Tohoku Math. J.
43 (1991), 103-115

INFINITESIMAL ISOMETRIES OF FRAME BUNDLES
WITH NATURAL RIEMANNIAN METRIC

HitosHI TAKAGI AND MAKOTO YAWATA

(Received December 26, 1989)

1. Introduction. Let (M, {,)) be a connected orientable Riemannian manifold
of dimension n=3 and SO(M) be the bundle of all oriented orthonormal frames over
M. SO(M) has a Riemannian metric, also denoted by {, ), defined naturally as follows:
At each point u of SO(M), the tangent space SO(M), is a direct sum Q,+ V,, where
Q. is the horizontal space defined by the Riemannian connection and V), is the space
of vectors tangent to the fibre through u. The right action of the special orthogonal
group SO(n) on the bundle SO(M) gives an isomorphism f; of the Lie algebra o(n) onto
V, for each ue SO(M). We denote by A4, the image of 4e€o(n). On the other hand,
SO(n) has a bi-invariant metric denoted also by <, >, which is defined by

(A4, Cy=) 4;,C;, A, Ceo(n).
iJj

Then, the Riemannian metric <, ) of SO(M) is defined by
{A4,, C,r)=<4,C)
(A4, X,»=0
KXo, Y =<pX\, PY.)

for X,, Y,eQ, and 4, Ceo(n), where p is the projection SO(M)— M.

O’Neill [4] studied the curvature of (SO(M), {, »). In the present paper, we shall
study Killing vector fields on (SO(M), <, >) and prove the following Theorems A and
B. Let X be a vector field on SO(M). X is said to be vertical (resp. horizontal) if X, eV,
(resp. if X,eQ,) for all ue SO(M). X is said to be fibre preserving if [X, X'] is vertical
for any vertical vector field X’. Let A* be the vertical vector field defined by
(A*),=A,=f,(A). A* is called the fundamental vector field corresponding to A € o(n).
X is decomposed uniquely as X = X# + XV, with X¥ horizontal and X" vertical. X and
X" are called th horizontal part and the vertical part of X, respectively. Let ¢ be a
2-form on M. Then the tensor field F of type (1,1) is defined by {(FY, Z)=¢(Y, Z).
Then, for each ue SO(M), F*(&) e o(n) is defined by

Fwy=u""°F,,°u,

where u is regarded as a linear isometry of (R", {, >) onto the tangent space M oy at

p(u). Here ¢, ) also denotes the standard metric of R". Then, the vertical vector field
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X is defined by

X, =f(F'Ww), ue SO(M).
X is-called the natural lift of ¢ or F and is denoted by ¢ or FL. Let Y be a Killing
vector field on (M, <, »). Then the horizontal vector field X is defined by

p(xXH), = Yo ue SO(M) .

Let DY be the covariant differential of ¥ and XV be the natural lift of DY defined as
above. The vector field X=X"+ X" on SO(M) is called the natural lift of Y and is
denoted by Y.

THEOREM A. Let X be a fibre preserving Killing vector field on (SO(M), {, »). Then,
X is decomposed as
X=Yl+ ¢l +4*,
where YL is the natural lift of a Killing vector field Y on (M, {, ), ¢* is the natural lift
of a parallel 2-form ¢ on (M, {, >) and A* is the fundamental vector field.

THEOREM B. If(SO(M), <{, >) has a horizontal Killing vector field which is not fibre
preserving, then (M, {, >) has constant curvature 1/2, except when dim M =3, 4 or 8.

Theorems A and B seem to be related to the results of Tanno [5] who gives a
decomposition of any Killing vector field on the tangent bundles with a Sasakian metric.

Thanks are due to T. Asoh and F. Uchida who taught us basic facts about Lie
groups and Lie algebras.

2. Preliminaries. In this section, we give definitions, notation and lemmas needed

to prove Theorems A and B.
For £e R", we define the standard horizontal vector field B(¢) on SO(M) by

pBE)=ul), ueSOM).

