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NOTES ON CANONICAL SURFACES

Eui HORIKAWA

(Received February 1, 1990, revised May 7, 1990)

1. Surfaces with cl = 3pg — 7. As Ashikaga and Konno are going to publish their
paper on surfaces of general type [2], I would like to take this opportunity to state
several results on these surfaces and related problems.

A minimal algebraic surface S is called a canonical surface if the map Φκ: S-+Pn,
n=pg—\, associated to the canonical system \K\ induces a birational map of S onto
its image. Let Quad(S) denote the intersection of all the quadrics through the image
ΦK(S). If S is a canonical surface, then c\>2>pg — l (see [10, Part II, Lemma 1.1]). If
the equality sign holds here, S has rather simple structure and its construction can be
completely described as in [2]. These are all essentially due to Castelnuovo [4], and I
obtained my proof in 1976, which is mostly similar to [2, §§1-4]. Moreover, I noticed
that some of the canonical surfaces with pg = l, c\ = \<\ (such that Quad(S) is a cone
over the Veronese surface) have obstructed deformations. For such S, | K | is not ample,
and the canonical system | Kt | remains non-ample for any small deformation St of S.
So, by [3], S has generically non-reduced moduli. This was insinuated in [10, Part III,
Remark on p. 229], but with an erroneous citation pg — β, c\ = 11. (I planned to write
a paper entitled "On certain canonical surfaces" to discuss surfaces with c\ = 3pg — l
and 3pg — β, but it was never completed.)

This surface was independently found recently by Miranda [15]. But he missed
one point: If {St: teM} is a flat family over a parameter space M, then does
teM} form a flat family? This is not true in general, because the dimension of
may jump in some case.

LEMMA 1. In the present case, Quad(5,) form a flat family provided that the

parameter space M is reduced.

PROOF. Let {</>;} be a basis of H°(S, Θ(K)). Then the products φtφj generate
H°(S,Θ(2K)). Hence, for some set of indices Λ, φiφp (i,j)eΛ, form a basis of
H°(S, Θ(2K)). Since the irregularity q vanishes these φt are extended to the sections
φi(ή of H°(St, Θ(Kt)). Hence the products φiiήφjit), (hj)eΛ form a basis of
H°(St, Θ(2Kt)). Therefore, the other products are linear combinations of these products.
This implies that any quadratic relation among the φt

9s can be extended to that of the
Φi(tys. This proves that (JίQuad(*Sί) is an analytic subset of P6 x M. It is well-known
that, for all possible candidates for Quad^), dim //°(Quad(5'ί), Θ{m)) are the same.
Since Mis reduced, this proves the normal-flatness and hence the flatness of Quad(5'ί).
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By this lemma, Quad^) remains the cone over the Veronese surface, because its
vertex is a rigid singularity [17]. Analogous example of nonreduced moduli for surfaces
of general type was previously found in [10, Part III]. Note that these two are put
together in a recent work of Catanese [5].

2. Canonical surfaces with cl = 3pg — 6, # = 0. As to these surfaces, the following
lemmas will take care for large values of pg.

LEMMA 2. (i) Ifpg>5 then Quad(S) is of dimension>3.
(ii) Ifpg> 12, then Quad(S) is a threefold of degree n — 2 in Pn, and S has a pencil

of curves of genus 3 of non-hyper elliptic type {i.e., the general fibres are non-hyper elliptic).

LEMMA 3. If S has a pencil of curves of genus 3 of non-hyperelliptic type, then it
has one degenerate fibre which is given by

in P2 x A, where A = {teC: \t | <ε} is a parameter space and q and f are homogeneous
polynomials in {x, y, z) of degrees 2 and 4, respectively.

My proof of Lemma 2 is a mimic of Petri's analysis on canonical curves as presented
by Saint-Donat [16], or one can apply Harris' result [8, Theorem 3.15].

The equation (1) only gives a singular model with a double curve along the conic
Q defined by q = t = O. This can be (partially) resolved by introducing a new variable w
and considering the following equations:

(2)

If the coefficients of/are sufficiently general, (2) determines over t = 0 a hyperelliptic
curve C of genus 3 which is a double covering of the conic Q branched at 8 points
defined by f{x, y, z, 0) = 0 {w can be regarded as an inhomogeneous fibre coordinate
on the P1-bundle associated to Θ{2)).

