Toéhoku Math. J.
43 (1991), 557-568

INFINITESIMAL TORELLI THEOREM FOR COMPLETE
INTERSECTIONS IN CERTAIN HOMOGENEOUS
KAHLER MANIFOLDS, III

KAzuHiRO KONNO

(Received August 8, 1990, revised January 28, 1991)

Introduction. This is the third part of a study of the infinitesimal Torelli problem
for complete intersections X in Kéhler C-spaces Y with b,(Y)=1. The preceding papers
[6] will be referred to as Parts I and II, where we showed that the problem has an
affirmative answer for almost all cases [Part II, Main Theorem]. However, it can never
be answered completely as in the case of projective complete intersections [3, Theorem
(3.1)]. In view of Flenner’s criterion [3] which should be most workable in our context,
this is probably because it is technically hard to know precisely when HY(Y, Q%(m))
vanishes. So, in this article, we restrict ourselves to the case where Y is the Grassmannian
of lines in P! in order to get a more accurate result.

In §1, we briefly review Flenner’s result for the later use. In §2, we study the
infinitesimal Torelli problem for complete intersections in the Grassmannian Y of lines.
Unfortunately, in our main result (Theorem 2.6), a few cases are still left unsettled. In
order to apply Flenner’s criterion, we need the vanishing theorem for H4(Y, Q%(m))
* (Theorem 2.1) which will be shown in §4. In §3, we study annoying exceptions in
Theorem 2.6, i.e., the case where X is of type (1°), 2<c¢<4. It eventually turns out that
some of them are counterexamples to the Torelli problem (Proposition 3.4): They depend
on some moduli whereas their Hodge structures have no variations, like a cubic surface
in P3 or an even-dimensional projective complete intersections of type (2, 2). We remark
here that the Hodge structure of X with codim X'=2, 3 was previously studied by
Donagi [2]. §4 will be devoted to the proof of Theorem 2.1.

The vanishing theorem for H(Y, Q%(m)) was obtained by Kimura [4], when Y is
an irreducible Hermitian symmetric space of type Ej; or Ey,. In §5, we state the
corresponding infinitesimal Torelli theorems which can be shown as in §2.

ACKNOWLEDGEMENT. The author would like to thank Professor Shigeru Mukai
who pointed out Donagi’s work [2].

1. Flenner’s criterion. In this section, we recall and recast Flenner’s criterion [3]
for the infinitesimal Torelli theorem.

NaTATION 1.1. Let Y be a Kéhler C-space with b,=1, and put N=dim Y. The
Picard group of Y is isomorphic to Z and we let (1) denote its ample generator. There
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exists a positive integer k(Y) with Ky =0y(—k(Y)). If a global section x of the vector
bundle

N-n
E= @ 0y(d), deN,

i=1
defines an irreducible nonsingular subvariety X of dimension n, we call it a nonsingular
complete intersection of type (d;, - -, dy_,) in Y. We put d=) d; and assume that
d,>d,> - >dy_, We sometimes write, for example, (2, 1°) instead of (2, 1, 1, 1). We
say that Xis of hyperplane-section typeif d;=1for 1 <i<N—n,i.e., Xis of type (1Y 7").

For the fundamental properties of Kdhler C-spaces with b,=1, see [6, Part I].

1.2. Let Y beaKaéhler C-space with b,(Y)=1, and let X be a nonsingular complete
intersection of type (d,, - - -, dy_,).- By using the exact sequence

0 N’Xk’ AQ;’IX Q}l( '09

we can construct an exact Koszul sequence

(KS),: 00— SPNi—— SPIN: ® Q4 Qh|y — Q% 0

for any p>0. Tensoring (KS),_,; with K5, we get an exact Koszul sequence
(1.1 0—>S"IN}®@Kxy'— - — SIN}®@QV "1 Ky —
o Q'K — 04— 0.
Dualizing (KS),_, and tensoring it with Ky, we get another exact Koszul sequence

(1.2) 0—’95(——’/\"—p@y®](x—_* T '__’Sij®/\"_p—j@y®Kx—_’
- —— S"TPNy @ Ky ——0.

