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1. Introduction. Let (M, <, » be a connected orientable Riemannian manifold
of dimension n ̂  3 and SO{M) be the bundle of all oriented orthonormal frames over
M. S0(M) has a Riemannian metric, also denoted by <, >, defined naturally as follows:
At each point u of SO(M), the tangent space SO(M)U is a direct sum Qu + Vu, where
Qu is the horizontal space defined by the Riemannian connection and Vu is the space
of vectors tangent to the fibre through u. The right action of the special orthogonal
group SO(n) on the bundle S0(M) gives an isomorphism fu of the Lie algebra o(n) onto
Vu for each ueSO(M). We denote by Au the image of Aeo(n). On the other hand,
SO(n) has a bi-invariant metric denoted also by <, >, which is defined by

C l 7, A,Ceo(ή).

Then, the Riemannian metric <, > of S0(M) is defined by

for Xu, YueQu and A, Ceo(n), where/? is the projection SO(M)-+M.
O'Neill [4] studied the curvature of (S0(M), <, ». In the present paper, we shall

study Killing vector fields on (S0(M), <, » and prove the following Theorems A and
B. Let A'be a vector field on S0(M). Zis said to be vertical (resp. horizontal) if Xue Vu

(resp. if Xu e Qu) for all u e SO(M). X is said to be fibre preserving if [X, X'~\ is vertical
for any vertical vector field X'. Let A* be the vertical vector field defined by
(A*)u = Au=fu(A). A* is called the fundamental vector field corresponding to Aeo(n).
Zis decomposed uniquely as X= XH + XV, with XH horizontal and Xv vertical. XH and
Xv are called th horizontal part and the vertical part of X, respectively. Let φ be a
2-form on M. Then the tensor field F of type (1,1) is defined by <FF, Z} = φ(Y, Z).
Then, for each ueSO(M), F*(ύ)eo(n) is defined by

where u is regarded as a linear isometry of (/T, <, » onto the tangent space Mp{u) at
p{u). Here <, > also denotes the standard metric of Rn. Then, the vertical vector field
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X is defined by

) , uεSO(M).

X is called the natural lift of φ or F and is denoted by φL or FL. Let Y be a Killing
vector field on (M, <, ». Then the horizontal vector field XH is defined by

p(XH)u=Ypiu), ueSO(M).

Let D Y be the covariant differential of Y and Xv be the natural lift of D Y defined as
above. The vector field X=XH + XV on SO(M) is called the natural lift of Y and is
denoted by YL.

THEOREM A. Let Xbe a fibre preserving Killing vector field on (S0(M), <, ». Then,
X is decomposed as

where YL is the natural lift of a Killing vector field Y on (M, < , », φL is the natural lift
of a parallel 2-form φ on (M, <, )) and A* is the fundamental vector field.

THEOREM B. If{SO{M), <, » has a horizontal Killing vector field which is not fibre
preserving, then (M, <, » has constant curvature 1/2, except when dim M=3, 4 or 8.

Theorems A and B seem to be related to the results of Tanno [5] who gives a
decomposition of any Killing vector field on the tangent bundles with a Sasakian metric.

Thanks are due to T. Asoh and F. Uchida who taught us basic facts about Lie
groups and Lie algebras.

2. Preliminaries. In this section, we give definitions, notation and lemmas needed
to prove Theorems A and B.

For ζeRn, we define the standard horizontal vector field B(ξ) on S0(M) by

p(Bu(ξ)) = u(ξ), ueSO(M).

We denoted also by D the covariant differentiation with respect to the Riemannian
connection of (S0(M), <, ».

The proof of the following lemma can be found in [2] and [4].

LEMMA 1. Let A, Ceo(n), ξ, η, ζeRn and let Ω be the curvature form of the
Riemannian connection of(M, <, ». Then,

(lB(ξ), B(η)l A*} = -2{Ω(B(ξ), B(η)), A)
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<DB(ξ)B(η), A*} = - <Ω(B(ξ), B{η)), A}

(DB(ξ)A*, B(η)} = <Ω(B(ζ), B(η)), A}

<DA.B(ξ), B(η)) = <Ω(B(ξ), B(η)), A} + (B(Aξ), B(η)}

<DA,B(ξ),C*} = 0

Let X be a vector field on SO(M). Then, X is defined by

ξeR"

Aeo(n).

x(ξ) and x(A) are called the ^-component and the ^-component of X, respectively. X
is horizontal if and only if x(A) = 0 for all A e o(«), while X is vertical if and only if

= 0ΐoτa\lξeRn.