We denoted also by D the covariant differentiation with respect to the Riemannian

connection of (SO(M), {, ).
The proof of the following lemma can be found in [2] and [4].

LeMMA 1. Let A, Ceo(n), & n, (eR" and let Q be the curvature form of the
Riemannian connection of (M, {, »). Then,
[4* C*¥]=[4, C]*
[4*, B($)]=B(A%)
<[B(), B(m)], B(L)>=0
K[B(&), B(m)], A*> = —2{AB(&), B(n), 4>
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<DB(§)B(’I)a B()>=0
{DyeyB(n), A*) = —<Q(B(), B(n)), A
(DyA*, B(n))=<AB(), B(n), 4>
{(DpgA*, C*>=0
<D 4+B(S), B(n)y =<QB(), B(n)), A) +<B(AE), B(n))
(D 4#B(), C*>=0
D ,.C*=(1/2)[A, C]*.

Let X be a vector field on SO(M). Then, X is defined by
x(&)=<X, B())=<X",B(¢)>, (eR"
x(A)=<X, A*>=(X¥, A*) , Aeo(n) .
x(&) and x(A) are called the £-component and the 4-component of X, respectively. X

is horizontal if and only if x(4)=0 for all 4 eo(n), while X is vertical if and only if
x(&)=0 for all £e R".

LEMMA 2. Let X be a vector field on SO(M). Then X is a Killing vector field if
and only if

B(&)(x(m) + B(n)(x(£)) =0
A*(X(E)) = X(AE) + B(&)(x(A4)) — 2{Q(B(&), X™), A>=0
A*(x(C))+ C*(x(A4))=0
for all £, ne R" and A, Ceo(n).
Rroor. X is a Killing vector field if and only if
{DyeyX, B(n)) +{ DX, B£)>=0
{DpeyX, A*>+{D X, B({))=0
<DAtX, C*> + <DctX, A*> =O
for all £, ye R" and A, Ceo(n). Then, the assertion follows from Lemma 1 and the fact
that
DpB(n)+ Dy,B(£)=0
<DB(.§)A*a X> = (Q(B(f), XH), A>
(D B(&), Xy ={B&), XT), A+ (B(4L), X .

By virtue of Lemma 2, it is easy to see that a fundamental vector field is a Killing
vector field.



106 H. TAKAGI AND M. YAWATA

LEMMA 3. Let X be a vector field on SO(M). Then,
<[B(E), X1, B(n)> +<[Bn), X1, B(E)) = B(E)(x(n))+ B(n)(x(£))
([4*, X1, B(E)) = A*(x($)) — x(AL)
C[B(E), X], A*) = B(E)(x(A)) —2{Q(B(&), XT), 4)
[4*, X], C*) = A*(x(C) — ([ 4, C])
K[B(&), X1, B(m)>,=B(E)x(m)—{f, ™ (X)IE, n)
forall £, neR", A, Ceo(n) and ue SO(M).

Proor. The assertion follows from Lemma 1 and the fact that A* is a Killing
vector field and {B(&), B(n)> =<¢&, n).

3. Proof of Theorem A.
LemMmA 4. Let X be avertical Killing vector field. Then X is decomposed uniquely as
| X=g¢l+ A%,
where ¢ is a parallel 2-form on (M, {, )) and A* is the fundamental vector field.
PrOOF. We first show that X is decomposed uniquely as
X=X,+X,,
where X, and X, are smooth vertical vector fields on SO(M) such that
[4*, X]=0, A*(x,(C))=0

for all A, Ceo(n). Here x,(C) denotes the C-component of X,. It should be noted that
each fibre is totally geodesic and is isometric to the Riemannian symmetric space (SO(n),
{,>). For each ue SO(M), we define an isometry g,: p~ *(p(u))—SO(n) by g,(ua)=a.
Then g,(X) is a Killing vector field on (SO(n), {, »). By a standard theory of symmetric
space (cf. [1]), g,(X) is decomposed uniquely as

gu(X)= W)+ W,u),
where W, (u) is a right invariant vector field and W,(u) a left invariant vector field on
SO(n). Define the vector fields X; and X, on p~!(p(u)) by
X1=gu_l(W1(u))a X2=gu_l(W2(u)) .

