INFINITESIMAL TORELLI THEOREM FOR COMPLETE INTERSECTIONS IN CERTAIN HOMOGENEOUS KÄHLER MANIFOLDS, III

KAZUHIRO KONNO

(Received August 8, 1990, revised January 28, 1991)

Introduction. This is the third part of a study of the infinitesimal Torelli problem for complete intersections X in Kähler C-spaces Y with $b_2(Y)=1$. The preceding papers [6] will be referred to as Parts I and II, where we showed that the problem has an affirmative answer for almost all cases [Part II, Main Theorem]. However, it can never be answered completely as in the case of projective complete intersections [3, Theorem (3.1)]. In view of Flenner's criterion [3] which should be most workable in our context, this is probably because it is technically hard to know precisely when $H^q(Y, \Omega_Y^p(m))$ vanishes. So, in this article, we restrict ourselves to the case where Y is the Grassmannian of lines in P^1 in order to get a more accurate result.

In §1, we briefly review Flenner's result for the later use. In §2, we study the infinitesimal Torelli problem for complete intersections in the Grassmannian Y of lines. Unfortunately, in our main result (Theorem 2.6), a few cases are still left unsettled. In order to apply Flenner's criterion, we need the vanishing theorem for $H^q(Y, \Omega_Y^p(m))$ (Theorem 2.1) which will be shown in §4. In §3, we study annoying exceptions in Theorem 2.6, i.e., the case where X is of type (1°), $2 \le c \le 4$. It eventually turns out that some of them are counterexamples to the Torelli problem (Proposition 3.4): They depend on some moduli whereas their Hodge structures have no variations, like a cubic surface in P^3 or an even-dimensional projective complete intersections of type (2, 2). We remark here that the Hodge structure of X with codim X=2, 3 was previously studied by Donagi [2]. §4 will be devoted to the proof of Theorem 2.1.

The vanishing theorem for $H^q(Y, \Omega_Y^p(m))$ was obtained by Kimura [4], when Y is an irreducible Hermitian symmetric space of type E_{III} or E_{VII} . In §5, we state the corresponding infinitesimal Torelli theorems which can be shown as in §2.

ACKNOWLEDGEMENT. The author would like to thank Professor Shigeru Mukai who pointed out Donagi's work [2].

- 1. Flenner's criterion. In this section, we recall and recast Flenner's criterion [3] for the infinitesimal Torelli theorem.
- NATATION 1.1. Let Y be a Kähler C-space with $b_2 = 1$, and put $N = \dim Y$. The Picard group of Y is isomorphic to \mathbb{Z} and we let $\mathcal{O}_Y(1)$ denote its ample generator. There

exists a positive integer k(Y) with $K_Y = \mathcal{O}_Y(-k(Y))$. If a global section x of the vector bundle

$$E = \bigoplus_{i=1}^{N-n} \mathcal{O}_{Y}(d_{i}), \qquad d_{i} \in \mathbb{N},$$

defines an irreducible nonsingular subvariety X of dimension n, we call it a nonsingular complete intersection of type (d_1, \dots, d_{N-n}) in Y. We put $d = \sum d_i$ and assume that $d_1 \ge d_2 \ge \dots \ge d_{N-n}$. We sometimes write, for example, $(2, 1^3)$ instead of (2, 1, 1, 1). We say that X is of hyperplane-section type if $d_i = 1$ for $1 \le i \le N - n$, i.e., X is of type (1^{N-n}) .

For the fundamental properties of Kähler C-spaces with $b_2 = 1$, see [6, Part I].

1.2. Let Y be a Kähler C-space with $b_2(Y) = 1$, and let X be a nonsingular complete intersection of type (d_1, \dots, d_{N-n}) . By using the exact sequence

$$0 \longrightarrow N_X^* \longrightarrow \Omega_Y^1|_X \longrightarrow \Omega_X^1 \longrightarrow 0,$$

we can construct an exact Koszul sequence

$$(KS)_{p}: 0 \longrightarrow S^{p}N_{X}^{*} \longrightarrow S^{p-1}N_{X}^{*} \otimes \Omega_{Y}^{1} \longrightarrow \cdots \longrightarrow \Omega_{Y}^{p}|_{X} \longrightarrow \Omega_{X}^{p} \longrightarrow 0$$

for any p>0. Tensoring $(KS)_{n-1}$ with K_X^{-1} , we get an exact Koszul sequence

$$(1.1) 0 \longrightarrow S^{n-1}N_X^* \otimes K_X^{-1} \longrightarrow \cdots \longrightarrow S^iN_X^* \otimes \Omega_Y^{n-i-1} \otimes K_X^{-1} \longrightarrow \cdots \longrightarrow \Omega_Y^{n-1} \otimes K_X^{-1} \longrightarrow \Theta_X \longrightarrow 0.$$

