THE EXPONENT OF CONVERGENCE OF POINCARÉ SERIES OF COMBINATION GROUPS Dedicated to the memory of the late Professor Tohru Akaza ## HARUSHI FURUSAWA (Received February 22, 1989, revised July 11, 1990) - 1. Introduction. Let G be a discrete subgroup of the automorphism group $GM(B^{n+1})$ of (n+1)-dimensional hyperbolic space B^{n+1} . We shall present in § 3 a certain number $\delta(G)$ which is called the exponent of convergence of Poincaré series associated to G. Let L(G) be the limit set of G and d(L(G)) its Hausdorff dimension. It is already known [2], [7] that $\delta(G) = d(L(G))$ for geometrically finite discrete groups. Our motivation is based on the following results. The authors in [3] showed the inequality $d(L(G_1 * G_2)) > \operatorname{Max}(d(L(G_1)), d(L(G_2)))$ for Shottky groups G_1 and G_2 where $G_1 * G_2$ is the free product of G_1 and G_2 . And also Patterson in [6] proved inequality $\delta(G_1 * G_2) > \operatorname{Max}(\delta(G_1), \delta(G_2))$ for Fuchsian groups G_1 and G_2 where $G_1 * G_2$ is the free product of G_1 and G_2 . In this paper, we extend the above statement generally, that is, the exponent of convergence of Poincaré series of a discrete group G is smaller than that of the discrete group which is obtained by applying the combination theorem with an amalgamated subgroup to G. This is discussed in §§ 4 and 5. - 2. Preliminaries. Let $\overline{R^{n+1}}$ be the one point compactification of R^{n+1} . Mobius transformation q in $\overline{R^{n+1}}$ is defined as compositions of even number of reflections in nspheres or *n*-planes in $\overline{R^{n+1}}$. Let GM(n+1) be the group of all Mobius transformations in $\overline{R^{n+1}}$. A subgroup of GM(n+1) is called a Mobius group. The identity in GM(n+1)is denoted by I. For a set $E \subset \overline{R^{n+1}}$, we denote by GM(E) the subgroup of GM(n+1)which fixes E, and by $GM|_{\partial E}$ the group $\{f|_{\partial E}|f\in GM(E)\}$ where $f|_{\partial E}$ is the restriction of f to ∂E . The two models for E we consider are $H^{n+1} = \{x = (x_1, x_2, \dots, x_{n+1}) \in A\}$ $R^{n+1}|x_{n+1}>0$, and $B^{n+1}=\{x\in R^{n+1}|x|<1\}$ with respective boundaries $\overline{R^n}=$ ∂H^{n+1} and $S^n = \partial B^{n+1}$. For each $f \in GM(n)$, there exists a unique $\hat{f} \in GM(H^{n+1})$ such that $\hat{f}|_{\partial H^{n+1}} = f$ with the identification $\overline{R^n} = \partial H^{n+1}$. In this way, we have an isomorphism $GM|_{\partial H^{n+1}} \cong GM(n) \cong GM(H^{n+1})$. Hence we identify the elements in GM(n)with the elements in $GM(H^{n+1})$ and use the same letters. Let s be the usual stereographic projection of Sⁿ onto \overline{R}^n , then s can be extended to an element of GM(n+1)so that $s(B^{n+1}) = H^{n+1}$ ([4]). The conjugation $f \rightarrow sfs^{-1}$ is an isomorphism $GM(H^{n+1})$ onto $GM(B^{n+1})$. By this isomorphism, we have isomorphisms $GM(B^{n+1}) \cong GM(n) \cong$ $GM|_{\partial B^{n+1}}$. The elements of $GM(H^{n+1}) - \{I\}$ are classified as following three types: - (i) T is elliptic if it has a fixed