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Introduction. This is a continuation of our previous paper [12], and we retain

the terminology and notation there.

In connection with Rosay-type theorems as in [17], [5] and [10], we shall study

in this paper the bounded Reinhardt domain E(pl9 -,/?„) in Cn defined by

where pί9 ,/?„ are arbitrarily given positive real numbers. Here we would like to

emphasize that the domain E(pί9 ,/?„) is not geometrically convex and moreover its

boundary is not smooth in general.

In the special case where all /?f's are positive integers, the domain E(pί9 •••,/>„)

has Cω-smooth boundary and the correspondence (zί9 , zn) i—• ( ( z ^ 1 , , (zπ)Pn) gives

rise to a single-valued holomorphic proper mapping from E(pί9 *,/?„) onto the unit

ball Bn in Cn. In the previous paper [12], by making use of these facts and some

extension theorems of holomorphic mappings due to Rudin [18; p. 311] and

Forstneric-Rosay [4], we succeeded in characterizing the domain E(pl9 -,/?„) with

0 < / 7 I E Z ( l < / < « ) from the viewpoint of biholomorphic automorphism group.

However, if some of /?f's are not integers, then dE(pl9 •,/?„) is not smooth and the

above correspondence is not even a single-valued holomorphic mapping defined on the

whole domain E(px, *,/?„). These raise new difficulties to characterize the domain.

The main purpose of this paper is to overcome these difficulties and show that exactly

the same characterization of the domain E(pί9 ' m

9pn) as in [12] remains valid for

arbitrary real numbersp ί 9 -,/?„>0. In fact, after some preparations in Section 1, we

can prove the following theorem in Section 2, which was announced at the 1989 AMS

Summer Institute on Several Complex Variables and Complex Geometry in Santa Cruz,

California:

THEOREM I. Let D be a bounded domain in Cn (n>\) with a point z° =

(zj, ,Z®)GΘD. After renumbering the coordinates if necessary, we assume that the

following three conditions are satisfied.

(1) There exist an integer k>0, real numbers pt with Q<ptΦ 1 (k+ 1 <i<ή) and

an open neighborhood U° of z° in Cn such that

(i) z°edE(\9'-',\,pk + l9 -' ,pn)and
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(ii) DnU° = E(h •• , l , / 7 f e + 1 , •• , / ? n ) n ί / 0 ,

where it is understood that E(\, , 1, pk +19 , pn) = Bn if k = n.

(2) jf{ieZ\zf 7^0, l<i<n}=j, where ff denotes the cardinality of a set.

(3) The point z° is a good boundary point of D in the sense of Greene-Krantz [6],

that is, there exist a point k°eD and a sequence {φv} in Aut(Z)) such that limv^ ̂  φv(k°) = z°.

Then we have \<j<k and D = E(\, —m,l,Pk+i> m">Pn) a s sets> hence z° is
necessarily of the form z° = (z?, , z£, 0, , 0).

As an immediate consequence of this, we obtain the following:

COROLLARY. For arbitrary real numbers p{ with 0<ptφl (1 <i<n), any bounded

domain D in Cn with a point z°edDndE(p1, — m,pn) near which dD coincides with

BE(pί9 ••-,/>„) cannot have any Aut(D)-orbits accumulating at z°.

Clearly this gives an affirmative answer to the following conjecture of Greene-Krantz

[6; p. 200]: Let x0 be a boundary point of the domain Ωo = {{zu z2) e C2 \ \ zγ | 4 +1 z11
4 < 1}.

Then any weakly pseudoconvex bounded domain Ω in C2 with x0 e dΩ near which dΩ

coincides with dΩ0 cannot have any Aut(Ω)-orbits accumulating at x0.

Next we assume that a complex manifold M can be exhausted by biholomorphic

images of a complex manifold N, that is, for any compact subset K of M there exists

a biholomorphic mapping fκ from N into M such that K<^fκ(N). Then, how can we

describe M using the data of TV? There already exist articles related closely to this

problem; for instance, Fornaess-Sibony [2], Fornaess-Stout [3], Fridman [1] and

Kodama [10], [11]. In particular, we showed in [11] that if a hyperbolic manifold M

in the sense ofKobayashi [9] can be exhausted by biholomorphic images of the pseudoconvex

domain

\t ( Σ I^

then M is biholomorphically equivalent either to E(k, α) or to Bn. The following theorem

tells us that the analogue is still valid for the domain E(\, , l,pk+ί, ',pn) with

arbitrary positive real numbers pk+u *•,/*„# 1.

THEOREM II. Let M be a hyperbolic manifold of complex dimension n in the sense

ofKobayashi [9]. Assume that M can be exhausted by biholomorphic images of the domain

E(\, '-,l9pk+ί, '-,pn) Then there exists a subset {qι+1, -',qn}of{pk+1, --,pn}such

that M is biholomorphically equivalent to the domain E(\, - - , 1, qι+ί, , qn).

In particular, considering the special case k = n, i.e., E(l, , l,pk+ί, ' ,pn) = Bn

in Theorem II, we see that if a hyperbolic manifold Mean be exhausted by biholomorphic

images of Bn, then M is biholomorphically equivalent to Bn. This was first proved by

Fornaess-Stout [3].