It is easy to check that the definition of X; and X, is independent of the choice of g,
for vep~ '(p(w)), since g,= L, ° g, when v=ub for be SO(n). The smoothness of X; and
X, follows from the local triviality of this bundle. The properties [4*, X;]=0 and
A*(x2(C))=0 follow from

(4%, X, 1=g."'[4, W,(w)])
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x2(C)=<X,,C*>=<g,” (W, (), 9.~ (C)) ={ W), C> .

Next, we show that X, is a fundamental vector field. Since X is vertical, it follows
from Lemma 2 that

B(O)(x(C))=B(E)(x,(C) +x,(C)) =0
for all Ceo(n). On the other hand, [4*, X]=[A4*, X,] is a vertical Killing vector field
and, by Lemma 3,

[4*, X5], C*) = A*(x,(C)) —x,([4, C]) = —x,([4, C])
for all A, Ceo(n). Thus, by Lemma 2, we have B(¢) (x,([A4, C]))=0 for all £€ R" and
A, Ceo(n). Hence, the semisimplicity of the Lie algebra o(n) implies
B(£)(x2(4))=0
for all ¢e R" and A eo(n). These conditions on x,(4) imply that x,(4) is constant on
SO(M) for all Aeo(n), hence X, is a fundamental vector field.
X, is a vertical Killing vector field satisfying
B(&)(x,(C)=0, [C* X,]=0

for all £ € R" and Ceo(n). Now, it suffices to show that X, is the lift of a parallel 2-form
on (M, {, ). Let F* be the o(n)-valued function defined by

Fru)=f,""((X,)), ueSOM).

Then, we have Ff(ua)=a" ' ° F*(u)o a for all ae SO(n). This follows from the fact that
the condition [C*, X;]=0 for all Ceo(n) is equivalent to the condition R, X, =X, for
all ae SO(n) and the fact f,,= R, f,ad(a). Hence, the tensor field of type (1, 1) on
M is well-defined by

Fyw=ucFu)ou™, puweM.
Let ¢ be a 2-form corresponding to F. Then, X, = ¢* and ¢ is parallel. The last assertion
follows from
(1 (ONW) = UC*),, (X 1) =<C, £, 1 (X1)u> =<C, F¥u))>
B()(x,(C))=<C, BE)F*)
D eyF=uo(B(E)Ff)ou™t.

For the proof of the last equality, see lemma of section 1 of chapter III of [2]. Note
that any vertical vector field is fibre preserving, since each fibre is totally geodesic.

LEMMA 5. Let X be a fibre preserving Killing vector field on (SO(M), {, >). Then
There exists a Killing vector field Y on (M, {,)) such that X¥=(YY)¥ and Y" is a
Killing vector field.
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PrROOF. Since XV is fibre preserving, so is X¥ and, by Lemma 3,
[4*, X1, B(E)>=0,  <[4* X"], C*>=0

for all 4, Ceo(n) and e R". It means that [4* X#]=0 for all Aeo(n), that is,
R, X" = X" for all ae SO(n). Hence, there exists a unique vector field ¥ on M satisfy-
ing pX#=7.

We first show that Y is a Killing vector field. Let 4 be an R"-valued function on
SO(M) defined by h(u)=u"'Y,,. Then we have D, Y=u(B(¢)h) for all {€R" and
ue SO(M). For the proof, see lemma of section 1 of chapter III of [2]. It follows that

(€)@ =< X,, BLE))=<(X"),, BLE))
= <p(XH)us pBu(é)) = < Yp(u), u(é)>
= U™ Yy u” o u(€)) =<hw), &> .

Moreover,

B, (m(x())=<B(mh, {>={Dyy Y, u()
B,(&)(x(n) =< B(E)h, 1) =Dy Y, u(n) .
Then, by Lemma 2, for all £, ne R" and ue SO(M),
Dy Y, u(&)> + <Dy Y, u(n)>=0,

which shows that Y is a Killing vector field.