We break (1.1), (1.2) and (KS),_, into short exact sequences as follows:
0— L, »SN®Qy ' @Ky — L,——0,
00— K'>SINyOQAN" P 70,®@ Ky— Kt —0,
0— Ky, — S"'N}®@Q2 1 F— K, ——0.
Considering the cohomology long exact sequences for these, we have coboundary maps
8y H (L) —— H' (L, ),
8y H* P i YKItYy s g PTi(KY)
Op: H" P YK —— H" PR 2K L))
Note that the natural pairing
(S'N}QQYy ' '@ Kx N (S'INy® N P70, @ Ky) — STINY®@ QY1)
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induces a pairing H(L;)® H'(K)—»H**'(K;_}). In particular, we denote by u; (0<
i<n—1) the following pairings:

pi: HPYL) @ H" P(QE) — H" P Y(K) for 0<i<p-2,
i HYY (L)@ H* YK 1 7P —— HY(SP"'N}) for p—1<i<n-—1.
The following can be found in [3, (2.10)].

LemMma 1.3. (1) The diagram

Hi+1(Li) ® Hn—p(Q&) _u;’ Hn—p+(i+1)(Ki)

3 lo
Hi+1

H*HLiyy) ® H' QY — > H"PTO"9(K )

commutes up to sign for 0<i<p-—2.
(2) For p—1<i<n-—2, then diagram

Hi+1(Li) ® Hn—i—l(KH-l—p) Hi H”(SP”IN})

| e |

Hi+2(Li+l) ® Hn—-i—Z(Ki+2—p) Hi+y Hn(Sp—lN;:()

commutes up to sign in the sense that y;, (0,0 ® B)= +u(a® d***~?p) for xe H'* (L))
Cand Be H" ITYKIT2TR),
A simple diagram chasing shows the following:

LEMMA 1.4. Let iy and i, be integers satisfying 0<i,<i, <n—1, and suppose that
the cup-product map p;, is non-degenerate in the first factor. Then so is p;, provided that
the composite of the coboundary maps 0;,_, o - - - © 0, is injective.

The following is a special case of a more general result due to Flenner [3, Theorem

(1.D].

THEOREM 1.5. Assume that the multiplication map

p: HYS" PNy ® Ky) ® H(SP™ !Ny ® Kyx) — H(S" !Ny ® K3)
is surjective. If the map 0:=0,_,0 - -+ o0, Iis injective, then the infinitesimal period map
HY(X, @y) — Homd(H" ?(X, Q%), H" **}(X, Q%))

is injective.

PrROOF. It is clear that the infinitesimal period map is injective if and only if uq,
which is nothing but the cup-product map
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HY 0y ® H" P(Q}) — H" "7 1(Q% 1),
isnon-degenerate in the first factor. Therefore, by Lemma 1.4, we get the desired result if
tay - HY(S" N3 ® K5 1) ® HO(S" PNy ® Ky) — H(SP~'N¥)

is non-degenerate in the first factor, which is equivalent to saying that u is surjective.
q.e.d.

We clearly have the following:
LEMMA 1.6. The map 0 in Theorem 1.5 is injective if
(V);: H* X, SN3® Q4 '@ Ky )=0
“holds for 0<i<n—2.
COROLLARY 1.7. The condition (V); is satisfied if the condition
(V) ;: HY Y (Y, NVE*Q@ S'E*® Q3 Ti(k(Y)—d))=0
is satisfied for 0<j<N—n.
PrOOF. We use a spectral sequence associated to the resolution
0_>/\N—nE*___,..._,_,/\ZE*__,E*___,@],_,(QX__,O.
For details, we refer the reader to [Part II, 2.4].

REMARK 1.8. The result [Part II, Theorem 1.7] follows from Theorem 1.5 and
Lemma 1.6.

2. Infinitesimal Torelli theorem. From this section up to §4, Y is the Grassman-
nian of lines in P!, />4. Therefore N=2/—2 and k(Y)=/+1. The following will be
shown in §4.

THEOREM 2.1. Let Y be the Grassmannian of lines in P', 1>4. Then group
HY(Y, Q%(m)) vanishes except in the following cases.
(1) g=0and m>[(p+3)/2].