This type of degenerate fibre contributes -f 1 to the value c\ — 3pg. Conversely, we
start with a P2-bundle W over P 1 , and take a hypersurface S' which cuts a quartic on
each fibre and which has one double conic like (1). Then take its minimal resolution
essentially given by (2) {S may be described as a complete intersection in a P1-bundle
over a P2-bundle over P 1).

For small values of pg (the cases <4 are studied in [10]), Quad(S) can be either
P 4 or a threefold of degree n—\ or n — 2, i.e. A = 1 or 0 in Fujita's sense. In the first
case, Sis a complete intersection of two cubics. In the second case one can apply Fujita's
classification of varieties with A = l[6a, 6b]. But I did not fully investigate the cases in
which Quad(S) is singular. The third case is similar to the above with a few exceptional
cases.
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It may be interesting to investigate deformations of these surfaces, including the
non-canonical surfaces. As a special case, this includes the class of sextic surfaces in
P 3 (pg=l0, K2 = 24, see §4 below).

3. Pencil of curves of genus 3. The above Lemma 3 fascinated me with the idea
that all degenerate fibres of pencil of genus 3 of non-hyperelliptic type may be described
as degenerations of quartics like (1), extending the results for the case of pencil of genus
2 [11]. This was almost worked out around 1981. The aim is to make a complete list
of all possible degenerations of plane quartics up to Cremona transfomations, and
calculate the non-negative contribution of each of them to the value of c\ — 3pg. As a
consequence, for such a pencil without exceptional curves in a fibre, we can prove

c?>3χ+10(π-l)

where χ=pg — q+ 1 is the Euler-Poincare characteristic and π denotes the genus of the
base curve. Since we have c\ > (8/3)(χ -I- 4π — 4) for hyperelliptic pencil of genus 3 [10,
V, Theorem 2.1], it follows that, in the range 3χ+ 10(π- l)><^>(8/3)(χ + 4π-4), any
hyperelliptic pencil of genus 3 is never deformed to non-hyperelliptic type. Examples
are in [10, IV, Theorems 3.1, 3.2].

I found it rather difficult to write down the results in a concise, and still readable
form. As of now I am not sure if (1) is only the "essential" degeneration, in a sense
analogous to the case of genus 2 in [14].

I also worked out the case of hyperelliptic pencil of curves of genus 3. As one may
learn from (1), this should not be studied as degeneration of double coverings of P 1 ,
but as those over the conic Q. Then some degeneration comes from that of the branch
locus, and others from that of the conic Q, and from both in many cases.

4. Sextic surfaces. After I finished with quintic surfaces, I have thought, from
time to time, of the next surfaces, the sextic surfaces in P 3 . These surfaces are embedded
in P 3 not by the canonical system, but by one half of it. This implies that S has an
even intersection form on H2(S, Z), or in other words, the second Stiefel-Whitney class
W2 vanishes. Conversely, this topological condition assures that K is divisible by 2 as
K= 2L for any deformation of S. So we only have to study numerical sextics with W2 = 0.

First one proves h°(L) = 4 (It is easy to show h°(L) = 4 or 5. The case h°(L) = 5
must be excluded with some effort.) There are six possibilities for the map ΦL associated
to L.

(la) Embedding as a sextic.
(Ib) Double cover over a cubic surface.
(Ic) Triple cover over a quadric.

(Πa) Double cover over a smooth quadric.
(lib) Double cover over a singular quadric.
(Ill) Composed of a pencil of genus 3 of non-hyperelliptic type.



144 E. HORIKAWA

A surface of type (Ib) is a complete interesction of two hypersurfaces in the weighted

projective space P(3, 1, ,1, 1, 1) defined by

where deg w = 3, degx t = 1, 0 < / < 3 , a n d / a n d g are homogeneous polynomials in xt of

degrees 6 and 3, respectively. This is deformed to sextic surfaces if we replace the second

equation by

tw-g(x09 xί9 x2, x3) = 0 ,

where / is a parameter ranging over a neighborhood of the origin. For tΦQ these two

equations are reduced to g2 + t2f=0. A surface of type (Ic) is a complete intersection

of two hypersurfaces of the form

u3 + A2u
2 + A4u + A6 = 0, g = Q

in P(2, 1, 1, 1, 1), where degw = 2, and A2j and g are homogeneous polynomials in

(x0, xί9 x2, x3) of degrees 2/ and 2, respectively. This is similarly deformed to sextic

surfaces by considering the equation tu — g = Q.