point in H^{n+1} . - (ii) T is parabolic if it has exactly one fixed point in $\overline{R^n}$. - (iii) T is loxodromic if it has exactly two fixed points, both in $\overline{R^n}$. For a Mobius transformation $A \in GM(n+1)$, we write A'(x) the Jacobian matrix at $x \in \overline{R^{n+1}}$. Then A'(x) = kB for some k > 0 and $B \in O(n+1)$. We put k = |A'(x)|. LEMMA 1 ([1, p. 19]). Let g be a Mobius transformation. Then we have (1) $$|g(x)-g(y)|^2 = |g'(x)||g'(y)||x-y|^2.$$ Let $x^* = x \cdot |x|^{-2}$, $x \in R^{n+1}$ $(x \neq 0)$. If $g(\infty) \neq \infty$, then $g(x) = r^2 A(x-a)^* + b$ where $a = g^{-1}(\infty)$, $b = g(\infty)$, r > 0 and A is an orthogonal matrix ([1, p. 21]). The set $I(g) = \{x \in R^{n+1} \mid |g'(x)| = 1\}$ is an n-sphere centered at $g^{-1}(\infty)$ with radius r. This sphere is called the isometric sphere of g. The chain rule applied to $g^{-1}(g(x)) = g(g^{-1}(x)) = x$ yields $|(g^{-1})'(g(x))| |g'(x)| = |g'(g^{-1}(x))| |(g^{-1})'(x)| = 1$. From these equalities we have the following facts: $g(\text{ext } I(g)) = \text{int } I(g^{-1})$ and $g^{-1}(\text{ext } I(g^{-1})) = \text{int } I(g)$, where ext and int denote the exterior and interior, respectively. 3. Discrete groups. Let G be a discrete subgroup of $GM(B^{n+1})$. The points g(0), $g \in G$, are isolated and more generally, if $K \subset B^{n+1}$ is compact there are only finitely many $g \in G$ such that $g(K) \cap K \neq \emptyset$. A point $\zeta \in \overline{B^{n+1}}$ is called a limit point of G if there exists an infinite distinct sequences $g_n \in G$ and a point $a \in B^{n+1}$ such that $g_n(a) \to \zeta$. The set of all limit points of G is the limit set L = L(G). The set of accumulation points of $G(a) = \{g(a) \mid g \in G\}$ is denoted by L(a). Clearly, $L = \bigcup L(a)$. Then we have the following fact (see [1]) that L = L(a) for all $a \in B^{n+1}$. The limit set L has the following properties: (i) L is a closed set contained in ∂B^{n+1} . (ii) L is invariant under G and is a perfect set if L contains more than two elements. An open set F of B^{n+1} is called a fundamental region for a discrete group G acting on B^{n+1} if F satisfies the following conditions: - (i) $F \cap g(F) = \emptyset$ for all $g \in G \{I\}$, - (ii) $\bigcup_{g \in G} g(\overline{F}) \supset B^{n+1}$ where \overline{F} is relative closure of F in B^{n+1} . The existence of a fundamental region for discrete group acting on B^{n+1} is well known. For instance, the Dirichlet polyhedron is a fundamental region (cf. [5, p. 71]). Now the exponent of convergence of a discrete group $G \subset GM(B^{n+1})$ is defined as $$\delta(G) = \inf\{s > 0 \mid \sum_{g \in G} |g'(x)|^s < +\infty\}.$$ This does not depend on the choise of $x \in B^{n+1}$ and it satisfies $\delta(G) \leq n$ (see, for instance, [1]). 