Now, we show that YX= X"+ X, is a Killing vector field, where X, =(DY)~. Let
F=DY and let F* be the o(n)-valued function on SO(M) defined by F¥(u)=u"" o F,,°u.
Then F¥(ua)=a"' > F¥(u) a for all ae SO(n), which implies that R,(X),=(X,)., for all
ae SO(n), that is, [4*, X,]=0 for all 4 € o(n). The proof is the same as that of Lemma
4. Then, by Lemma 3, it follows that

A*(x,(C)—x,([4, C])=0
and hence
A*(x,1(C))+ C*(x,(4))=0.
On the other hand, in the same way as in the proof of Lemma 4,
BE)(x1(C)=(C, BLOFY=(C,u " o (DyeyF) o)
={C,u" o (DygDY)ouy=—{C,u"" o R(Y, u({))°u)
=—2KC, QX" B(&))>

for all Ceo(n) and £ € R", where R(Y, u(¢)) denotes the curvature operator of (M, , D).
The last two equalities are well-known (see [2]). By (Y%, B(é)>=x(¢) and
(YL, A*> = x,(A), these results show that Y is a Killing vector field.

Now, let X be a fibre preserving Killing vector field and let Y be the vector field
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given in Lemma S. Then, X — ¥ is a vertical Killing vector field which can be written
as X— Y= ¢L+ A* by Lemma 4. This completes the proof of Theorem A.

4. Proof of Theorem B. Throughout this section, we assume dim M =5. Let U
be the space of all horizontal Killing vector fields on (SO(M), {, >) and let U, be the

subspace of Q, obtained as the restriction of U to ue SO(M). Let o(U,) be the algebra
of all skew symmetric linear transformations of U,,.

LemMA 6. (i) For each Ae€o(n), the linear map r,(A4): U,—» U, is well-defined by
r{AX,)=[4* X],, XeU.
(ii) The linear map r,: o(n)—>o(U,) is a Lie algebra homomorphism.
Proor. If Xe U, then, by Lemmas 2 and 3,
[4*, X1, B(E)) =2CQB().X), 4),  ([4* X],C*)=0

for all A, Ceo(n) and £ € R". These equalities mean that [ 4*, X] is a horizontal Killing
vector field and that [4*, X], depends only on X,. (ii) follows from the Jacobi identity

[[4*, C*], X]1=[4*, [C*, X1]-[C*, [4*, X]]
and
CrlA)XL), (X)) =24Q(X s X)), A
for X' eU.

Now, we assume that there exists a horizontal Killing vector field which is not
fibre preserving. Then, at each point u of a certain open dense subset of SO(M), the
dimensions of both U, and r,(o(n)) are greater than 0. However, this is possible only
when U,=Q, and r,(o(n))=o(U,). Otherwise, r, has a non-zero kernel which contradicts
the simplicity of the Lie algebra o(n). We can define the automorphism s, of o(n) by

S(A)ou"top=u"topor, A4)

for each point u of the subset. We note that any fibre is contained in the subset or has
no intersection with it. This follows from Lemma 2 which shows that, if a horizontal
Killing vector field X attains zero at a point u, then X is zero along the fibre through u.

LemMa 7. (i) s, is an involutive automorphism.
(i) ad(a)os,,=s,°ad(a) for aeSO(m) .
ProOOF. (i) First, we note
S{AE=@  opor(A)BE)  forall CeR".