LEMMA 2. Let X be α vector field on SO(M). Then X is α Killing vector field if
and only if

-x(Aξ) + B(ξ)(x(A))-2<Ω(B(ξ), XH), Λ>=0

for all ξ,ηeRn and A, Ceo(n).

RROOF. X is a Killing vector field if and only if

<DB(ξ)X, B(η)} + </>„<„)*, B(ξ)) =0

<DB(ξ)X, A*} + (DA.X, B(ξ)} = 0

(DA.X, C*> + <DC.X, A*}=0

for all ξ,ηeR" and A, Ceo(n). Then, the assertion follows from Lemma 1 and the fact

that

<DA.B(ξ), xy=<Ω(B(ξ), xH), Ay+<B(Aξ), xy.

By virtue of Lemma 2, it is easy to see that a fundamental vector field is a Killing
vector field.
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LEMMA 3. Let X be a vector field on SO(M). Then,

), * ] , B(η)} + <[2*0,), XI B(ξ)> = B(ξ)(x(η)) + B(η)(x(ξ))

[Λ*, X], B(ξ)) = A*(x(ξ))-x(Aξ)

\ XI A*) = B(ξ)(x(A))-2(Ω(B(ζ), XH), A)

([A*, XI C*)^*WQ)-xP, C])

), XI ^ )> M = 5M(0W'/))-α" 1((^)M)ξ, η>

for all ξ, ηeRn, A, Ceo(n) andueSO(M).

PROOF. The assertion follows from Lemma 1 and the fact that A* is a Killing
vector field and (B(ξ), B(η)} = (ξ, η}.

3. Proof of Theorem A.

LEMMA 4. Let X be a ver tical Killing vec tor fie Id. Then X is decomposed uniquely as

where φ is a parallel 2-form on (M, < , » and A* is the fundamental vector field.

PROOF. We first show that X is decomposed uniquely as

where X1 and X2 are smooth vertical vector fields on S0(M) such that

[^*,X1] = 0, A*(x2(C)) = 0

for all A, Ceo(n). Here x 2 (Q denotes the C-component of X2. It should be noted that
each fibre is totally geodesic and is isometric to the Riemannian symmetric space (SO(n),
<, ». For each UESO(M), we define an isometry gu: p'^^ύfϊ^SOty) by gu(ua) = a.
Then gu(X) is a Killing vector field on (SO(n), <, ». By a standard theory of symmetric
space (cf. [1]), gu(X) is decomposed uniquely as

where W^(u) is a right invariant vector field and W2(u) a left invariant vector field on

SO(n). Define the vector fields Xx and X2 on p'1 (p(u)) by

It is easy to check that the definition of Xγ and X2 is independent of the choice of gv

for i e/?-1^^)), since gu = Lb°gv when v = ub for beSO(n). The smoothness of Xx and
X2 follows from the local triviality of this bundle. The properties [A*, A^J^O and
A*(χ2(C)) = 0 follow from
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(u\ C> .

Next, we show that X2 is a fundamental vector field. Since X is vertical, it follows
from Lemma 2 that

B(ξ)(x(C)) = B(ξ){Xi(C) + jc2(C)) = 0

for all Ceo(n). On the other hand, [A*, X] = [A*, X2~] is a vertical Killing vector field
and, by Lemma 3,

<[Λ*, JT2], C*>=Λ (*2(C))-*2(|>ί, C])= -x2([Λ, C])

for all Λ, Ceo(/ι). Thus, by Lemma 2, we have B(ξ) (x2&A, C])) = 0 for all fe IT and
y4, Ceo(/2). Hence, the semisimplicity of the Lie algebra o(n) implies

B(ξ)(x2(A)) = 0

for all ξeRn and Aeo(n). These conditions on x2(A) imply that x2(^) is constant on
S0(M) for all A e o(n), hence X2 is a fundamental vector field.

Xγ is a vertical Killing vector field satisfying

for all ^G/?Π and Ceo(n). Now, it suffices to show that Xx is the lift of a parallel 2-form
on (M, <, ». Let F* be the o(«)-valued function defined by

u)i ueSO(M).