A surface of type (Πa) is constructed as follows. Take a diagonal D on Σo = P1 xP1,

and six points Ph 1 < / < 6 on D. Then take a curve Bo of bidegree (9, 9) on Σo which

has triple points at the six points Pt. Then the minimal resolution of the double covering

with branch locus B = D + B0 is a general surface of type (Ha). Surfaces of type (lib)

are constructed similarly, by using the Hirzebruch surface Σ2 in place of Σo.

To construct deformations of a surface S of type (Πa), we take a quadratic equation

g = 0, a linear equation / = 0 and a cubic equation h = 0 in the variables (x0, xu x2, x 3).

If they are sufficiently general, then 1=0 determines a diagonal D on Σo defined by

g = 0, and h = 0 cuts out six points on D. Then we define a double covering by

over # = 0, where A2j is of degree 2y. This is a singular model of a surface of type (Πa).

To resolve the singularity, we introduce a new variable u of degree 2 which satisfies ul=h

(this has the same effect as the blowing up of /z = /=0) and set w = w/l2. Consequently,

S is defined by the following three equations:

w2 = u3 + A2u
2 + A4u + A6 ,

ul=h,

g = o.

We take two parameters t and s, and consider the following equations:

= ul—h ,
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tu = g .

Then, for t = 0, sφO, these equations define a surface of type (Ic) and, for tφO,

they define a surface of type (la). The same construction works for surfaces of type (Πb).

A surface S of type (III) is constructed as follows. Let V= P(Θ 0 Θ( - 5) ® 0( - 6))

be a /^-bundle over P1, and let (z0, zx) be a system of homogeneous coordinates on

P1. We take homogeneous coordinates (Zo, Z l 5 Z2) on the fibres. We can consider that

z( has weight (1,0) and the Zpj=0, 1, 2 have weights (0, 1), (5, 1), (6 ,1), respectively.

Then, S is birationally equivalent to a hypersurface S' in V defined by

(3) A2 = z2Z0B,

where A is of weight (10, 2) and 5 is of weight (18, 3). This defines a singular fibre of

the form (1) in §2 over zo = 0. Since A cannot contain the term Z | , it follows that Sf

contains the line G: Zo = Z1=0. Moreover, Z o, restricited on S", vanishes to the fourth

order on G. From this fact it follows that the minimal resolution S of S' is even (Note

that there is an ordinary double point on G). To construct deformations of a surface

S of type (III) to sextic surfaces, we use a construction which is analogous to what

Griffin [7] has done for quintic surfaces. The graded ring

R= 0 H°(S,Θ(mL))
m>0

is generated by four elements x0, xu x2, x3 of degree 1, three elements yu y2, z of

degree 2 and one element w of degree 3 (xh y^ and z generate the coordinate ring of

V, and w corresponds to A/Z0ZQ/2 in (3)). There are three relations of degree 2 and

three of degree 3 among x( and yp three relations of degree 4 involving w linearly, and

one relation of degree 6 involving w2. All the syzygies among these relations can be

also written down. After these preparations we construct a family Rt of deformations

of the ring R as in [7]. The computation is rather long and cannot be reproduced here.

The above list essentially exausts the surfaces which are the deformations of sextic

surfaces (As usual, some mild degenerations are allowed. For example, the diagonal

may decompose into two intersecting lines in (Πa), and the branch locus may have

some mild singularities which do not affect the canonical ring.) In particular, there is

no such surface with hyperelliptic pencil of genus 3. The proof of this fact seems to

require the knowledge of most degenerate fibres of hyperelliptic pencils of genus 3.

It eventually turns out that all these surfaces (Ia)-(ΠI) together form an irreducible

family. Since W2 = 0, any complex structure on the underlying differentiable manifold

X is automatically minimal. Therefore the above list exhausts all possible complex

structures on X.

5. Even algebraic surfaces, or semi-canonical surfaces. It may be worthwhile to

study surfaces of general type with W2 = 0. In this case, K=2L, and we can prove that
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L is either composed of a pencil, or satisfies L2>2h°(L) — 4([10, Part I, Lemma 7.6]).

In the exceptional case L2<2h°(L) — 4, S has a pencil of curves of genus 2 and

K2 = 2pg — 4, pg = 2 mod 4. All of these surfaces already appeared in [10, Part I ] .