2) p=qand m=0.

(3) g=2/-2and m<[(p+2)2]—1-1.

4 q—Il<p<3q—4l+5and m=p—2q+2l-3.

(5) 3q—1l<p<q+land m=p—2q+1.

Here, the symbol [s] denotes the greatest integer not exceeding se Q.

LEMMA 2.2. Let Y be as above and X an n-dimensional nonsingular complete
intersectionin Y. Put p=n/2 if nis even, and p=(n+ 1)/2 if n is odd. Then the multiplication
map

HO(X, S"" PN, ® Ky) ® HO(X, S 'Ny® Ky) — HO(X, S" Ny ® K2)
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is surjective.

PROOF. As in the proof of [Part II, Lemma 2.3], we can check that each direct
summand of SP !Ng® K, has nonnegative degree except when X is of hyper-
plane-section type with codim X<4 or of type (2,1). Since p—1<n—p, our as-
sertion follows for those which are not the exceptions. If X is of hyperplane-section
type with codim X <4, then H%(X, S"~ !N, ® K2) vanishes, since each direct summand
of S" !N, ® K% has negative degree. If X is of type (2, 1), we have Ky=0y(2—1) and
p=I[—2. Then

SPTINy @ Ky =S HOx(1) @ Ux) ® Ox(—1),

S"TPNx @ Ky ~S""P(Ox(1) ® Oy) ,

S"TINy@ K3 =S""HOx(1)® Ux)® Ox(—1) .
" Therefore, the multiplication map in question is nothing but

p—2 o n—2
(@90 H ((9x(i))> (@ HO @x(z»> — @ H(x).
which is clearly surjective. g.e.d.
By virtue of Theorem 2.1, an easy calculation shows the following:

LEMMA 2.3. With the above notation, for 0<i<n—2 and 0<j< N —n, the condi-
tion (V); ; in Corollary 1.7 is satisfied except in the following cases:
(1) X is of hyperplane-section type.

codim X=2 (i,j)=((1—5)/2,0),(I—7)/2,2) (I: 0odd),
(L, )=(-6)/2,1) (I: even),
codim X=3 (i,j)=((l—5)/2,0),(I-5, 3) (I: odd),
(i, )=(-6)/2,1),(I— 5 3) (I: even),
codim X=4 (i,j)=((-15)/2,0),(—5,2),((31—13)/2,4) (I: odd),
G, )=01-5,2) (I: even),

codim X=5 (i,j)=(/-5,1),
codim X=6 (i,j)=(1-5,0).

(2) X is not of hyperplane-section type.

type (2) (i, ))=(0, 0) (I=4),

type (2, 1) G,/)=01-3,0),(31—-9)/2,2) (I:0dd),
i, /))=(01-3,0),((1—4)/2,0) (I: even),

type (3, 1) (i, )=01-3,0),

type (2,1,1) (i, )=(1-41),

type 2,1, 1,1) (i,j)=(1—4,0).
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COROLLARY 2.4. X is rigid, that is, H'(X, @y)=0, in the following cases:
(1) X is a hypersurface of degree 1. '
(2) [=4 and X is of hyperplane-section type with codim X <4.

Proor. By Lemma 2.3, Corollary 1.7 and Lemma 1.6, we see that H!(Oy) is
mapped injectively in H"(S" !N%¥® K !). But this latter is zero, since we have

H(S" ' N3 ® K )= H(S" ™' Ny ® K})*
by Serre duality. q.e.d.
LEMMA 2.5. Let p be an integer with 0<2p<n=dimX. Then HP(Y, Q})~
HY(X, 4],
PrOOF. Let Iy denote the ideal sheaf of X in Y. Then we have
0— IyRQ— QF — QF[,—0.

Therefore, it suffices to check that H?(Iy ® Q%)= H?*(Iy ® 28)=0. We have the Koszul
resolution

0— A"V "E*QQ)— - — E*Q@Q,— [,®Q, —0.
Therefore, by an easy spectral sequence argument, it suffices to check that
HP Y NE*® Q) =HPH{(NE*® Q) =0

for 1 <i< N—n, which follows from Theorem 2.1. q.e.d.