Then, we have Ft(ua) = a~1 °F*(w)o a for all aeSO{ή). This follows from the fact that
the condition [C*, X{] =0 for all Ceo(n) is equivalent to the condition RaX1=X1 for
all aeSO(n) and the fact/Mα = jRfl°/M°ad(α). Hence, the tensor field of type (1, 1) on
M is well-defined by

U-1, p(u)eM.

Let φ be a 2-form corresponding to F. Then, A^ = φL and 0 is parallel. The last assertion
follows from

For the proof of the last equality, see lemma of section 1 of chapter III of [2]. Note
that any vertical vector field is fibre preserving, since each fibre is totally geodesic.

LEMMA 5. Let X be a fibre preserving Killing vector field on (SO(M), < , ». Then
There exists a Killing vector field Y on (M, <, » such that XH = (YL)H and YL is a
Killing vector field.
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PROOF. Since Xv is fibre preserving, so is XH and, by Lemma 3,

H l B(ξ)> = 0,

for all A, Ceo(n) and ξeRn. It means that [A*0X
H'] = 0 for all Aeo(n)9 that is,

RaX
H = XH for all aeSO(n). Hence, there exists a unique vector field Y on M satisfy-

ing pXH=Y.
We first show that Y is a Killing vector field. Let h be an /?"-valued function on

S0(M) defined by h(u) = u'1Ypiu). Then we have Du(ξ)Y=u(B(ξ)h) for all £e/T and
ueSO(M). For the proof, see lemma of section 1 of chapter III of [2]. It follows that

u) = <ZU, Bu(ξ)) = <(*")„, Bu(ξ)}

Moreover,

Bu(η)(x(ξ)) = <Bu(η)h, ζ> = <Dm Y, u(ξ))
Bu(ξ)(x(η)) = <Bu(ξ)h, η} = (Duiξ)Y, u(η)} .

Then, by Lemma 2, for all ξ,ηeR" and ueSO(M),

(Duiη) Y, u(ξ)> + (Duiξ) Y, u(η)} = 0 ,

which shows that Y is a Killing vector field.
Now, we show that YL = XH + X1 is a Killing vector field, where Xί=(DY)L. Let

F= D Y and let F* be the o(«)-valued function on S0(M) defined by F\ύ) = u~ι° Fp(u) ° u.
Then F*(wα) = α~1 o F#(M) ° α for all α G SO(«), which implies that Ra(Xx)u = ( ^ J ^ for all
aeSO(n), that is, [>4*, Z J =0 for all A e o(n). The proof is the same as that of Lemma
4. Then, by Lemma 3, it follows that

and hence

On the other hand, in the same way as in the proof of Lemma 4,

= <C, Bμ(ξ)F«} ̂ (Cu-'o (Du(ξ)F) o uy

for all Ceo(n) and ξeRn, where R(Y, u(ξ)) denotes the curvature operator of (M, < , ».
The last two equalities are well-known (see [2]). By <ΓL, B(ξ)} = x(ζ) and
<FL, A*} = x1(A), these results show that YL is a Killing vector field.

Now, let X be a fibre preserving Killing vector field and let Y be the vector field
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given in Lemma 5. Then, X— YL is a vertical Killing vector field which can be written

as X— YL = φL + A* by Lemma 4. This completes the proof of Theorem A.

4. Proof of Theorem B. Throughout this section, we assume dim M ^ 5 . Let U

be the space of all horizontal Killing vector fields on (S0(M), <, » and let Uu be the

subspace of Qu obtained as the restriction of U to ueSO(M). Let o(Uu) be the algebra

of all skew symmetric linear transformations of Uu.

LEMMA 6. (i) For each Aeo(n), the linear map ru(A): UU^UU is well-defined by

ru(A)(XJ = [A*,JΓ\u, XeU.

(ii) The linear map ru: o(n)-+o(Uu) is a Lie algebra homomorphism.

PROOF. If Xe U, then, by Lemmas 2 and 3,

<[Λ*, XI B(ζ)y = 2(Ω(B(ξlX), A) , <[Λ*, JΓ\, C*> = 0

for all A, Ceo(«) and ξeRn. These equalities mean that [̂ 4*, X~\ is a horizontal Killing

vector field and that \_A*, X\ depends only on Xu. (ii) follows from the Jacobi identity

HA*, C*], X] = IA*, [C*, XJ] - [C*, IA*9 XJ]

and

<ru(A)(Xul (X')U} = 2(Ω((X')U, Xu\ Ay

for XE U.