This paper was completed during the author's stay at the University of California,

Berkeley. He thanks the university for its hospitality. Especially he would like to express
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his gratitude to Professor Shoshichi Kobayashi who let him work in nice environment.

1. Preliminaries. In this section we shall recall the structure of E(pί9 -,/?„)
with arbitrarily given real numbers pί9

 m",pn>0. To simplify notation, we set
E=E(pί, * *,/O for the time being.

Recall first that a domain D in Cn is called a Reinhardt domain if
( (expV^ϊθi)* ! , * *', (expJ^ϊθn)zn)eD whenever (z l 5 , zn)eD and (θl9 '",θn)e
Rn. Moreover, it is said to be complete if (z l 5 , zn)eD, w = (wί9 •• ,w n )eC" and
I wf I < I zt I (1 < i< ή) imply w e Z). We now assert that:

(1.1) E is a taut domain in the sense of Wu [21].

By results of Kiernan [8] and Pflug [15], it suffices to show that E is a bounded complete
Reinhardt domain which is pseudoconvex. Since E is obviously a bounded complete
Reinhardt domain, we have only to check that the domain

B={(xl9 •••,xII)eir|(exp*1, ' ' ' , expx,,)e£}

is geometrically convex in Rn (cf. [13; p. 120]). To do so, let us take arbitrary points
x = (xu " ,xn), y = (yu , yn) of B and arbitrary real numbers λ, μ>0 such that
λ + μ= 1. Then, by using Holder's inequality, we obtain the following:

Γ~ n ~\λ Γ~ n ~lμ

i)l<\ Σ exp(2Λ^ \Σ exp(2/7 )̂ <1 ,

which shows λx + μyeB. Thus B is convex, as desired.

(1.2) For an arbitrarily given point x = (xx, , xn) e dE, there exists a local holomorphic
peaking function hxfor x of E.

Since (xί9 , xn)φ(0, , 0) by the definition of E, we have the following cases:
(I) Xl-- xnΦQ\

(II) xx χπ = 0, XiΦO for some index /.
Let us consider the first case (I). Expressing each x( (1 <i<ή) as

^T0?) with r?>0, O<0?<2π,

we set β^maxfl, 2/?J and

K, = {z, = rt - expiy/^ϊθi) \ rt > 0, | θi - θ? | < π/βj

V(x)=V1x "xVn;

Ϊ ί f l β?)], zf = rt • expίy^Tθ,) e
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Then V(x) is an open neighborhood of x in Cn and each φi is a holomorphic function

on Fj ; hence hx is a holomorphic function on K(x). (Note that (Pi(zf) is nothing but a

branch of (Jc£zί)
Pi on the simply connected domain V^C.) We now assert that hx

provides a desired peaking function for x. Indeed, it is clear that hx(x)= 1. Moreover,

since

n π Γ n Πl/2

(1.3) Σ I «P,(2,.) I = Σ (rfrd* < Σ W 2 " < 1
i ^ l i = l | _ £ = 1 J

for all z = (z1 ? , z j e ϊ s n ϊφc), it is obvious that

\hx(z)\<\ for all zeEnV(x).

Therefore, assuming

I hx( y) 1 = 1 f° r some point ye En V(x),

we have only to verify that y — x. To this end, write y = {yx, '' , yn) and

/^T^.) for ι = l , ,n. Then it follows from (1.3) that X"= 1

Σ"= 11 Ψi(yd I = 1 Clearly this implies that 0f = 0f for / = 1, , n and moreover

Σ \ί/tn2 = ΣIWV = Σ ('iV' W*=i,
i = 1 ί = 1 £ = 1

which gives rt = rf for all /= 1, , n. Thus y = x, as desired.

Next consider the case (II). Let I: = {i1, - ,im} be the proper subset of

/ : = {1, ,n} such that

xh- JCIWT^0, while xt = 0 for all ieJ\I.

Then the same computation as above tells us that the function

. . . 1

j - i

gives a local holomorphic peaking function for x of E.

Finally, for an integer m with 0<m<n, we consider the function

m n

p(z)= — 1 + Y | z | 2 + Y l z l 2 / 7 i z = ίz< ••• z ^ p f ™
i = 1 i = m + 1

Let x = (x1 ? ,xn)edE(\, , \,pm+l9 - - ,pn) be an arbitrary point with xm

xnφ0. Then, a routine calculation gives the following:

(1.4) p(z) is real analytic near x and dp{x)Φθ\ and

(1.5) Σίd2p(x)/dzidzj-]ξiξj=Σ\ξi\
2+ Σ (A) 2 !^! 2 ^ 1 " 1 ^!! 2
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for all(ξu , ξn) E Cn. Therefore dE{\, • , 1, pm + ί9 , pn) is Cω-smooth and strictly

pseudoconvex at the point x.

Combining the above with [12; Theorem A], we have obtained the following:

T H E O R E M A. For arbitrarily given real numbers pu ••,/?„>(), the domain

E(Pu ' ' >Pn) n a s the following properties:

(1) E(pί, , pn) is taut in the sense of Wu [21].