Hence we have
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(sl AE =™ e porANBLE), n)=(porA))B,E), u(n)>
=<{rlA)B &), B,(n)) =2{(B,(n), B£)), A)
=<u™" o R(u(n), u(€)) ou, A)
for all Aeo(n) and &, ne R", where R(u(¢), u(n)) denotes the curvature operator. By the

symmetry of the curvature tensor R and the fact that the metric {, ) of o(n) is a scalar
multiple of the Killing form, we have

$5u(A), C>=K4,5(C)),  <s(4),5(C))=<4,C)
for all 4, Ceo(n). Thus
{4, C)={s,(4), 5,(C))=<s53(4), C>,

which implies s2=1.
(ii) follows from

$SualA)E, ny =< (ua)™ ' o R((ua)(n), (ua)(&)) - (ua), A>
=<{a " tou" o Ru(an), w(aé))ou-a, A>
={u" ' o R(u(an), u(a))ou, ada™*>
={(s(ad(a)4))a&, an) =<a™ (s, (ad(a)4))at, ) .

Let /4 be one of the matrices

-1, 0 0 1
In’ Ip,q=< i ), J=< " ’
0 I, ~1I, 0

where I, denotes the identity matrix of degree n, p+g=n, 1 <p<g<nand 2m=n. Then,
by the classification theory of symmetric spaces of type SO(n)/K, any involutive
automorphism of o(n) is conjugate to ad(4) in the group Aut(o(n)) of all automorphisms
of o(n). Furthermore, it is well-known that Aut(o(n)) for » odd is isomorphic to the
group Int(o(n)) of all inner automorphisms of o(n), while the quotient group
Aut(o(n))/Int (o(n)) for n even and n+#8 is isomorphic to Z, (see [1], [3]). Here, we
note that, if n is even, +1, ,_ is an element of O(n) but not SO(n) and hence ad(/, ,_,)
is not an element of Int(o(n)). These facts show that any element of Aut(o(n)) is of the
form ad(a) for some a ae O(n), unless n=8§.

Consequently, any involutive automorphism s of o(n) is written as s=ad(aha™")
for some ae O(n) except when n=8. By Lemmas 6 and 7, we have:

LEMMA 8. Assume that dim M +#8 and that (SO(M), {, >) has a horizontal Killing
vector field which is not fibre preserving. Then, for each point u of a certain open dense
subset of SO(M), there exists an automorphism s, of o(n) such that

() s,=ad(aha™')  for some aecO(n),
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(ii) sl A)E, > =Cu™" o R(u(n), u(&))ou, 4)
for all Aeo(n) and &, ne R",
(iii) sp=ad(b"laha='b)  for beSO(n),

where h is one of the matrices I,, I, , and J.

Let V be a vector space with an inner product {, >. For each &, ne V, we define a
skew-symmetric linear transformation & An of V by

EAmMQ)=<{n, {XE—<E On.

Let H be a linear transformation of a tangent space of M such that, with respect to a
certain orthonormal basis, the representation matrix of H is one of 1,, 1, , and J.

LEMMA 9. Under the assumption of Lemma 8, the curvature operator R(X,Y) of
(M, {, ) is expressed as

RX,Y)=(1/2)HX A HY
at each point of a certain open dense subset of M.
Proor. First we note that, if 4eo(n), £, neR" and be O(n), then
Ean, Ay=—2{AE,ny,  adB)EAn)=blAbn.

Let k be aha™! appearing in (i) of Lemma 8. Then, k~!= +k since h?= + 1. Taking
into account the fact that the metric {, > of SO(n) is adjoint-invariant, it follows that

(ad(k)A)¢, )= —(1/2)<E An, ad(k)A) = —(1/2)<ad(k~ )& Anm), 4)
=—(1/2)<kEnkn, 4> .
Then, by (ii) of Lemma 8,
u™ "o R(u(n), u(€)) o u= —(1/2)kE A kn=(1/2)kn A k&
and hence
R(u(n), u()) = (1/2)ulkn) Au(kE) .
Put H=uokou '. Then
R(u(n), u(&))=(1/2)H(u(n)) A Hu(S)) ,
which completes the proof.
Now, we note that H of Lemma 9 cannot have the representation matrix J, since,
as is easily to checked, if H has the representation matrix J, then the tensor R defined