Now, we assume that there exists a horizontal Killing vector field which is not

fibre preserving. Then, at each point u of a certain open dense subset of S0(M), the

dimensions of both Uu and ru(o(n)) are greater than 0. However, this is possible only

when Uu = Qu and ru(o(n)) = o(Uu). Otherwise, ru has a non-zero kernel which contradicts

the simplicity of the Lie algebra o(n). We can define the automorphism su of o(n) by

su(A) o u~x op = u~
ι op o ru(A)

for each point u of the subset. We note that any fibre is contained in the subset or has

no intersection with it. This follows from Lemma 2 which shows that, if a horizontal

Killing vector field ^attains zero at a point w, then Xis zero along the fibre through u.

LEMMA 7. (i) su is an involutive automorphism.

(ii) ad(tf) o sua — suo ad(α) for a e SO(n).

PROOF, (i) First, we note

su(A)ξ = (u-' op o ru(A))Bu(ξ) for all ξ e R n .

Hence we have
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(su(A)ζ, η} = ((u-1opo ru{A))Bu{ξ\ η> = <(p° ru{A))Bu{ξ\ u(η)}

= <ru(A)Bu(ξl BM> = 2<Ω(Bu(ηl Bu(ξ))9 A}

for all Aeo(n) and ξ, ηeRn, where R(u(ξ), u(η)) denotes the curvature operator. By the
symmetry of the curvature tensor R and the fact that the metric <, > of o(«) is a scalar
multiple of the Killing form, we have

OU(A\ O = (A, su(C)) , (su(A), su(C)} = {A, C>

for all A, Ceo(ri). Thus

<A, C) = (su(Alsu(C)> = <s2

u(A), C> ,

which implies si = 1.
(ii) follows from

<sua(A)ξ> η> = iiuay1 o R((ua)(η), (ua)(ξ)) o (μa), A}

= (a~ί °u~x o R(u(aη)9 u(aξ)) o u ° a, Ay

= (u~1o R(u(aη), u(aξ)) o^aAa'1}

= φu(ad(a)A))aξ9 αη} = (α-\su(zά{α)A))αξ, η> .

Let h be one of the matrices

" M"l o ij' JΛ-im o
where /„ denotes the identity matrix of degree n,p + q = n,\ ^p ^qtkn and 2m = n. Then,
by the classification theory of symmetric spaces of type SO(n)/K, any involutive
automorphism of o(n) is conjugate to ad(Λ) in the group Aut(o(«)) of all automorphisms
of o(n). Furthermore, it is well-known that Aut(o(«)) for n odd is isomorphic to the
group Int(o(«)) of all inner automorphisms of o(n), while the quotient group
Aut(o(«))/Int(o(«)) for n even and nΦ% is isomorphic to Z 2 (see [1], [3]). Here, we
note that, if n is even, ±/ l f l l _ 1 is an element of O(n) but not SO(n) and hence ad(/x „_ x)
is not an element of Int(o(«)). These facts show that any element of Aut(o(«)) is of the
form ad(tf) for some a αeθ{ri), unless rc = 8.

Consequently, any involutive automorphism s of o(«) is written as s = a,d(αhα~1)
for some αeθ(n) except when n = S. By Lemmas 6 and 7, we have:

LEMMA 8. Assume that dim M Φ 8 and that (S0(M), <, » has a horizontal Killing
vector field which is not fibre preserving. Then, for each point u of a certain open dense
subset of S0(M), there exists an automorphism su of o(n) such that

(i) su = ad(aha ~x) for some aeθ(n),
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(ϋ) <su(A)ξ9 η} = {u-1oR(u(ηl u(ξ))oU, A)

for all A e o(n) and ξ, η e Rn,

(iii) sub = aά(b~1aha~1b) for beSO(n),

where h is one of the matrices /„, Ipq and J.

Let V be a vector space with an inner product <, ). For each ξ, ηeV, we define a

skew-symmetric linear transformation ξ A η of V by

Let H be a linear transformation of a tangent space of M such that, with respect to a

certain orthonormal basis, the representation matrix of H is one of /„, Ivq and /.

LEMMA 9. Under the assumption of Lemma 8, the curvature operator R(X, Y) of

(M, <, )) is expressed as

at each point of a certain open dense subset of M.

PROOF. First we note that, if A e o(«), ξ,ηeRn and b e O(n), then

(ξΛη,A}=-2(Aξ9η), ad(b)(ξ Λη) = bξ A bη .