(2) For an arbitrary point xedE(p1, •,/?„), there exists a local holomorphic

peaking function hxfor x of E(pl9 •,/?„)•

(3) Assume that 0<p1< <pn and 0<q1< '<qn. Then E(pί9 - ,pn) is

biholomorphically equivalent to E{qx, • , qn) if and only ifPi = qifor all / = 1, , n (cf

[14]).

(4) dE(\, , l,pm+u - - -,pn) is Cω-smooth and strictly pseudoconvex at every

point x = (xu ',xn)edE(\, , l,pm + ί, - ,pn) with xm + ί - xn^0 (0<m<n).

(5) Assume that m>\. Let {xv} be a sequence in E: = E(\, , \,pm+1, ,pn)

converging to a boundary point

x° = (*?,•••,*?) with (x°m + ι,- -,x°n) = (0, ••-,<)).

Then there exists a sequence {φv} in A u t ^ ) such that

φv(χl=(θ, • • ,o, y * m + 1 , • • -,fn), o<fm+u • • ,y;<ι

for all v. Moreover, the inverse mapping φ'1 of each ψv can be expressed as

ψ;\z', z") = (AXz'X B\z', z")), (z', z")e(Cm x C " ) π £ ,

where Ave Aut(Bm) and Bv: E->C"~m is a suitable holomorphic mapping (cf. [7], [19],

[12; (1.2)]).

2. Proofs of Theorems I and II. Our proofs are based on the normal family

arguments developed in our previous papers [11], [12]. Although there are some over-

laps with those papers, we carry out the proofs in detail for the sake of completeness

and self-containedness.

Before undertaking the proofs of the theorems, we need a preparation. Let

Pk+i> * * ",/>„>0 be the real numbers appearing in the theorems. For an integer m with

k+\<m<n, consider the correspondence h{lr..Λpk + l ... PmΛ ...Λ) defined by

( z l 9 •• , z n ) H + ( z 1 , •• , z k , ( z i k + 1 ) P k + 1 , • • • , ( z m ) * » , z m + 1 , •• , z l l ) .

If all the /?f's are integers, this is a single-valued holomorphic mapping from Cn onto

itself. However, if some of the /?f's are irrationals, then it provides an infinitely-

many-valued holomorphic mapping from (C\{0}) n onto itself. We thus need to intro-

duce the concept of principal branch of h{1...lpk+χ...PrnΛ...Λ). For this purpose,

let us fix an arbitrary point
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x° = (x?, ,xn°)eC" with x°k+1 -x°m*0.

Write each xf (k+ 1 <i<m) in the form

x? = rf - expG/^Ϊ0?) with rf > 0 , 0 < θf < 2π

and set

(2.1) Wt(xf) = {zt = rt expίv^T^) | rt > 0, | θt- θf \ < π} = C\{ JX? | *<0}

(2.2) W(JC0) = Ck x »n + i (Ai) x ' x WJpO x C""m

(2.3) Hizύ = W* exp(v^T/>A), ^ = rt expίv^Tθ,) G ^-(X?)

(2.4) ^(i,...fl,pk+i.-,pm.l,-,l)(Z) = (Zl» • " ^ f c ^ * + l ( ^ + l ) 5 * ?^m(^m)^m+l, " ', Zn)

for all z = (z1, , z j 6 ^ ° ) .

Then ^(x0) is an open neighborhood of x° and each //,- is a single-valued holomorphic

function on ^ ( x f ) ; hence #α,...,i,pk+1,...,pm,if...,i) is a single-valued holomorphic

mapping from W(x°) into C". Moreover, it is injective on a small open neighborhood

of JC°, since its Jacobian determinant does not vanish at x°.

DEFINITION. We call H(1 ... 1 Pk + ί ... p x ... 1 } : W(x°)^Cn the principal branch of

2.1. Some lemmas. The following lemma can be proved with exactly the same

argument as in Rudin [18; Lemma 15.2.2., p. 306]:

LEMMA 1. Assume that

(1) Xisa domain in Cm and {xι}?L ι is a sequence in X converging to some point x0 e X;

(2) Y is a bounded domain in Cn and y0 is a boundary point of Y, for which there

exists a local holomorphic peaking function',

(3) {Fi}^L1 is a sequence of holomorphic mappings from X into Y, and Fi(xι)^y0

as /-»oo.

Then Fι(x)^y0 uniformly on every compact subset of X.

From now on D, z°e U°, k9j,pi9 are as in Theorem I.

LEMMA 2. The domain D is biholomorphically equivalent either to Bn or to

E{\, •••, l,qι + ί, ",qn) with {qι + 1, , qn}c{pk+ί9 -,/?„}, where

PROOF. We set E=E{\, , l9pk + ί, -,pn) for the sake of simplicity. Thanks to

Lemma 1 and (2) of Theorem A, {φv} converges uniformly on compact subsets of D

to the constant mapping Czo\ D-*Cn defined by Czo(z) = z° for all zeD. Now we fix a

family of relatively compact subdomains Dμ of D such that
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(2.5) D= U D^-^D^^D^-

and choose an arbitrary integer μ > 1. Then, since <pv(z)->z° uniformly on Dμ, there is

an integer v(μ) such that

(2.6) φv(Dμ)^DnU° = EnU° for all v>v(μ).