4. Free product with amalgamated subgroup. Following the statement in [5, Chap. VII] we give some definitions. Let G_1 and G_2 be subgroups of $GM(B^{n+1})$ with a common subgroup H. We also assume throughout §4 that $G_m - H \neq \emptyset$ (m= 1, 2). A normal form is a word of the form $g_1g_2 \cdots g_ig_{i+1} \cdots g_n$ where $g_i \in G_1 - H$ for even i and $g_i \in G_2 - H$ for odd j, or vice versa, that is, the element of $G_1 - H$ or that of G_2-H appear in a normal form alternatively. A normal form $g_1g_2\cdots g_n$ is said to be in a (p, q) form if $g_1 \in G_p - H$ and $g_n \in G_q - H$ for p, q = 1, 2. There is a natural identification of normal forms as follows. If $h \in H$, then we regard the forms $g_1g_2\cdots g_n$ and $g_1g_2\cdots (g_kh)(h^{-1}g_{k+1})\cdots g_n$ as being equivalent. Using the above equivalence, the product of two normal forms is equivalent to either a normal form, or an element of H. The set of equivalence classes of normal forms together with the elements of H, is called the free product of G_1 and G_2 , with amalgamated subgroup H, and written as $G_1 *_H G_2$. Let $\langle G_1, G_2 \rangle$ be the group generated by G_1 and G_2 . Then there exists a natural homomorphism $\Phi: G_1 *_H G_2 \rightarrow \langle G_1, G_2 \rangle$ given by regarding juxtaposition of words as composition of mapping, that is, $\Phi(g_1g_2\cdots g_n)$ = $g_1 \circ g_2 \circ \cdots \circ g_n$. It is clear that equivalent normal forms are mapped onto the same transformation. If Φ is an isomorphism, then we say that $\langle G_1, G_2 \rangle = G_1 *_H G_2$, and we do not distinguish between $\langle G_1, G_2 \rangle$ and $G_1 *_H G_2$. If $\langle G_1, G_2 \rangle = G_1 *_H G_2$, and H is trivial, then every non-trivial element of $\langle G_1, G_2 \rangle$ has a unique normal form, while if H is non-trivial, the normal form of an element of $\langle G_1, G_2 \rangle$ is clearly not unique. PROPOSITION. Let G_i (i=1,2) be a discrete subgroup of $GM(B^{n+1})$ acting on B^{n+1} with a fundamental region F_i satisfying the geometric condition $$(*) F_1^c \cap F_2^c = \emptyset,$$ where F_i^c is the complement of the set of F_i with respect to B^{n+1} . Then the group $G = \langle G_1, G_2 \rangle$ is the free product $G_1 * G_2$ with the amalgamated subgroup $\{I\}$ and $F_1 \cap F_2$ is precisely invariant under the identity in G. PROOF. The geometric conditions (*) implies $F_1 \cup F_2 = B^{n+1}$. Furthermore, we see that $F_1 \cap F_2 \neq \emptyset$. Hence we are done by Theorem A. 13 in [5, p. 139]. 5. The case H trivial. Let G_1 and G_2 be discrete subgroups of $GM(B^{n+1})$ with fundamental regions F_1 and F_2 , respectively, satisfying the geometric conditions (*) and let $G = \langle G_1, G_2 \rangle$. Then by Proposition, $G = G_1 * G_2$ and $F_1 \cap F_2$ $(\neq \emptyset)$ is precisely invariant under $\{I\}$ in G. Now under the conditions stated above, we have the following lemma. LEMMA 2. For $g \in G_k$ (k = 1, 2), we define the number $\beta_{k,3-k}(g)$ by (2) $$\beta_{k,3-k}(g) = \sup_{x \in F_1 \cap F_2} \left\{ \inf_{w \in F_2^c} |x-w|^2 j(g^{-1}, x) \right\} \left\{ \sup_{w \in F_{3-k}^c} |g^{-1}(x)-w| \right\}^{-2}$$ where j(g, x) = |g'(x)|. Assume that $$\sum_{q_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \sum_{q_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s > 1 , \quad then \ \delta(G_1 * G_2) \ge s .