THEOREM 2.6. Let Y be the Grassmannian of lines in P', I>4. For a nonsingular
complete intersection X of type (d,, - - -, dy_,) in Y, the infinitesimal Torelli theorem holds
except possibly in the following cases:

(1) X is of hyperplane-section type, |>5 and 2 <codim X <5.

(2) =4 and X is of type (2).

(B) Xisoftype(2,1™), 1<m<2.

ProOF. Except when X is of type (3, 1), (2, 1) or (1°), the assertion follows from
Theorem 1.5 by Lemmas 1.6, 1.7, 2.2 and 2.3.

We assume that X is of type (3, 1), since the other cases can be treated similarly.
We put p=n/2=/—2. In view of Lemma 2.3, 0; is injective unless i=p—1. By Lemma
1.3, we have the commutative diagram

HYL,.;) ® HYQ}) =% H'(S*"'NY)

a,,_,l Ia° }
HP*Y(L,) ® HP '(K') 5 H'(SP™'NY).

We shall show that u,_, is non-degenerate in the first factor. For this purpose, since
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0,-
HP(SPTINF® QF® Ky ') — HY(L,_,) " H"*!(L,)

and since we already know, by Lemmas 1.4 and 2.2, that u, is non-degenerate in the
first factor, it suffices to show that

(2.1 HY(SPTINF @ Qi ® Ky ) ® HA(Q%) —— H"(SP™'N¥)
is non-degenerate in the first factor. Note that we have Ky = O4(1 — p) and, furthermore,
HY(SPTINY® QF® Ky ')~ HY(SP™(Ox ® Ux(—2)) ® Q5)~ H (Q}]y) ,
H'(SP™INY=H"(SP "IN} ® Ox(p—1)® Ky)
~H'(S?™H(0x ® Ox(—2)) ® Ky)
~H"(Ky)® @ 2, H"(Kx(—2i).
Therefore, the pairing (2.1) is non-degenerate in the first factor, if so is
(2.2) H(Q%x) ® H(QF) —— H"(Ky) .

Note that we have H”(Q‘,’,|X):H”(Q‘Y’)CHP(Q§’() by Lemma 2.5 and the Lefschetz
theorem. Since HP(Q%)® HP(Q%)— H"(Ky) is non-degenerate, we see that (2.2) is
non-degenerate in the first factor. q.e.d.

ReEMARK 2.7. If [ is odd, a nonsingular hypersurface of degree 1 is the Kéhler
C-space of type (C 4 1), %2) (see [9] or [7]). Therefore, the infinitesimal Torelli theorem
holds for a general X of type (2, 1) by [Part II, Main Theorem].

3. Complete intersections of hyperplane-section type. In this section, we as-
sume that X is a nonsingular complete intersection of hyperplane-section type with 2 <
codim X'<4. We also assume that /> 5.

Lemma 3.1. Let X be as above. If 2p<n, then H" P(Q%)=0 except in the cases
where | is odd and

(1) codim X=3 and p=1-3, or

(2) codim X=4 and p=1—4, [#5.

Therefore, no variations of Hodge structures exist except in the above cases.

ProoF. By (KS),, if H" P*(S'N}®Q47)=0 for 0<i<p, then H" P(Q2%)=0.
Since X is of hyperplane-section type, it suffices to check H" P*i*i(Y, Q0 {(—i—j))=0
for 0<i<p, 0<j<codim X. By Theorem 2.1, these hold except in the cases:

(a) 2i=1-5,j=3,p=1-3,nis odd,

(b) 2i=1-7,j=4,p=1—4, nis even.

q.e.d.

REMARK 3.2. If codimX=3 and / is odd, then we have h* S=p!"21"34



564 K. KONNO

B3 2=(]—1)(/—3)/4, see [2, Lemma 2.6].
LEMMA 3.3. Let X be as above. If codim X=3 or 4, then H*(Oy)#0.
Proor. We consider the cohomology long exact sequence for

0 @X @ylx ‘NX ‘0.

Itis known, and can be shown by using Theorem 2.1, that H 1(@Y| +)=0. Therefore, we get
0— HO(@X) - HO(@ylx) —_ HO(NX) - Hl(@X)—’O .