We first assume k = n, so that E=Bn. Then z° is a Cω-smooth and strictly

pseudoconvex boundary point of D; and consequently, by a well-known result of Rosay

[17] D is biholomorphically equivalent to Bn.

Thus it suffices to prove Lemma 2 when 0 < k < n — 1. We have two cases to con-

sider:

Case I. (zk°+1, ,zn°) = (0, ••-,()).

First notice that z° = (zj, , z°) Φ (0, , 0); hence 1 <j< k in this case. Now, by virtue

of (5) of Theorem A, there exists a sequence {φv} in Aut(E) such that each point

ψv(φv(k0)), v > v(μ), can be expressed as

φv(φv(k°)) = (0, , 0, ul + ί, , ul) , 0<ul + u -',u:<\.

Define the biholomorphic mappings/ v : Dμ-+E from Dμ into E by

Γ = φvo(φx\Dμ) for all v>v(μ) .

Then, after taking a subsequence and changing the notation if necessary, we are in one

of the following two cases:

(A) Γ(k°)^u°eE;

(B) Γ(k°)^u° = (0, , 0, u°k +19 ,i£) G dE.

In Case (A) we would like to show that D is biholomorphically equivalent to E.

Recall that E is a taut domain by (1) of Theorem A. Then the normality of {/v},

combined with the fact that {/v(^°)}v>V(μ) n e s m a compact subset of E, guarantees that

some subsequence of {/v} converges uniformly on compact subsets of Dμ to a

holomorphic mapping / (μ) : Dμ-+E. Since μ was arbitrary and [Dμ] increases to D

monotonously, by the usual diagonal argument we may assume that {/v} itself

converges uniformly on Dμ to the holomorphic mapping/(μ) for all μ = l , 2 , •••.

Hence, we can define a holomorphic mapping/: D->E by/(z) =/(μ)(z), zeDμ for

μ = l , 2 , .

Setting Ev = ψv(EnU°) = ψv(DnU°) for all v, we here consider the holomorphic

mappings gv: EX^D defined by

g* = φ;ιo(φ;i\Ev) forall v.

Then it is clear that

(2.7) gv°Γ = idDμ and Γo^\p{Dμ)) = iάr{Dii)
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for all v>v(μ), μ = l , 2 , . Let E' be an arbitrary subdomain of E with compact

closure in E. Then, since

f\k°)^u°eE and \l>;\f\ko))-+z°edE

as v->oo, we have by Lemma 1 and (2) of Theorem A that

ψ~1 (Ef)cEnί/0, or equivalently, E'cEv

for all sufficiently large v. We may therefore assume that {gv} converges uniformly on

every compact set in E to a holomorphic mapping g: E^DczCn. Once g(E)czD is

shown, the assertion (2.7) implies that gof=idD and/o0 = id£; consequently,/gives a

biholomorphic mapping from D onto E. Thus we have only to show that g(E)aD. To

this end, take a subdomain E' of E with compact closure in E such t h a t / φ j u pφγ) c

E' for all v>v0, where Dγ is the domain appearing in (2.5) and v0 is a large integer.

Then, for any point zeDu there exist a sequence {x1} c= £" and a subsequence {#Vi} c {gv}

such that 0Vi(jc') = z for all i and X'^JC 0 for some point x°eE'czE. So

Hence, D1czg(E). On the other hand, being the local uniform limit of regular

holomorphic mappings gv, the mapping g is either regular on E or the Jacobian

determinant of g vanishes identically on E (cf. [13; p. 80]). However, g(E) now contains

the non-empty open set Dγ\ hence g: E^C" is regular on E. Therefore we conclude by

[3; Lemma 0] or [13; p. 79] that g(E)aD, completing the proof in Case (A).

In Case (B), i.e., lim^^/X*: 0) = u° = (0, , 0, w£+1, , w°) e d£, we wish to show

that D is biholomorphically equivalent either to Bn or to some E(\, , 1, qι +15 , qn)

with{g l + 1, -',qn}<={Pk + u ••-,/?„}, where l<max{^,y}</<«-l . Since (M?+ 1, •• ,M nV

(0, , 0), the proof will be divided into the following two cases:

(B-l) i £ + 1 ••!£#(); and

(B-2) u°k + 1- «J = 0, w sVθ for some .s with k+\<s<n.

