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In the pioneering work [ U l ] , Uhlenbeck proved the following removable singu-

larity theorem for Yang-Mills connections:

THEOREM. Let A be a Yang-Mills connection on a bundle P over the punctured ball

B* = B \{0} in /?4. If the square integral of the curvature tensor RA of A is finite, that is,

L \RΛ\
2«x>,

then the bundle P and the connection A extend smoothly to the whole ball B.

As pointed out by Itoh [I], any Einstein-Hermitian connection of a holomorphic

vector bundle on a Kahler surface is a Yang-Mills connection. Hence we get:

COROLLARY. Let (£, /?)—•/?* be an Einstein-Hermitian holomorphic vector bundle

over the punctured ball B*aC2. If its curvature is square integrable, then (E, h) extends

to the whole ball B as an Einstein-Hermitian holomorphic vector bundle.

In a sense the assumption of the corollary is too strong. It assumes not only the

Yang-Mills equation but also the equation comming from the holomorphy. So it would

be natural to try to get rid of the Einstein condition. In this direction there are works

by Cornalba-Griffiths [CG], Siu [S2] and Uhlenbeck [U2]. They assumed pointwise

estimates of the curvature; boundedness or positivity. We here only assume that the

curvature belongs to L2 and get:

THEOREM 10. Let (£, h)^>B* be a Hermitian holomorphic vector bundle over the

punctured ball B*czC2. If it satisfies

ί
the E extends to a holomorphic vector bundle E defined on the whole ball B. Every

holomorphic section of E is locally square integrable.

The idea of the proof is rather standard. First we show that E and its dual vector
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bundle E* have sufficiently many holomorphic sections on B* so that we can embed
E into a trival vector bundle of sufficiently high rank. Then we extend E as a torsion
free sheaf £ over B. Since the dimension of the base space is 2, the double dual $**
of $ defines the desired vector bundle E. The last statement of the theorem is an easy
consequence of an analytical lemma.

We remark that the natural inclusions give the following isomorphisms: for an
open set U,

Γ(E; U)={seΓ(E; UnB*)\sis locally square integrable} = Γ(E UnB*).

After this work was completed, Professor Y.-T. Siu pointed out that combined
with his slicing theorem [SI, 3], Theorem 10 yields the following result:

THEOREM. Let S be a closed subset of a ball B in Cn with a finite Hausdorjf measure
of real codimension 4 and (£, h) be a Hermitian holomorphic vector bundle defined on
B\S. If its curvature is square integrable, then E uniquely extends to the whole ball B
as a reflexive sheaf

The author would like to express his gratitude to Professor Y.-T. Siu for his
generosity in allowing the author to include his important remark here. The author
would also like to express his thanks to Professor Valli for his interest in this work
and the discussion with him which brought an improvement of Theorem 1. The author
would like to acknowledge his gratitude to the Max-Planck-Institut fur Mathematik
for hospitality. This work was done during his stay there.

1. Extension of line bundles.

THEOREM 1. Let S be an analytic subset of at least codimension 2 of the ball B in
Cn, and (L, h) be a holomorphic Hermitian line bundle defined on B\S. If the curvature
ω of(L, h) is integrable, then L extends to the whole ball B as a holomorphic line bundle.

PROOF. We define a (l,l)-current ώ on B as follows: For a smooth 2(n— l)-form
θ with compact support in B,

-Lώ(θ)=\ ω/\θ.
J #\S

If S= {0}, we take a sequence of radial cut-off functions ηε such that ηε = 0 for | z | <ε,
= 1 for I z I > 2ε, and | dηε \ < 2ε ~*. For θ with compact support we define a form θ0 with
constant coefficients which coincides with θ at the origin. Since H2(B\{0}) = 0 and
dθ0 — 0, we get

ώ(dηE A θ0) = 0 .

Hence
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ώ(dθ) = lim ώ(ηεdθ) = lim ώ(d(ηεθ) - dηε Λ 0) = lim ώ(dηε A ( 0 O - θ)) = 0 .
ε-0

This meanes that ώ is rf-closed. For general S we use the stratification of S by smooth
sub varieties. Since along the strata of maximal dimension the situation for the transversal
direction is the same as the case of S=0, we can use the above argument. By induction
on the dimension of the strata, one can show the d-closedness of ώ in general. Thus
there exists a (0, 0)-current u such that

The regularity theorem says that u is smooth on /?\S. If we replace the Hermitian
metric h on L by heu, then its curvature vanishes. This means that L comes from a
representation of π1(J?\S') = {l}. Thus L is a trivial line bundle on B\S, which clearly
extends to the whole ball B as a line bundle.

2. Solving ^-equations. From now on we work under the assumption of the
theorem. We may assume that Z ? = { Z G C 2 | | Z | 2 < 1 } and (E, h) is defined on a larger
punctured ball.