Since we have H " (Y, ©, ® A'E*)=HY, Oy ® A'E*)=0for 1 <i< N—nby Theorem
2.1, we get H%(@y)~ H%Oy|y). Therefore, we have h°%(Oy|y)=1(/+2). Furthermore, we
have h°(Ny)=c(l(/+1)/2—c), where c=codim X. Since h%(Oy|x)<h®(Ny) for ¢>3, we
have h'(@,)#0. q.e.d.

By Lemmas 3.1 and 3.3, we get:

PROPOSITION 3.4. Let X be a complete intersection of hyperplane-section type in
the Grassmannian of lines in P', 1> 5. Then the Torelli theorem cannot hold in the following
cases:

(1) [=5 and codim X =4.

(2) lis even and codim X=3, 4.

REMARK 3.5. When Xis of type (12), Donagi [2, 2.2 and 2.3] showed the following:
We have h?'"*=h'"2!"2=]—1 (lis odd), //2 (/ is even). Let H and H’ be hypersurfaces
of degree 1 with X=Hn H’, and consider the pencil L spanned by them. If / is odd, L
depends on (/—5)/2 parameters, whereas, if / is even, it has no moduli. Since X is the
base locus of L, we may have h'(@y)=(/—5)/2 if / is odd, and A'(®4)=0 if [ is even.

4. Proof of Theorem 2.1. For irreducible Hermitian symmetric spaces of compact
type, Kimura [4] gave a method to determine when the cohomology group HYQ%(m))
vanishes, following Bott [1] and Kostant [8]. In this section, we show Theorem 2.1
using his method.

NATATION 4.1. Let {e;:1<i</+1} be the standard orthonormal basis of R'*!
with respect to the usual inner product (-, *). Put ®={e;—e;: 1<i,j<I+1,i#j}. Then
we can identify it with the root system of the simple Lie algebra of type A4, and
A={o;:=e;—e;+,:1<i<l} is a basis consisting of positive simple roots. We also put

1+1
di=eitey++e—(i/(I+1) ) ;.

ji=1

Then (4;, j)=4;; and the 4; are the fundamental weights. If 6 denotes the half of the
sum of all positive roots, then

200=le;+(I—2)ey+ - —(—2)e,—le;,, -
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The Weyl group W of & can be identified with the permutation group of /+1 letters:
ge;=e,;. Therefore, we can write o€ W as

a_(l 2 - 1+1>
“\a(l) 2) -+ ai+1))’

P(nt)={e;—e; 3<i<i+1),e,—e; B<j<I+ 1)}

We set

and
le{aeW:a_1=< ~11 _l+1 >, ) 0‘1(1)<a"1_(2) }
a1 1) -0+ 1))" eT\B)< - <o Y+ 1)
The index n(o) of o€ W! is given by
no)=c"(1)+o71(2)—3

(cf. Takeuchi [10]) and we set W'(p)={ce W';n(c)=p}. We also remark that the
following hold:

(A, )=1, Vaednt),

(06, e,—e)=0"'(j)—a~1(i), 1<i,j<l+1, VoeW.

For ae W1, we set s;=0 (i) (i=1, 2) for simplicity. Then,

i—1, if s;,+2<i<s,

i—2, if 3<i<s, +1
6‘1(i)=[
i, if s, +l1<i<i+1.

If B varies in ®(n*) and ¢ in W, (64, f) can take the following values:

i—2—s, if 3<i<s;+1,
(00,e,—e)=43 i—1—s,; if s;42<i<s,,
i—s8y if s,+1<i<i+1.

j—2—s, if 3<j<s,;+1,
(06,e,—e€;)=1j—1—s, if s;+2<j<s,,
Jj—=52 if s, +1<j<I+1.
For the proof of the following fact, see [4, Theorems 1 and 2].

LEMMA 4.2. Let Y be the Grassmannian of lines in P'. The group HY(Q%(m)) does
not vanish if and only if there exists a o € W'(p) satisfying the following conditions.

(1) m# —(06, ) for all Be D(n™) .

(2) g=card{fed(n*):(ad, f)< —m} .

