existence of surfaces of type II with hyperelliptic pencils of genus less than

5, we have the following:

PROPOSITION 6.3. Let g be 2,3 or 4. Then, for any pair of integers (x, y) satisfying

y = 3x — 7 and x>4, there exists a minimal surface S with a hyperelliptic linear pencil

of genus g such that pg(S) = x, q(S) = 0 any cj(S)=y.

PROOF. The case g — 2 follows from a more general result of Persson [13, §3].

The case g = 3 with/?^>6 follows from Theorem 5.7. For pg = 4, 5, consult [9] and [10,

IV].

We consider the case # = 4. Set (k, /) = (1, 3) or (2, 1). By an argument similar to

that in §5, there exists a reduced divisor B on Y=Σe such that

(i) B~\0Co + 2βf(β>0\

(ii) B has k infinitely close triple points and / ordinary quadruple points, and the

other singularities are at most double points.

Let V be the double covering of Y branched along B. If S is the minimal resolution

of V, then

pg(S)=\0e + 4(β-\)-k-l,

cl(S) = 30e+\2(β-2)-k-2l=3pg(S)-Ί,
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and S has the desired properties. q.e.d.

REMARK 6.4. For a given g > 2, there exists a regular surface of type II with a
hyperelliptic pencil of genus g. Indeed, we have constructed in the proof of Proposition
6.3 a surface S using the double covering V of Y=P1 x P1 whose branch locus B is
linearly equivalent to \0Co + 2βf for any β>3. The second projection of Y induces on
S another hyperelliptic pencil of genus g' = β—\. So we cannot give an upper bound
on the genus of hyperelliptic pencils.
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