$$ PROOF. The chain rule applied to $g \circ h(x) = g(h(x))$ and $g^{-1}(g \circ h(x)) = h(x)$ yield $j(gh, x) = j(g, h(x))j(g^{-1}, gh(x))^{-1}j(h, x)$. Using the equality (1) stated in §2, we have $|g^{-1}(x') - h(x)|^2 = |g^{-1}(x') - g^{-1}(gh(x))|^2 = j(g^{-1}, x')j(g^{-1}, gh(x))|x' - gh(x)|^2$. Thus we have (3) $$j(gh, x) = j(g^{-1}, x')j(h, x) |x' - gh(x)|^2 |g^{-1}(x') - h(x)|^{-2}.$$ Suppose $g \in G_1 - \{I\}$, $x, x' \in F_1 \cap F_2$ and $h(x) \in F_2^c$, then $h(x) \in F_1$ and $gh(x) \in F_1^c$. Therefore we have $$(4) j(gh, x) \ge j(h, x)\beta_{1,2}(g).$$ Similarly, we have (5) $$j(gh, x) \ge j(h, x)\beta_{21}(g),$$ for $g \in G_2 - \{I\}$, $x \in F_1 \cap F_2$, $h \in G$ such that $h(x) \in F_1^c$. If $g = g_1^{(1)} g_1^{(2)} \cdots g_k^{(1)} g_k^{(2)}$ is (1, 2) form stated in §4 and if $x \in F_1 \cap F_2$ then $g_1^{(2)} \cdots g_k^{(1)} g_k^{(2)} (x) \in F_2^c$. Hence $j(g, x) \ge j(g_1^{(2)} \cdots g_k^{(1)} g_k^{(2)}, x) \beta_{12}(g_1^{(1)})$ by (4). Furthermore, since $g_2^{(1)} g_2^{(2)} \cdots g_k^{(1)} g_k^{(2)} (x) \in F_1^c$ for $x \in F_1 \cap F_2$, we see that $$j(g_1^{(2)}\cdots g_k^{(1)}g_k^{(2)}, x) \ge j(g_2^{(1)}g_2^{(2)}\cdots g_k^{(1)}g_k^{(2)}, x)\beta_{21}(g_1^{(2)})$$ by (5). Continuing this argument, we have $j(g, x) \ge \beta_{12}(g_1^{(1)})\beta_{21}(g_1^{(2)}) \cdots \beta_{12}(g_k^{(1)})j(g_k^{(2)}, x)$ for $x \in F_1 \cap F_2$. Hence the sum of s-th power of j(g, x) for the elements g of (1, 2) form in $G_1 * G_2$ is not smaller than $$\sum_{k \geq 0} \left\{ \sum_{g_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \right\}^{k+1} \left\{ \sum_{g_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s \right\}^k \sum_{g \in G_2 - \{I\}} j^s(g, x) \; .$$ Therefore we have the following inequality considering all (p, q) forms, $$\begin{split} \sum_{f \in G_1 * G_2} j^s(f, x) &\geq 1 + \left[\sum_{k \geq 0} \left\{ \left(\sum_{g_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \right)^k \left(\sum_{g_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s \right)^k \right\} \right] \\ &\times \left\{ \left(\sum_{g_2 \in G_2 - \{I\}} j^s(g_2, x) \right) \left(1 + \sum_{g_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \right) + \left(\sum_{g_1 \in G_1 - \{I\}} j^s(g_1, x) \right) \left(1 + \sum_{g_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s \right) \right\}. \end{split}$$ Thus we have our assertion by this inequality. Now we have the following theorem from Lemma 2. THEOREM 1. Let G_1 and G_2 be discrete subgroups of $GM(B^{n+1})$ with the fundamental regions F_1 and F_2 respectively, satisfying the geometric condition (*). Assume that $\delta(G_1) \ge \delta(G_2)$ and $\sum_{a \in G_1} j^{\delta(G_1)}(g, x) = +\infty$. Then $\delta(G_1 * G_2) > \delta(G_1)$. PROOF. Let r be the radius of a ball B_r which is contained in $F_1 \cap F_2$. Then by (2), we have $\beta_{k,3-k}(g) \ge r^2 j(g^{-1},x)/4$ for $k=1,2,x\in B_r$ and $g\in G_1*G_2$. Therefore we have (6) $$\sum_{g_1 \in G_1 - \{I\}} \beta_{12}(g_1)^s \sum_{g_2 \in G_2 - \{I\}} \beta_{21}(g_2)^s \ge \left(\frac{r^2}{4}\right)^{2s} \sum_{g_1 \in G_1 - \{I\}} j^s(g_1, x) \sum_{g_2 \in G_2 - \{I\}} j^s(g_2, x) \quad (x \in B_r) .