In the first case (B-l), we claim that D is biholomorphically equivalent to Bn. To

prove our claim, choose an open neighborhood Woϊ u° in Cn so small that the restriction

is a biholomorphic mapping, where H(1...ltPk + u...Pn) is the principal branch of

A(i,...,i,Pk + 1,. .,pn) defined by (2.4) with x° = u° and m = «. Since

(2.8) \H^zd\2 = \zt\
2^9 z.eW^uf) for i = fc+l, ,/i

by (2.3), we then have

(2.9) H(WnE) = H(W)nBn;

(2.10) H(f\k°))^H{u°)edBn as v-̂ oo .
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In view of the homogeneity of Bn, one can extract a sequence {Ψv} in Aut(Bn) such that

(2.11) Ψv(H(f\k°))) =

for all sufficiently large v, where o stands for the origin of Cn. On the other hand, since

there is a local holomorphic peaking function for u° e dE, Lemma 1 guarantees that

f\Dμ)^Wf\E for all v>v(μ),

where v(μ) is a large integer depending on μ = 1, 2, . Thus, one can define holomorphic

mappings Fv: Dμ-+Bn by setting

Fv=ΨvoHo(fv\Dμ) for all v>v(μ).

Since Bn is taut and Fv(k°) = oeBn for all v>v(μ), μ= 1, 2, , we may assume, by

taking a subsequence if necessary, that {Fv} converges uniformly on compact subsets

to a holomorphic mapping F: D^Bn. We now show that Fis a biholomorphic mapping

from D onto Bn. Choose a relatively compact subdomain B of Bn arbitrarily. It follows

from Lemma 1 that ψ~1(B')czH(W)nBn for all sufficiently large v. Moreover,

φ;1(WnE)czEnU0 = DnU0 for all large v.

Indeed, each ψ~* can be written in the form

φ;\z\ z") = {A\z'\ B\z\ z")), (z', z")e{Ck x Cn'k)nE9

where AveAut(Bk) and Bv: E-+Cn~k is a suitable holomorphic mapping. Since

we have

Consequently, for an arbitrary compact subset K of Bk we conclude by Lemma 1 that

Ax{z')^>(z°u - - , z^) uniformly on Â ; and hence

Bv(z)-+(0, , 0) uniformly on (AΓx CH~k)nE.

Since we may assume the set {wf e Ck | (w\ w") e W] to have compact closure in Bk, these

facts imply that ψ~1(z)-+z° uniformly on WnE, as desired. Therefore one can define

holomorphic mappings Gv: B'-+D by

for all large v.

Since B' is arbitrary, we may now assume that {Gv} converges uniformly on compact

subsets to a holomorphic mapping G: Bn^D a Cn. We can show G(Bn) aD, FoG = idβM

and G°F=idD with exactly the same argument as in Case (A).

In the case (B-2) we may rename the indices so that for some integer m,

k+1 <m<n—\, one has

uk+1-
-u°mΦ0, while u°m + 1= "=u°n=0.
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The restriction

of the principal branch to some open neighborhood W of u° provides a biholomorphic

mapping from W onto H{W) satisfying

(2.12) H(WnE) = H(W)nE(h , l,pm+l9 • ,/V>;

(2.13) H ( Γ ( k o ) ) ^ H ( u ° ) = :(v°1, • ' , υ ° n ) e d E ( l , - - 9 l , p m + i , • • - , / ? „ )

with (ι?° + 1 , , ι;°) = (0, , 0). Taking the assertion (5) of Theorem A into account

and passing to a subsequence if necessary, we may assume that

wv: = Ψx(H(Γ(k°))) = (0, •-.,<>, < + 1 , , < ) , v = l , 2,

for some sequence {Ψv} in Aut(£(l, l,/?w+i, * * , A,)). If {wv} accumulates at some

point w° e E( 1, , 1, p m +1, ' * , pn)> t n ^ n w e conclude by the same reasoning as in Case

(A) that D is biholomorphically equivalent to E(\, , l,/?m + 1, ,pn). On the other

hand, if a subsequence {wVi} cz {wv} can be so chosen that

H ; ^ H > 0 = (0, , 0, H£ + 1, , w°n)edE(\, , l ? J p m + 1 , • ,pj ,

then we are in the same situation as in Case (B), but with m>k and see that D is

biholomorphically equivalent either to Bn or to some E(l, - - ,l,qι + 1, - - ,qn) with

{tf/+i> •••^n}^{/?m+i? "' >Pn}> as desired.

Case II. (zk°+1, , zπ°)^(0, , 0).

First assume z^+ x zj ^ 0 . Then z° is a Cω-smooth and strictly psuedoconvex boundary

point of D; hence D is biholomorphically equivalent to Bn by a result of Rosay [17].

Moreover, if z£ + 1 z£ = 0, then it can be shown in exactly the same way as in the

case (B-2) that D is biholomorphically equivalent either to Bn or to some E(l, ,

i> •••,?„) with {# / + 1, ••-,#„}<={/?*+!, •• ,/7n}, where 1 <max{fc,7}</<«-1.

LEMMA 3. Assume that D is biholomorphically equivalent to E{\, , 1, qt + i, ' • *,

^π) /« Lemma 2, <z«<i /e/ F : .D^jE'ίl, , I, qι + l9 '' ', qn) be a biholomorphic mapping.