If the equality L2 = 2h°(L) — 4 holds, then ΦL is a map of degree 2 onto P 2 , some

Hirzebruch surface, or a cone over a rational curve as in [10, Part I] , but this time,

with two exceptions, S has a pencil of curves of genus 3 of hyperelliptic type of some

simple kind. More precisely, the branch locus has at most simple triple points.

6. Regular threefolds with trivial canonical bundle. If V is a smooth threefold

with trivial canonical bundle and if V is embedded in a projective space, then its

hyperplane section H is a smooth surface S and the restriction Hs is the canonical

bundle of S. So we have Hj>2h°(Hs)-4, which implies H3>2h°(H)-6. If one starts

with V and an ample line bundle H on it, then this inequality is not necessarily true.

But in the exceptional case, it can be shown that V has a structure of elliptic threefold

with a rational section, which should be manageable through the Weierstrass model.

So excluding this case, I studied the extreme case H3 = 2h°(H) — 6, and determined their

structures. They are mostly pencils of K3 surfaces of degree 2 which doubly cover a

P2-bundle over P 1 .

THEOREM 1. Let V be a threefold with Kv = 0 which is not elliptic, and let H be an

ample line bundle on V. Suppose H3 = 2h°(H) — 6. Then V is one of the following:

(1) A double covering of P3 with branch locus of degree 8 (Λ° = 4).

(2) A double covering of a smooth quadric in P4 whose branch locus is cut out by

a hyper surface of degree 6 (h° = 5).

(3) A double covering of a P2-bundle W=P(Θ(u) ® Θ(β) ® Θ(y)) over P1 whose

branch locus is in \ —2KW\ (Λ° = α + /? + y + 3).

(4) A double covering of the cone over the Veronese embedding of P2 branched

along an intersection with a quintic hyper surface and the vertex (h° = Ί).

The third case occurs with

(α, β, γ) = (k, k, k), Qc, k, k+ 1), (k, k+ 1, k+l), (k, k, * + 2), (k, k+ 1, k + 2) (k> 1)

And these five types appear periodically with various polarizations. They have the

Picard number 2 and the other ones have the Picard number 1.

The above list is quite similar to [10, Part I ] . Note that the fourth case corresponds

to surfaces with pg = 2, K2 = 1 embedded by 12K |.

THEOREM 2. Let (V, H) be as in Theorem 1, but we suppose H3 = 2h°(H)- 5. Then

V is one of the following:

(1) The same as (4) in Theorem 1 (equipped with one-half of H, Λ° = 3).

(2) A triple covering of P3 realized in the line bundle of degree 2 (h° = 4).

(3) Smooth model of a double covering ofP3 whose branch locus consists of a plane
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L and a surface Bo of degree 9 which has a triple curve on a cubic on L (h° = 4,

cf [10, II, Theorem 2.3]).

(4) A smooth quintic in P4 (h° = 5).

(5) Smooth model of a certain double covering of the P2-bundle W= P{Θ 0 0(1) Θ

Θ(2)) over P1 whose branch locus is of degree 8 on each fibre (Λ° = 6, cf [10,

II, Theorem 1.3, BJ]) .

(6) Smooth model of a double covering of W= P(Θ(a) © Θ(β) © Θ(y)) over Px whose

branch locus consists of a fibre Γ and a divisor Boe\ — 2KW + Γ | which has a

triple curve along a conic on Γ (h° = α + β + γ + 3, cf [10, II, Theorem 1.3, A)]).

For large h° only the sixth class appears. Such threefolds exist for

(α, β, γ) = (k, k, k), (k, k9 k+ 1), (k, k+l, k+l) (k> 1).

Each of them has a pencil of K3 surfaces of degree 2 which degenerate into an elliptic

K3 surface at one fibre (see [12, §8]). Needless to say, this list is parallel to [10, Part II].

I asked Masahisa Inoue if one can say something about the upper bound of H3

in terms of h°(H). Then he obtained the inequality H3<6h°(H), and also proved that,

if the equality sign holds, then V is unramifiedly covered by an abelian threefold. The

proof of these facts is based on Yau's solution of Calabi's conjecture [18].

All these results were announced in a note [13] in Japanese.

I think these should be studied in the category of minimal models. Also, threefolds

of general type may be investigated in this way if one can sufficiently develop the

investigation in §5.
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Added in proof. I tacitly assumed # = 0 in §5.