Dualizing $(KS)_{n-p}$ and tensoring it with K_X , we get another exact Koszul sequence

$$(1.2) \quad 0 \longrightarrow \Omega_X^p \longrightarrow \bigwedge^{n-p} \Theta_Y \otimes K_X \longrightarrow \cdots \longrightarrow S^j N_X \otimes \bigwedge^{n-p-j} \Theta_Y \otimes K_X \longrightarrow \cdots \longrightarrow S^{n-p} N_X \otimes K_X \longrightarrow 0.$$

We break (1.1), (1.2) and $(KS)_{p-1}$ into short exact sequences as follows:

$$0 \longrightarrow L_{i+1} \to S^{i} N_{X}^{*} \otimes \Omega_{Y}^{n-1-i} \otimes K_{X}^{-1} \longrightarrow L_{i} \longrightarrow 0,$$

$$0 \longrightarrow K^{j} \to S^{j} N_{X} \otimes \bigwedge^{n-p-j} \Theta_{Y} \otimes K_{X} \longrightarrow K^{j+1} \longrightarrow 0,$$

$$0 \longrightarrow K_{k+1} \longrightarrow S^{k} N_{X}^{*} \otimes \Omega_{Y}^{p-1-k} \longrightarrow K_{k} \longrightarrow 0.$$

Considering the cohomology long exact sequences for these, we have coboundary maps

$$\partial_i : H^{i+1}(L_i) \longrightarrow H^{i+2}(L_{i+1}) ,$$

$$\delta^j : H^{n-p-j-1}(K^{j+1}) \longrightarrow H^{n-p-j}(K^j) ,$$

$$\partial'_k : H^{n-p+k+1}(K_k) \longrightarrow H^{n-p+k+2}(K_{k+1}) .$$

Note that the natural pairing

$$(S^{i}N_{X}^{*}\otimes\Omega_{Y}^{n-1-i}\otimes K_{X}^{-1})\otimes(S^{j}N_{X}\otimes\bigwedge^{n-p-j}\Theta_{Y}\otimes K_{X})\longrightarrow S^{i-j}N_{X}^{*}\otimes\Omega_{Y}^{p-1-(i-j)}$$

induces a pairing $H^s(L_i) \otimes H^t(K^j) \to H^{s+t}(K_{i-j})$. In particular, we denote by μ_i $(0 \le i \le n-1)$ the following pairings:

$$\begin{split} & \mu_i \colon H^{i+1}(L_i) \otimes H^{n-p}(\Omega_X^p) \longrightarrow H^{n-p+i+1}(K_i) & \text{for } 0 \leq i \leq p-2 \;, \\ & \mu_i \colon H^{i+1}(L_i) \otimes H^{n-i-1}(K^{i+1-p}) \longrightarrow H^n(S^{p-1}N_X^*) & \text{for } p-1 \leq i \leq n-1 \;. \end{split}$$

The following can be found in [3, (2.10)].

LEMMA 1.3. (1) The diagram

$$\begin{array}{cccc} H^{i+1}(L_i) & \otimes & H^{n-p}(\Omega_X^p) & \stackrel{\mu_i}{\longrightarrow} & H^{n-p+(i+1)}(K_i) \\ & & \downarrow & & \downarrow & & \downarrow \partial_i' \\ H^{i+2}(L_{i+1}) & \otimes & H^{n-p}(\Omega_X^p) & \stackrel{\mu_{i+1}}{\longrightarrow} & H^{n-p+(i+2)}(K_{i+1}) \end{array}$$

commutes up to sign for $0 \le i \le p-2$.