Then there exist at least two points

9 z'/ < # 0 ;

, l ,g I + 1 , -,?„), wϊ < # 0

an open neighborhood JJ" of z" in Cn satisfying the following conditions:

(1) U" c U° and U" nD is a connected open subset of D;

(2) F h a s a c o n t i n u o u s e x t e n s i o n F : U" n D - + E ( l , •••, l , q ι + ί, ---, q n ) , t h e c l o s u r e

ofE(l, s 1, qι+1, , #„), WΪ7A /ί(z") = w//;
(3) F(U"nD) is an open neighborhood ofw" in E{\, , 1, qi + 1, * * *, #„);

(4) F : ί/r/ n D^>F(U" n 5 ) w ^ homeomorphism.

PROOF. We set E=E(l, , 1, qi + 1, *, #„) throughout the proof. Now, let us
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choose a point z' = (z\, , z'n)e U°r\8D and an open neighborhood U' of z' in Cn in
such a way that

z z ^O and U'c t/°n(C\{0})".

Then every point x e U' n 3D is a Cω-smooth and strictly pseudoconvex boundary point
of D by (4) of Theorem A. Hence, by a theorem on the boundary continuity of proper
holomorphic mappings due to Forstneric-Rosay [4], the proof of Lemma 3 is now
reduced to showing the following assertion:

v There exist a point z"sU'r\3D and a sequence {z1} in D such that zι-+z'\

F{zι)-^w"' = (w'l, - ,w'ή)e3E for some boundary point w" with w'[ w/'#0.

Suppose not. First of all, representing F by coordinates F=(fx, -,/„), we claim that
there exist an open neighborhood U(z') a U' oϊz' in Cn and a closed complex submanifold
S of £/(z'), of complex dimension one, satisfying the following conditions:

(2.14) SnD is a relatively compact subdomain of S with Cω-smooth boundary;

(2.15) SnD is biholomorphically equivalent to the unit disc A = {ξeC\ \ ξ\< 1} in C;

(2.16) fx(p) ' '/M(p)/0 for some point peSnD.

To prove our claim, recall that z' is a Cω-smooth and strictly pseudoconvex
boundary point of D. Then there exist an open set U in C , z'eUaU', and a
biholomorphic mapping φ : U-+Cn from U into Cn satisfying the following (cf. [16; p.
61]):

(2.17) φ(U) = Bn and φ(z') = o, the origin of Cπ;

(2.18) φ(UndD) is a strictly convex Cω-smooth real hypersurface of Bn.

Moreover, it is clear that the set {zeD\f1(z)- fn(z) = 0} is a nowhere dense analytic
subset of D. One can then easily choose a complex afrine line L in Cn such that

(2.19) L n φ(£/n Z>) is a relatively compact, simply connected subdomain of L n Bn with
Cω-smooth boundary;

(2.20) L is transversal to φ(Un3D);

(2.21) φ-^Ln φ(UnD)) = φ~X(LnBn)c\D contains a point /? with/^/?)-

Therefore, the open neighborhood U of z' and the closed submanifold φ~ι(Lt\Bn) of
U satisfy all the conditions in (2.14), (2.15) and (2.16), as desired.

According to (2.15), we fix a biholomorphic mapping ψ: Λ-^SπD, and define

holomorphic functions Γ: D^>C, f: A-+Cby setting

Γ(z)=Mzy-fH(z), zeD and Γ(ξ) = Γ(ψ(ξ)), ξeA .

It then follows that
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(2.22) f(ξ*)#O for ξ*: = φ

by (2.16), and f is a bounded holomorphic function on A. Hence, by Fatou's theorem
there is a set Ω of full measure in the unit circle dΔ on which the function Γ has finite
non-tangential limits. For points beΩ, we denote these limits by Γ(b). Now, let ξ°eΩ
and let {ξ*} be a sequence of points of Δ, which converges to ξ° non-tangentially. Set

By passing to a subsequence if necessary, we may assume that

z^z'ΈSndDczU'ndD a n d F^)-*™" = (w'i •• ,

Here, since (*) is assumed not to hold, it follows that w'/ ŵ  = 0 and consequently

f (f °) = lim p(ξ*) = Jim[^(z1) -/.(z')] = 0 .

Since £oeί2 is arbitrary, this, combined with F. and M. Riesz' Theorem [20; p. 137],
guarantees that

f(ξ) = O for all ξeA ,

which contradicts (2.22). q.e.d.

2.2. Proof of Theorem I. In view of Lemma 2, we shall divide the proof into
two cases as follows:

Case I. D is biholomorphically equivalent to Bn. By the homogeneity of D, we
may assume that z? -zJ^O. Fixing a biholomorphic mapping F: D->B", we choose
a sequence {z1} in D in such a way that

z^z0 and F(zι)-+w° for some point w°edBn.

Then both z° and w° are Cω-smooth and strictly pseudoconvex boundary points. Thus,
applying again the theorem of Forstneric-Rosay [4] to the biholomorphic mappings
F: D-+Bn and F'1: Bn^D, we can find an open neighborhood V of z° such that

(2.23) F c U° and Fn Z> is a connected open subset of Z);

(2.24) F has a continuous extension F: VnD^Bn with F(zo) = w°;

(2.25) F(Vc\D) is an open neighborhood of w° in 5n;

(2.26) F: VnD^F(Vr)D) is a homeomorphism.