by R(X, Y)=(1/2)HX A HY does not satisfy the first Bianchi identity.
Next, we show that H has the same representation matrix over the set of points
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of M, where R(X,Y) is expressed as (1/2)HX A HY. Indeed, if R(X,Y)=(1/2) XA Y
at a point of M, then the scalar curvature is equal to n(n—1)/2 at the point. If
R(X,Y)=(1/2JHX AHY for H having the representation matrix I,, at a point of
M, then the scalar curvature is equal to {(g—p)>*—n}/2 at the point. But,
n(n—1)—{(g—p)*—n}=4 and, if ¢>¢/, then {(¢g—p)*—n}—{(¢ —p')*—n} = 4. Hence,
the connectivity of M and the continuity of the scalar curvature imply the assertion.
Next, we show that, if R(X, Y)=(1/2)HX A HY for some H having the representation
matrix I, ,, then such an H can be chosen smoothly in a neighbourhood of each point.
This is clear for the case p<g, because the Ricci transformation S is written as
S=(q—p)H—1. We need the following lemma to prove it for the case p=gq.

LEMMA 10. Assume that H has the representation matrix I,, and R(X,Y)=
(1)2)HX A HY. Then we have the following:
(1) At each point, such an H is determined uniquely without distinction of the signs.
(ii) Such an H can be taken smoothly in a neighbourhood of each point.

PROOF. (i) Suppose K also has the representation matrix 7, , and HXAHY =
KX A KY. It suffices to show K= + H. By the definition of X A Y, if {X, Y} is linearly
independent, then the plane spanned by KX and KY coincides with the one spanned
by HX and HY. Let {X;} be an orthonormal basis such that HX;=a,X; for a;= + 1.
Then, KX, and KX, are linear combinations of X; and X,. KX, and KX; are also
linear combinations of X; and Xj;. It follows that KX, =b, X, for some b, € R. Similarly,
KX;=b,X; for some b;e R (1<i<n=2p), which implies b;= +1, as K*=1. Then, the
equality (HX; A HX,) X, = (KX; A KX})X, implies a;a, = b;b, for i#k. Hence, if b, = ta,,
then, b, = +aq, for k=2.

(ii) Let us consider the following system of quadratic equations with unknown
variables Hj;:

(%) Hthji_HkiHjhzszjih >

where R, are the components of the curvature tensor with respect to a smooth field
of orthonormal basis {X;} defined in a neighbourhood of a point me M, that is, we put
Ryjin=<R(X\, X;)X;, X;,>. We assume that (x) has two solutions + (H,;) at each point and
that the solution matrix (H;;) is diagonalizable to 7, , by a certain orthogonal matrix
at each point. We first show that there exist smooth functions H;; (1 <i<n) of variables
H;;(1=i<j<n)and Ry;;(i# h) such that the components of one of the solution matrices
must satisfy these relations. By (*), the two solutions satisfy the equations

(1 HyH;;— (Hhi)2 =2Ryin (i#h)
) HhhHij“Hhith=2Rhijh (i#)) .
Here, we may assume (H;;)=1, , at me M. By assumption, it follows that, at m,

2Ryiin=1 (1=h<i<p or p+1=Zh<i=Zn)
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(Hy2)?+2R 55, =(Hp)? +2Rp = (H1 ) + 2Ry, =1 (B=ksp).

Note that R, is a smooth function and hence we way assume R;, >0 for 1 <h<i<p
in the neighbourhood. Then, by (1), we have

H H,,=(H3)*+2R,;,,>0
H,yyHy=(H3)? + 2R3, >0 (B=k=p)
HyH,;;=(H;)? +2R 4, >0

in the neighbourhood. The components of one of the solution matrices must satisfy

Hy = —{((H12)*+ 2R 22)(H1)* + 2R 441 /(H31)* + 2R, 00) } /2
Hyy=—{((H12)* + 2R, 551)(H2)? + 2Rp0) [(H1)* + 2R 340} 2
Hy= —{(H2)? + 2R)(H11)* + 2R 1)) [(H 5)* + 2R 5,5 )},

(3<k=p). We have similar results for 1*=p+1, 2*=p+2, k*=p+k (3<k=p), that
is, the components of one of the solution matrices must satisfy

Hpyo={.. 32, Hyupo={.. V2, Hpu=1{.. )12

where three brackets {...} are obtained from the above three by exchanging subscript
indices 1, 2, k for 1*, 2*, k*, respectively.