4.3. Now, using Lemma 4.2, our calculation proceeds as follows. Let o€ W(p).
Then p=s,+5,—3. We consider the case 1 <s, <s,— 1</ for simplicity. If m is an
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integer with —m< —s,, —m=0 or —m>[/+1—s,, then Lemma 4.2 (1) is satisfied.
Therefore, H(Q4(m)) (resp. H*'~%(Q%(m))) does not vanish if m>s, (resp. m<s, —[—1),
and H?(Q%)#0. Furthermore, note that it may be possible that m with —m=s,—s,,
s;—s, satisfies (1) of Lemma 4.2. The case —m=s,—s; can occur if and only if
I+1—5,<s,—s,. Then, we have

g=card{fe®(n*):(dd, f)< —m=s,—s5,}=1—3+s, .

Therefore, we have s, =p—q+1, s,=q—I[+3 and —m=2qg—p—2/+3. The condition
I+1—s,<s,—s,; is equivalent to 3¢g—p>4/—5. Since we have assumed that
l<s;<s,—1<l, we have p—q+/>1 and ¢<2/—2 in addition. Therefore,
HYQY p+2l—3—2q)) does not vanish if 3g—p>4l—4, p—q+1>1, g<2l—2. Quite
similarly, considering the case —m=s, —s,, we know that H4Q¥{(p+ 1—24)) does not
vanish if 3g—p<1, ¢>0, p—g+1<l.

For the other types of ae W(p), e.g., s, =1, the calculation goes similarly. Then,
varying g € W(p), we get Theorem 2.1. The details are left to the reader.

5. Complete intersectionsin Ej; and Ey;.. For the irreducible Hermitian symmetric
space Y of type Ey, or Eyy;, Kimura [4] determined completely when H9(Q%(m)) vanishes.
Therefore, as in the case of the Grassmannian of lines, we can show the following
theorems.

THEOREM 5.1. Let Y be the irreducible Hermitian symmetric space of type Ey;. The
infinitesimal Torelli theorem holds for a nonsingular complete intersection X in Y, except
possibly when X is one of the following types.

(1) type(1™),2<m<9,

2) type(dy, 1M),2<d, <4, 1<m<10-2d,,

(3) type (2%, 1™, 1<m<3,

4) type (3,2,1).

THEOREM 5.2. Let Y be the irreducible Hermitian symmetric space of type Eyy.
The infinitesimal Torelli theorem holds for a nonsingular complete intersection X in Y,
except possibly when X is one of the following types.

(1) type (1™), 2<m<10,

2) type(d,, 1™, 2<d, <5, 1<m<11-2d,,

(3) type (2%, 1™, 1<m<4,

(4) types (3,2,1),(3,2,1%), (23, 1).

OUTLINE OF THE PROOF OF THEOREMS 5.1 AND 5.2. Since the surjectivity of u in
Theorem 1.5 can be shown as in Lemma 2.2, our task is reduced to showing the
injectivity of d in Theorem 1.5. Using [4, Theorems 4 and 5], one can check that the
condition (V); ; does not hold for some (i, j) only when the type of X is one of the above
and the following:
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Ey: (110)

(dls 111_2d1)9 2'Sdlss ’

22,14
(3.2,1%)
2% 1)

Eyy: (1“)

(d;, 112724, 2<d, <5,

(22, 15)
(3,2, 1%
¢G40
4,2,1)

(,)=2,0),
(,j)=(d,+1,0),
(i.j)=4,0),
(,)=(5,0),
(,j)=(5,0).

.)=(,0),
(,))=(d,+6,0),
)=05,0),
(t,j)=(10,0),
(,)=(11,0),
G,j)=0110).

In these cases, however, we can show that 0 is injective as in the proof of Theorem 2.6.

Remark 5.3. If Y is of type Ey;, then a nonsingular hypersurface of degree 1 is
the Kahler C-space of type (F,, a,) (see [S] or [7]). Therefore, if X is a general complete
intersection of type (d,, 1), 2<d, <4, (22, 1) or (3, 2, 1), then the infinitesimal Torelli
theorem holds for X by [Part II, Main Theorem]. If Y is of type Eyy, a nonsingular

hypersurface of degree 1 is rigid.
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