Now we consider the principal branch

//: = // ( 1,..,1,P t + 1,..,J: W(z°)^C»

of Λ(i, , i , P t + 1 ,- ,Pn) defined by (2.4) with x° = z° and w = «. Shrinking F if necessary,
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one may assume that Fez W(z°) and H gives rise to a biholomorphic mapping from V

onto H{V). Set G = (H\ VnD)'1 and consider the homeomorphism

Ψ\=FoG: H(VnD)-+F(VnD).

(Note that H(VnD)uF(Vr\D)czBn by (2.8).) An extension theorem due to Rudin [18;

p. 311] can now be applied to obtain an element Φe Aut(2?w) such that Ψ(z) = Φ(z),

zeH(VnD), or equivalently,

(2.27) φ-1°F(z) = H(z) for all zeVnD.

Consider now the sets A and D' defined by

A = {zeD\zk+ι zn = 0} and D' = D\A.

Then A is a nowhere dense analytic subset of D; hence D' is a connected open dense

subset of D (cf. [13; p. 50]). Writing

Φ " 1 o F = ( α 1 , • ,αM): D->Bn ,

we here define the functions α: D^R and /?: Cn-+R by

(2.28) α(z) = | α i ( z ) | 2 4 - + |α π (z) | 2 , ze/)

(2.29) j8(z) = | z 1 | 2 + - - - + | z k | 2 + |z k + 1 | 2 ^ ' + - - - + | z j 2 ^ , zeCn.

Then α(z)<l for all zeZ) and α, /? are obviously real analytic on the domain D'.

Moreover, we see by (2.8), (2.27) that

α(z) = j8(z). for all zeVnD=VnD'

consequently oc(z) = β(z) for all zeD' by analytic continuation. Here D' is dense in D

and α, β are continuous on D, so that

0(z) = α(z)<l for all z e i ) .

This means that £>cis(l, , l9pk + ί, *,/?„). More precisely, we now assert that

D = E(l, - , \,pk + ί, - ',pn). Indeed, pick an arbitrary point x°edD and choose a

sequence {x1} in D converging to x°. Then

β(x°) = lim βix1) = lim &(**) = 1 ,
i -*• o o i -»• oo

because Φ"1 oF: D^Bn is a biholomorphic mapping from Z> onto Bn. Therefore there

exists no boundary point of D in E(\9 , l9pk+l9 ",pn) and so D = E(\, , 1,

Pk + u '' >Pn)> a s desired. Since E(l9 , 1, /? fc+1, ''
 m

9pn) is now biholomorphically

equivalent to 5W, we conclude by (3) of Theorem A that k = n and £> = E(1, , \) = Bn,

completing the proof in Case I.

Case II. D is biholomorphically equivalent to E: = E(\, , 1, qι + 1, , qn) with

{qi+1, *, qn}^{Pk+i> '' ΊPn}> where 1 <max{A:,7}</<«—1. Let us fix a biholo-
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morphic mapping F: D^E from D onto E. By Lemma 3 we can choose two points

z'/ • -z'^0

and an open neighborhood U" of z" in C satisfying the conditions (1) through (4)
described in Lemma 3. By a change of coordinates if necessary, we may assume that
(<7;+i> ' ' •> <7n) = (/Ί+i> ' ' ">Aι) Consider now the principal branches

and

o f A (i, ,i,Pk + i,-.P») a n d Λ (i , .i,Pi + i.-,Pn)' respectively. Shrinking U" if necessary, one
may assume that

(2.30) CΓc W{z") and the restriction//1 ί/": U"^>H(U") is a biholomorphic mapping;

(2.31) ^is biholomorphic on an open neighborhood oϊF(U" n 25), where F: £/" n D->E
is the continuous extension of F appearing in Lemma 3.

Set G = (H\U"nD)~ί. Then, by our construction we can apply Rudin's theorem [18;
p. 311] to the homeomorphism

Ψ: = HoFoG: H(U" nD)^H(F(U" nD))

from H(U" (\D)aBn onto H{F{U" n 25)) c 5 " . Hence there exists an element Φe Aut(£n)
satisfying

(2.32) Φ-1OHOF(Z) = H(Z) for all zeU'ΉD.

For later purpose, we here wish to show:

(2.33) E'\~Er\ W(w") is a connected open dense subset of E.

Since W(W) is open dense in Cn by (2.1) and (2.2), so is E in E. Thus it suffices to
verify the connectedness of E. To this end, let us set

A(a) = {ξeC\\ξ\<a} ( α > 0 ) ;

Ai(a) = A(a)\{sw'i'\s<0} , / = / + l , • ,/i; and

aJT= {ΛΛ: I x e X} (a > 0, Â cz C").

Then one can choose an r>0 so small that (^(r^cijς1; hence

E n (J(r))- = (J(r))' x Aι + 1(r) x x JB(r)

by (2.1) and (2.3). Clearly, this says that E n (Λ(r))n is a connected and simply connected
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subset of E. Moreover, it can be checked that

sE' c E (0 < s < 1) and tE c E' n (A (r))"

for a sufficiently small />0. Hence £" is a connected subset of £, as desired.