(2) is regarded as a system of equations of n(n—1)/2 unknown variables H;; (i <j).
Taking account of (H;(m))=1,,, it is easily seen that the coefficient of the partial
derivative of the function H, H;;— H,;H,; with respect to variable Hy, is equal to + 4,
atm,if h<k,i<j, t#iand t+#j. The implicit function theorem shows that (x) has a unique
smooth solution in a neighbourhood of m satisfying (H;(m))=1, ,.

In the next lemma, we prove that H cannot have the representation matrix 7, ,.
Then, the remaining possibility is H=1, that is, (M, {, ») has constant curvature 1/2,
which completes the proof of Theorem B.

LEMMA 11. There exists no Riemannian manifold (M, {, ) such that the curvature
operator R(X,Y) is expressed as R(X,Y)=cHX A HY, where c is a non-zero constant
and H is a linear transformation defined pointwise and having the representation matrix
I, , (1 £p=<qg=<n) with repect to a certain orthonormal basis.

PrOOF. By Lemma 10, we may assume that H is smooth in a neighbourhood of
each point. Let {X;} be a local orthonormal frame field such that HX;=aq,X; satisfying
a;=+1 (1=i<n). Let D;y,={Dy X;, X,> and H,={(Dyx,H)(X)), X, where D is the
covariant differentiation of (M, {, »). By definition,

Djy+ Dy, =0, Hj,=Hy and Hj,=Dla;—ay).

Hence we have
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{R(X,, Xj)Xb X = caiah(ékhéji - 5ki5jh) s
(1/0)X(Dx,, R)(X, X)Xy X
=a;0 jiDmkh(ak —ay) + 044D, ji(a i a;) — a,d inDmii( @ — a;) — a;04;Dyy nla i a) .
The second Bianchi identify is expressed as
4,0 ji{ D e @i — @) — Diui( @ — a4) } + @40y { D pmji@j— a;) — D (@ — a;) }
+ @:0 il Dicjn(@;— ay) — D (@ — ay) } + @0 jy{ Diomi @y — @) — Dyiei( @ — @)}
+ ahémh{Djki(ak —a)— iji(aj“ ai)} + aiaki{Djmh(am —a,)— ijh(aj - ah)} =0.
When i=j#k=h#m+#i=j, the last identity reduces to
;D@ — @) + a4 D@ — a;) =0 .
Furthermore, if a,,=a; #a,, then
(*) Dypm=Dppp =0 .
When m#j=i, k#j=1i, h#j=i, the second Bianchi identity reduces to
a;{ D (@ — a4) — Di( @ — @4)} — @01 Dimi @ — @) + @0, Dii( @ — a;) =0 .
But the last two terms vanish by (*). Hence
D i@ — A1) — D@ — a3) =0 .
Furthermore, if a,,=a,#a,, then
(**) Dmkh=Dmhk=O .

It is easy to see that () and (#*) imply DH=0 and hence the two complementary
distributions defined by the eigenspaces of H are parallel. Hence, if HX= —X and
HY=Y, then R(X, Y)=0, a contradiction.

REMARK. Let (M, {, >) be an n-dimensional sphere of curvature 1/2. Then, SO(M)
is the Lie group SO(n+1) and the metric <, > of SO(M) is a bi-invariant metric of
SO(n+1). The last assertion follows from the fact that, in this case,

[4*, B(S)]=B(AS)
[4* C*¥]=[4,C]*
[B(), B(m)1=—(1/2)(& An)*
for all 4, Ceo(n) and &, ne R". Then, B(¢) is a horizontal Killing vector field for any
£ e R" which is not fibre preserving if £#0.
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