Let k be a h a " 1 appearing in (i) of Lemma 8. Then, k~1= ±k since h2= ± 1. Taking

into account the fact that the metric <, > of SO(n) is adjoint-invariant, it follows that

<(ad(*)Λ)f, η}= -(l/2)<£ Λiy, ad(*)Λ>= - ( l ^ K a d ^ " 1 ) ^ Λ I/), ^ί>

= -(\/2KkξAkη,A}.

Then, by (ii) of Lemma 8,

u-1 o R(u(η\ u(ξ))oU= -(\/2)kξ Akη = (\/2)kη Akξ

and hence

R(u(η\u(ξ)) = (l/2)u(kη)Au(kξ).

Put H=uokoU~1. Then

/*(«(!/), «(ξ)) = (lβ)H(u(η)) A H(u(ξ)) ,

which completes the proof.

Now, we note that H of Lemma 9 cannot have the representation matrix J, since,

as is easily to checked, if H has the representation matrix /, then the tensor R defined

by R(X, Y) = (1/2)HXA HY does not satisfy the first Bianchi identity.

Next, we show that H has the same representation matrix over the set of points
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of M, where R(X, Y) is expressed as (\/2)HXΛHY. Indeed, if R(X, Y) = (\/2)XA Y
at a point of M, then the scalar curvature is equal to n(n—l)/2 at the point. If
R(X, Y) = (\/2)HXΛHY for H having the representation matrix Ipq at a point of
M, then the scalar curvature is equal to {(q—p)2 — n}/2 at the point. But,
n(n-l)-{(q-p)2-n}^4 and, if q>q\ then {(q-p)2-n}-{(q'-p')2-n}^4. Hence,
the connectivity of M and the continuity of the scalar curvature imply the assertion.

Next, we show that, if R(X, Y) = (\/2)HXA HY for some //having the representation
matrix Ipq, then such an H can be chosen smoothly in a neighbourhood of each point.
This is clear for the case p<q, because the Ricci transformation S is written as
S = (q—p)H—I. We need the following lemma to prove it for the case p = q.

LEMMA 10. Assume that H has the representation matrix Ipp and R(X, Y) =
(\/2)HXΛHY. Then we have the following:
(i) At each point, such an H is determined uniquely without distinction of the signs.
(ii) Such an H can be taken smoothly in a neighbourhood of each point.

PROOF, (i) Suppose K also has the representation matrix Ipp and HXΛHY=

KXA KY. It suffices to show K= ±H. By the definition of XA F, if {X, Y} is linearly
independent, then the plane spanned by KX and KY coincides with the one spanned
by HX and HY. Let {Xi} be an orthonormal basis such that HXi — aiXi for at— ±\.
Then, KXί and KX2 are linear combinations of Xx and X2. KXX and KX3 are also
linear combinations of Xx and X3. It follows that KX1=b1X1 for some b1eR. Similarly,
KX^biXi for some b^R (l^i^n = 2p), which implies bt= ± 1 , as K2 = I. Then, the
equality (HXt A HXk)Xk = (KXi A KXk)Xk implies aiak = bibk for iφk. Hence, if bx = ±ax,
then, bk= ±ak for k^2.

(ii) Let us consider the following system of quadratic equations with unknown
variables Hβ:

(*) HkhHji ~ HkiHjh = 2Rkjih,

where Rkjih are the components of the curvature tensor with respect to a smooth field
of orthonormal basis {Zj defined in a neighbourhood of a point me M, that is, we put
Rkβh = <^(^JC> Xj)Xh xh>- We assume that (*) has two solutions ± (//0) at each point and
that the solution matrix (//£j ) is diagonalizable to Ipp by a certain orthogonal matrix
at each point. We first show that there exist smooth functions Hu (1 ̂ i^ή) of variables
Hij (1 ̂ i<j^n) and Rhiih(iΦh) such that the components of one of the solution matrices
must satisfy these relations. By (*), the two solutions satisfy the equations

(1) HhkHu-(Hhi)
2 = 2Rhiίh

(2) tftttfM - HhiHhj = 2RhiJh (i Φj).