As the final step, we set

Φ'1 oHoF(z) = (όίί(z\ , απ(z)),

ά(z) = | α 1 ( z ) | 2 + + | ά M ( z ) | 2 , zeD'.

Obviously /)' (resp. Z>") is a connected open dense subset of D (resp. Df); hence so is

Z>" in D. Thus, taking (2.32) into account and repeating the same argument as in Case

I, we see that

j8(z) = α(z)<l for all zeD\

where β: Cn-*R is the function defined in (2.29). Let us now pick an arbitrary point

(z, x)eDxdD and take a sequence {{z\ x1)} in Z>" x Z>" converging to (z, x). Then

β(z) = lim j?(zθ = lim ά(zf) < 1
i -• oo i -* oo

and

j8(jc) = lim j?(χf) = lim d(xl) = 1 .
ίί —»• o o

Since the interior of the closure of 2s(l, , \,pk+1, ,pn) coincides with E(l, , 1,

A + i? '' ΊPn) itself, these imply that D = E(\, - —,l,pk + ί9 - - *,/?„); and consequently

\<j<k = l<n-\ by (3) of Theorem A.

We shall complete the proof by showing that z° must have the form z° =

(z?, z£, 0, , 0). Indeed, assume that z ^ / 0 for some integer s with k+ 1 <s<n.

It follows then from Case II in the proof of Lemma 2 that D = E(l, , l9pk+ΐ9

•••,/?„) is biholomorphically equivalent to some E(\, , 1, qm+1, *, qn) with

{#m+i> ' ' ' ^ π l ^ ί ^ k + i' ' ' '>Pn}> which contradicts the assertion (3) of Theorem A.

Therefore zs° = 0 for all s = k + 1, , n. q.e.d.

REMARK. In Theorem I, assume the following condition (1)' instead of (1):

(iy There exist an integer k>0, real numbers pt with 0 < / ? / / l (k+\ </<«),

open neighborhoods U°, V° of z° in Cn and a biholomorphic mapping/: U°->V°

such that

(i) z°edE(l, •• , l , p k + 1 , •• ,Λ).and

(ii)' /(Z)nί/°) = £(1, •• , 1 , Λ + 1 , •• ,/7π)nF°.

Then, a glance at the proof of Theorem I tells us that \<j<k, and D is biholo-
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morphically equivalent to E(l, - -,\,pk + ί, - -,/?„).

2.3. Proof of Theorem II. We set E=E(\, , l,pk + ί, ',/?„) and fix a family

of relatively compact subdomains Mμ of M such that

00

where k° is an arbitrary point of M. Since M can be exhausted by biholomorphic
images of E, there exists a sequence {φv}^=1 of biholomorphic mappings from E into
M such that

Mv a φv(E), v = 1, 2, .

We set

φv = φ~x: φv(E)-+E, v = 1, 2, .

Without loss of generality, we may assume that {φv}^=1 converges uniformly on every
compact set in M to a holomorphic mapping φ: M-*E^Cn. Replacing ψv, φv by
suitable holomorphic mappings of the form ψ / ^ " 1 , (jv°φv with some σve
Aut(ls), if necessary, we may further assume that

for all v= 1, 2, . We now have two cases to consider.
Case I. limv^aoφv(k°) = φ(k°)eE. We shall prove that M is biholomorphically

equivalent to E in this case. Notice first that φ(M)aE, because E is taut and
φv(k°)-^κp(k°)e E. Once it is shown that φ: M-*E is injective, we can regard M as a
bounded domain in Cn. Hence, replacing the system ({/v}, {</v}, D, {Dμ}) by ({φv},
{ v̂}, M, {Mμ}) in Case I, (A), of the proof of Lemma 2, we can prove that M is
biholomorphically equivalent to E. Therefore it is enough to show that φ: M-+E
is injective. Assume that φ(x1) = φ(x2) = z for xi,x2eM. It follows then from the
distance decreasing property of holomorphic mappings (cf. [9; p. 45]) that

4E(<PV(*I)> <Pv(x2)) = dψΛE)(ψv(φv(xί)l Ψv(φv(x2))) = dψviE)(Xu Xi)>dM{xu x2)

for all v, where dE (resp. dφΛE), resp. dM) denotes the Kobayashi pseudodistance of E
(resp. φv(E), resp. M). Consequently, we have JC1=JC2? because M is hyperbolic and
dzicpXXi), φv(x2))-^dE(z, z) = 0 as v->oo. Thus φ: M-^E is injective, as desired.

Case II. l im^^ φv(k°) = φ(k°) = : (0, • , 0, κ£+1, , u°)edE. In this case, we
can show that M is biholomorphically equivalent to some E(l, , 1, qi+u '' "> Qn)
with {̂ / + 1, * , qn}ψ{Pk + i> ' * ΊPn} ŵith exactly the same arguments as in Case I,
(B), of the proof of Lemma 2, if we consider the mapping Ψv°Hoφv (resp.
ψv o H~x o (ψ~x IE)) instead of Fv (resp. Gv). q.e.d.
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