$$ By the assumption we see $\lim_{s\to\delta(G_1)}\sum_{g\in G_1}j^s(g,x)=+\infty$, so that the right hand side of (6) is greater than 1 for some $s_0>\delta(G)$. Hence by Lemma 2, we have $\delta(G_1*G_2)\geq s_0>\delta(G_1)$. This completes the proof. REMARK. The assumption $\sum_{g \in G} j^{\delta(G)}(g, x) = +\infty$ in Theorem 1 is satisfied by convex cocompact groups and geometrical finite groups. 6. The case H non-trivial. Throughout this section, all groups we consider are subgroups of $GM(H^3)$. From § 2, we have isomorphisms $GM(B^3) \cong GM(H^3) \cong GM\big|_{\partial H^3}$. As $\overline{C} = C \cup \{\infty\}$ is identified with ∂H^3 , $GM\big|_{\partial H^3}$ is the class of orientation preserving Mobius transformations \overline{C} onto itself and denote it $M(\overline{C})$. A discrete subgroup of $M(\overline{C})$ is called a Kleinian group. Let G_1 and G_2 be Kleinian groups acting on \overline{C} with a common subgroup H and let $G_m - H \neq \emptyset$ for m = 1, 2. An interactive pair of sets (X_1, X_2) , consists of two non-empty disjoint sets X_1 and X_2 in \overline{C} , where X_k (k = 1, 2) is invariant under H, every element of $G_1 - H$ maps X_1 into X_2 , and every element of $G_2 - H$ maps X_2 into X_1 . Note that if (X_1, X_2) is an interactive pair, then X_k is precisely invariant under H in G_k (k = 1, 2). From §4, any element $g \in G_1 *_H G_2 - H$ is represented by a normal form $g = g_1 g_2 \cdots g_n$. Every normal form has a length, $n = |g_1 \cdots g_n|$. If $h \in H$, then $g_1 \cdots g_k g_{k+1} \cdots g_n$ and $g_1 \cdots (g_k h)(h^{-1}g_{k+1}) \cdots g_n$ are equivalent. Therefore equivalent normal forms have the same length, so if $G = \langle G_1, G_2 \rangle = G_1 *_H G_2$, then |g| is well defined for all elements of G (if $h \in H$, we put |h| = 0). Thus we have the following lemma due to Maskit. Lemma 3. Let $G = \langle G_1, G_2 \rangle$ be a Kleinian group with $G = G_1 *_H G_2$. Let X_1 and X_2 be mutually disjoint topological closed discs in \overline{C} bounded by a simple closed curve W and let $(\mathring{X}_1, \mathring{X}_2)$ be an interactive pair, where \mathring{X}_i is the interior of X_i . Furthermore, assume that $W = \partial X_1 = \partial X_2$ is precisely invariant under H in either G_1 or G_2 . Then there is a loxodromic element of G with one fixed point in \mathring{X}_1 and the other in \mathring{X}_2 . PROOF. Let g be an element of G such that |g| > 1 and |g| is minimal among all conjugates of g in G. Then g is a (3-k,k) form and $g(X_k) \subset g_1g_2(X_k) \subset \mathring{X}_k$ (k=1,2), as in [5, p. 150]. Hence we see that g is a loxodromic element with one fixed point in \mathring{X}_1 and the other in \mathring{X}_2 (see [5, p. 150]). By Lemma 3, we have the following theorem. THEOREM 2. Let the Kleinian group $G = \langle G_1, G_2 \rangle$ be $G_1 *_H G_2$ and let the topological closed discs X_1 and X_2 satisfy the hypothesis in Lemma 3. Then there exist fundamental regions F_1 and F of G, and a loxodromic cyclic subgroup of G, respectively, satisfying the geometric condition (*). PROOF. By Lemma 3, there is a loxodromic element g in G with one fixed point ζ in \mathring{X}_1 . Suppose that a fundamental region F_H of H contains a given fundamental region F_1 of G_1 . As $\zeta \notin L(H)$, and $\mathring{X}_1 = \bigcup_{h \in H} h(\overline{F}_1 \cap \mathring{X}_1)$, there is an element h of H such that one fixed point $h(\zeta)$ of hgh^{-1} in $\Delta = \overline{F}_1 \cap \mathring{X}_1$ and also $h(\zeta)$ is not an isolated point of L(G). Hence we can find two disjoint open balls V_1 , V_2 in Δ both of which intersect L(G). Thus, by [5, p. 96], we have a loxodromic element g in G with one fixed point in V_1 and the other in V_2 . If we consider sufficiently large k then the isometric spheres g^k and g^{-k} are contained in V_1 and V_2 , respectively. Thus, putting $f = g^k$ and $F = (\text{ext } I(f)) \cap (\text{ext } I(f^{-1}))$, we have our theorem. Finally we have the following theorem from Theorems 1 and 2. Theorem 3. Let the Kleinian group $G = \langle G_1, G_2 \rangle$ be the free product of G_1 and G_2 with an amalgamated subgroup H and let the topological closed discs X_1 and X_2 satisfy the hypothesis in Lemma 3. Suppose that $\delta(G_1) \geq \delta(G_2)$ and $\sum_{g_1 \in G_1} j^{\delta(G_1)}(g_1, x) = +\infty$, then $\delta(G_1 *_H G_2) > \delta(G_1)$. PROOF. By Theorem 2, there exist fundamental regions F_1 and F of G_1 and a loxodromic cyclic subgroup $\langle f \rangle$ of G, respectively, satisfying the geometric condition (*). Hence $\delta(G_1 * \langle f \rangle) > \delta(G_1)$ by Theorem 1. Furthermore, since $G_1 * \langle f \rangle$ is a subgroup of G and since $G = G_1 *_H G_2$, we have $\delta(G_1 *_H G_2) \ge \delta(G_1 * \langle f \rangle) > \delta(G_1)$. ## REFERENCES - [1] L. V. Ahlfors, Möbius Transformations in Several Dimensions, Univ. of Minnesota Lecture Notes, Minnesota, 1981. - [2] T. AKAZA, Local property of the singular sets of some Kleinian groups, Tôhoku Math. J. 25 (1973), 1-22. - [3] T. AKAZA AND T. SHIMAZAKI, The Hausdorff dimension of the singular sets of combination groups, Tôhoku, Math. J. 25 (1973), 61-68. - [4] A. F. Beardon, The Geometry of Discrete Groups, Springer Verlarg, New York-Heidelberg-Berlin, 1983. - [5] B. MASKIT, Kleinian Groups, Springer Verlarg, New York-Heidelberg-Berlin, 1987. - [6] S. J. PATTERSON, The exponent of convergence of Poincaré series, Monatsh. F. Math. 82 (1976), 297-315. - [7] S. J. Patterson, Lectures on measures on limit sets of Kleinian groups, in Analytical and Geometric Aspects of Hyperbolic Space (D. B. Epstein, ed.), London Math. Soc. Lecture Notes 111 (1984), 281-323. - [8] N. J. WIELENBERG, Discrete Möbius groups: fundamental polyhedra and convergence, Amer. J. Math. 99 (1977), 861–877. Department of Mathematics Kanazawa Women's College Kanazawa 920–13 Japan