Let p be a smooth 3-closed ^-valued (0,l)-form which has compact support in B*.
We are to solve the equation

du = p on B* ,

with ueH1, namely, u and its covariant derivative Vw are square integrable. First we
solve the ^-Neumann problem: with the formal adjoint 9 of 3"

ΠΦ = (δ8 + 9<?)φ = p on B* ,

with φeH1 which satisfies the ^-Neumann condition at the boundary dB. We need to
specify a base metric and a fiber metric. We fix the base metric to be the standard
Euclidean metric and the fiber metric to be hκ = he ~ κ'z | 2 with a sufficiently large constant
K to be chosen later.

For a small number ε>0, we solve the Dirichlet-?-Neumann problem on
Bf = {zeC2\ε< | z | 2 < l } , i.e., we put the ^-Neumann condition on {|z|2 = l} and the
Dirichlet condition on {|z|2 = ε}.

LEMMA 2. If we take K large enough, then for a section φ which satisfies the

Dirichlet-d-Neumann condition, we get

In particular, we can solve the equation Π\φ = p, with || φ ||, || Qφ ||, || Έφ || < || p ||.

PROOF. Let Rκ = Rh + K be the curvature tensor of the metric hκ, and 0 < η < 1 be
a cut-off function which is equal to 1 near the origin. Then,
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(ΠΦ, Φ)= II 8φ II2 + I I H II 2> f | V ° ιφ\2 + (Rκφ, φ)> f|V° ι

where tr is taken in the form part. Since ηφ has compact support, we can apply the
Sobolev inequality and get, with a positive constant S,

Choose η in such a way that its support is so small that

1
\Rh\

2<
1

and take K large enough. Then we get

Isuppi/ 64S

Thus the Dirichlet-?-Neumann problem has solutions with the desired properties, (cf.
[FK].)

Letting ε->0 we get:

LEMMA 3. We have a solution φeH1 of the fi-Neumann problem on B*.

By Moser's iteration argument one can get the following lemma, (cf. [BKN,
Lemma (5.8), Lemma (5.9)].)

LEMMA 4. Let f be a square integrable non-negative function on B*, and u be a
locally H1 non-negative function on B* such that with a positive constant c

Δw > —fu — c, on B* ,
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where A = Σ ^/(dx1)2. If us H1 or \B(r)u
p = o(r2) as r->0 with p>\, where B(r) = {| z | < r},

then we have ueLq for all q>\ on B(\/2).

The equation ΠΦ = 9 implies Aφ = 2Rhφ — t r R h φ — 2p, hence Δ\φ\>—4\Rh\ \φ\

— 21 p |. The lemma yields that φ e Lq for all q > 1. By integration by parts with a cut-off

function 77 we get

suppV?/

As φ e Lq for any # > 1, the Holder inequality gives Jβ ( r ) | φ | 4 = 0( r 4 " 2<5) for any positive

δ. Thus J β ( r ) | V(/>|2 = O(r 2"^). Taking 5" of the equation Πφ = P, we get 0 = dΠΦ = <ϊ9<ϊφ

= U\δφ, and Δ | Έφ \ > — 21 i? x 11 Bφ |. Applying Lemma 4 with u = \<ϊφ\ and 1 </?<2, we

get <J</> e Lq for any ^ > 1. Taking a cut-off function 77 = ηr such that f/(z) = 1 for | z \ > 2r, = 0

for I z I'< r and | Vη \ < 2/r, we get

hence

as

Thus putting u = 9φ we get:

LEMMA 5. /br α g/v^« smooth ^-closed (0, l)-form p with compact support in B*,

we can solve the ^-equation

du = p on B* ,

wi/Λ l l « I I < U P I I .

Let s be a holomorphic section of E defined in a neighborhood of zoeB*, and η

be a cut-off function with compact support in B* which is equal to 1 in a neighborhood

of z 0 and that ηs makes a smooth section on B* by putting ηs = 0 where s is not defined.

Then p = c){ηs) is a ^-closed (0, l)-form which vanishes in a neighborhood of z0. We

take a pluri-subharmonic function w(z) = log|z — z o | 2 as a weight function, and use a

fiber metric /ze~* | z | 2 ~ 2 w instead of he~κ^z^2 in the proof of Lemma 5. Since peL2 in

the new metric, the solution u also belongs to the L2-space. This means that u vanishes

at z0. Thus ηs — u is a holomorphic L2-section (with respect to the original metric h) of

E on B* which is equal to 5 at z0.

LEMMA 6. For any point zoeB* we can find a family {sλ, s2, ' * *, sr}, r = rank£",

of holomorphic L2-sections on B* (L2 with respect to the given metric h) which gives a
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base of EZo at z0.

LEMMA 7. There exists a family {sί9 s2,'", sm} of a finite number of holomorphic

L2-sections on B* such that {s^z), s2(z), , sm(z)} spans Ezfor each point zeB(\/2)*.