Here, we may assume (Htj) = Ipp a tmeM. By assumption, it follows that, at m,

or p
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Note that Rkjih is a smooth function and hence we way assume Rhiih>0 for 1 ^
in the neighbourhood. Then, by (1), we have

H22Hkk = (H2k)
2 + 2R2kk2 > 0 (3 ^ k UP)

HkhHx i = (Hίk)
2 + 2Λ l k f c l > 0

in the neighbourhood. The components of one of the solution matrices must satisfy

) 2 + 2R1221)((Hlk)
2 + 2Rlkkl)/((H2k)

2

) 2 + 2R1221)((H2k)
2 + 2R2kk2)/((Hlk)

2 + 2Rlkkl)} "2

(3^Jfc^/?). We have similar results for \*=p+l, 2*=p + 2, k*=p + k (3<,k^p), that
is, the components of one of the solution matrices must satisfy

ΣJ _ Γ ) l / 2 IT _ ( 1 1 / 2 LT _ ( \1I2
/ ί i n * — ( . . . ) , / Ϊ 2 * 2 * — 1 / » n k * k * ~ t i

where three brackets {...} are obtained from the above three by exchanging subscript
indices 1, 2, fc for 1*, 2*, fc*, respectively.

(2) is regarded as a system of equations of n(n—\)/2 unknown variables H^ (i<j).
Taking account of (H^im)) = Ipp, it is easily seen that the coefficient of the partial
derivative of the function HJti^ — H^H^ with respect to variable Hhk is equal to ±δhiδjk

at m/\ϊh<k, i<j\ tΦiand tΦj. The implicit function theorem shows that (*) has a unique
smooth solution in a neighbourhood of m satisfying (//0(m)) = Ipp.

In the next lemma, we prove that H cannot have the representation matrix Ipq.
Then, the remaining possibility is H=I, that is, (M, <, » has constant curvature 1/2,
which completes the proof of Theorem B.

LEMMA 11. There exists no Riemannian manifold (M, < , » such that the curvature
operator R(X, Y) is expressed as R(X, Y) = cHX A HY, where c is a non-zero constant
and H is a linear transformation defined pointwise and having the representation matrix
Ipq (1 ̂ p^q^n) with repect to a certain orthonormal basis.

PROOF. By Lemma 10, we may assume that H is smooth in a neighbourhood of
each point. Let {Zf} be a local orthonormal frame field such that HXi = a]Xi satisfying
at= ± 1 (1 ̂ I = /I). Let Djίh = (DXjXh Xh} and Hjih = ((DXjH){X^ Xh\ where D is the
covariant differentiation of (M, <, ». By definition,

= 0, Hjih = Hjhi and Hjih = Djih(ai - ah).

Hence we have
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k, Xj)Xi9 Xh} = caMδkkδjt- δkiδjh) ,

(l/cK(DXmRXXk9 Xj)Xi9 Xh>

= afijfimkhiflk ~ ah) + a^uβmjiiβj - Λi) - ahδjhDmki(ak - at) - flAΛA - ah)

The second Bianchi identify is expressed as

k - ah) - Dkmh(am - ah)} + ahδkh{Dmji(aj - at) - Djmi(am - at)}

(aj - ah) - Djkh{ak - ah)} + ahδjh{Dknιi(am - at) - Dmki(ak - at)}

+ ahδmh{Djki(ak - ad ~ DkMi" aϊ)} + a^ki{Djmh(am - ah) - Dmjh(aj - ah)} = 0 .

When i=jΦk = hφmφί=j, the last identity reduces to

aiDhhm(am - ah) + ahDiim(am - at) = 0 .

Furthermore, if am = a^ah, then

(*) Dhhm = Dhmh = 0.

When mφj=U kφj=U hφj=i, Ihe second Bianchi identity reduces to

ai{Dmkh(ak - ah) - Dkmh(am - ah)} - ahδkhDimi(am - at) + ahδmhDiki(ak - at) = 0 .

But the last two terms vanish by (*). Hence

£>mkh(ak ~ ah) - Dkmh(am - ah) = 0 .

Furthermore, if am = ahΦak, then

(**) Dmkh = Dmhk = Q.

It is easy to see that (*) and (**) imply DH=0 and hence the two complementary

distributions defined by the eigenspaces of H are parallel. Hence, if HX= —X and

HY= Y, then R(X, Γ) = 0, a contradiction.

REMARK. Let (M, <, » be an ̂ -dimensional sphere of curvature 1/2. Then, SO(M)

is the Lie group SO{n+ 1) and the metric <, > of SO(M) is a bi-invariant metric of

SO{n+ 1). The last assertion follows from the fact that, in this case,

for all A, Ceo(n) and ξ, ηeRn. Then, B(ξ) is a horizontal Killing vector field for any

ξeRn which is not fibre preserving if
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