PROOF. Theorem 1 says that the determinant line bundle detis extends to the
whole ball as a holomorphic line bundle, which we continue to call det E. Fix a point
zoeB* and construct holomorphic L2-sections sl9 s2, ' ",sr on B* which give a base
at z0. Then σ = sίΛs2Λ - - - Λsr gives a section of detE on B*. Since by Hartogs'
theorem σ extends to B as a holomorphic section, which we continue to call σ, the
divisor (σ) = {zeB\ σ(z) = 0} has finitely many irreducible components Dt (/= 1, , /)
in B(4/5). Take a point 2,-8^(4/5)* in each component Di9 and construct a family
{ si,i5'si,25 ' ' Ίsur) °f holomorphic L2-sections on B*, which spans Ez. at zt . Then
{s1? s2, - -, sr, suu sit2, - , sitr(i=l, - , I)} spans £ in 2?(3/5)* except at a finite number
of points {z'j}. Again we construct a finite number of holomorphic L2-sections
{s'l9 s29 - , s'Γ} on B* to make them span E at {z}}. Then {jl5 s2, , ̂ r, s u , j ί > 2 5 * * *,
j ί f Γ , ^i, ^2, * , ̂ J'} is the desired family.

Since E* also have the square integrable curvature, we have:

LEMMA 8. There exists a family {tl912, — mtn} of a finite number of holomorphic
L2-sections on B* such that {tχ(z), t2(z), , tn(z)} spans Ef for each point ze5(1/2)*.

3. Extension of holomorphic vector bundles. We embed the vector bundle E\B*,
B=B(l/2) into the trivial vector bundle Cn by

O , <s, /2>, , <J, O)eCn.

Then it is generated by the images {£j of {̂  }Γ=i By Hartogs' theorem st extends to
the whole ball B as a holomorphic section. We define a coherent subsheaf $ of Cw on
if to be the one generated by {£j. Since dimB=2, the double dual <f** of S9 which
coincides with S except at the origin, comes from a holomorphic vector bundle E. Then
there exists a non-zero polynomial P such that for any holomorphic section s of E, Ps
belongs to $. This implies that the restriction of Ps to B* is square integrable with
respect to the metric h. We fix an arbitrary smooth fiber metric /Ton E. Then log+ ivφ
belongs to the ZAspace for any q> 1. A calculation shows

We solve the equation

Δϋ=-2( | t rΛ Λ | + | t r ^ | ) 6 L 2 , v\dB = \og+ tvφ\dB .

Then we get vsH2 and log+ tτφ<v. We apply the following lemma to see that iτφ
belongs to the ZΛspace for any q > 1.

LEMMA 9. Let υ be a function in the H2-space on a real 4-dimensional ball. Then
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exp v belongs to the Lq-space for any q>\.

Thus we complete the proof of Theorem 10 in the introduction.

REFERENCES

[B] S. BANDO, Bubbling out of Einstein manifolds, Tόhoku Math. J. 42 (1990), 205-216.
[BKN] S. BANDO, A. KASUE AND H. NAKAJIMA, On a construction of coordinates at infinity on manifolds

with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), 313-349.
[CG] M. CORNALBA AND P. GRIFFITHS, Analytic cycles and vector bundles on non-compact algebraic

varieties, Invent. Math. 28 (1975), 1-106.
[FK] G. B. FOLLAND AND J. J. KOHN, The Neumann problem for the Cauchy-Riemann complex, Ann.

Math. Studies, Princeton Univ. Press, 1972.
[GT] D. GILBARG AND N. S. TRUDINGER, Elliptic partial differential equations of second order, second

edition, Springer-Verlag, Berlin and New York, 1983.
[I] M. ITOH, On the moduli space of anti-self-dual connections on Kahler surfaces, Pub. Res. Inst.

Math. Sci., Kyoto Univ. 19 (1983), 15-32.
[K] S. KOBAYASHI, Differential geometry of holomorphic vector bundles, Publ. Math. Soc. Japan,

Iwanami Shoten and Princeton Univ. Press, 1987.
[M] N. Moκ, Complete Kahler-Einstein metrics on bounded domains locally of finite volume at some

boundary points, Math. Ann. 281 (1988), 23-30.
[SI] Y.-T. Siu, A Hartogs type extension theorem for coherent analytic sheaves, Ann. of Math. 93 (1971),

166-188.
[S2] Y.-T. Siu, A Thullen type extension theorem for positive holomorphic vector bundles, Bull. Amer.

Math. Soc. 78 (1972), 775-776.
[S3] Y.-T. Siu, Techniques of extension of analytic objects, Mercel Dekker, Inc. New York, 1974.
[S4] Y.-T. Siu, Lectures on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics,

Birkhauser Verlag, Basel-Boston, 1987.
[Ul] K. UHLENBECK, Removable singularities in Yang-Mills fields, Comm. Math. Phys. 83 (1982), 11-30.
[U2] K. UHLENBECK, A priori estimates for Yang-Mills fields, preprint.

MATHEMATICAL INSTITUTE

FACULTY OF SCIENCE

TOHOKU UNIVERSITY

SENDAI, 980

JAPAN