(2) For $p-1 \le i \le n-2$, then diagram

$$H^{i+1}(L_{i}) \otimes H^{n-i-1}(K^{i+1-p}) \xrightarrow{\mu_{i}} H^{n}(S^{p-1}N_{X}^{*})$$

$$\partial_{i} \downarrow \qquad \qquad \uparrow \delta^{i+1-p} \qquad \qquad \parallel$$

$$H^{i+2}(L_{i+1}) \otimes H^{n-i-2}(K^{i+2-p}) \xrightarrow{\mu_{i+1}} H^{n}(S^{p-1}N_{X}^{*})$$

commutes up to sign in the sense that $\mu_{i+1}(\partial_i \alpha \otimes \beta) = \pm \mu_i(\alpha \otimes \partial^{i+1-p}\beta)$ for $\alpha \in H^{i+1}(L_i)$ and $\beta \in H^{n-i-2}(K^{i+2-p})$.

A simple diagram chasing shows the following:

LEMMA 1.4. Let i_0 and i_1 be integers satisfying $0 \le i_0 < i_1 \le n-1$, and suppose that the cup-product map μ_{i_1} is non-degenerate in the first factor. Then so is μ_{i_0} provided that the composite of the coboundary maps $\partial_{i_1-1} \circ \cdots \circ \partial_{i_0}$ is injective.

The following is a special case of a more general result due to Flenner [3, Theorem (1.1)].

THEOREM 1.5. Assume that the multiplication map

$$\mu: H^0(S^{n-p}N_X \otimes K_X) \otimes H^0(S^{p-1}N_X \otimes K_X) \longrightarrow H^0(S^{n-1}N_X \otimes K_X^2)$$

is surjective. If the map $\partial := \partial_{n-2} \circ \cdots \circ \partial_0$ is injective, then the infinitesimal period map

$$H^1(X, \Theta_X) \longrightarrow \operatorname{Hom}_{\mathbf{C}}(H^{n-p}(X, \Omega_X^p), H^{n-p+1}(X, \Omega_X^{p-1}))$$

is injective.

PROOF. It is clear that the infinitesimal period map is injective if and only if μ_0 , which is nothing but the cup-product map

$$H^1(\Theta_X) \otimes H^{n-p}(\Omega_X^p) \longrightarrow H^{n-p+1}(\Omega_X^{p-1})$$
,

is non-degenerate in the first factor. Therefore, by Lemma 1.4, we get the desired result if

$$\mu_{n-1}: H^n(S^{n-1}N_X^* \otimes K_X^{-1}) \otimes H^0(S^{n-p}N_X \otimes K_X) \longrightarrow H^n(S^{p-1}N_X^*)$$

is non-degenerate in the first factor, which is equivalent to saying that μ is surjective. q.e.d.

We clearly have the following:

LEMMA 1.6. The map ∂ in Theorem 1.5 is injective if

$$(V)_i$$
: $H^{i+1}(X, S^i N_Y^* \otimes \Omega_Y^{n-1-i} \otimes K_Y^{-1}) = 0$

holds for $0 \le i \le n-2$.

COROLLARY 1.7. The condition (V)_i is satisfied if the condition

$$(V)_{i,j}: \qquad H^{i+j+1}(Y, \bigwedge^{j} E^* \otimes S^i E^* \otimes \Omega_Y^{n-1-i}(k(Y)-d)) = 0$$

is satisfied for $0 \le j \le N-n$.

PROOF. We use a spectral sequence associated to the resolution

$$0 \longrightarrow \bigwedge^{N-n} E^* \longrightarrow \cdots \longrightarrow \bigwedge^2 E^* \longrightarrow E^* \longrightarrow \mathscr{O}_Y \longrightarrow \mathscr{O}_X \longrightarrow 0.$$

For details, we refer the reader to [Part II, 2.4].

REMARK 1.8. The result [Part II, Theorem 1.7] follows from Theorem 1.5 and Lemma 1.6.

2. Infinitesimal Torelli theorem. From this section up to §4, Y is the Grassmannian of lines in P^l , $l \ge 4$. Therefore N = 2l - 2 and k(Y) = l + 1. The following will be shown in §4.

THEOREM 2.1. Let Y be the Grassmannian of lines in P^1 , $l \ge 4$. Then group $H^q(Y, \Omega^p_T(m))$ vanishes except in the following cases.

- (1) q=0 and m>[(p+3)/2].
- (2) p=q and m=0.
- (3) q=2l-2 and m<[(p+2)/2]-l-1.
- (4) q-l and <math>m=p-2q+2l-3.
- (5) 3q-1

Here, the symbol [s] denotes the greatest integer not exceeding $s \in Q$.

LEMMA 2.2. Let Y be as above and X an n-dimensional nonsingular complete intersection in Y. Put p = n/2 if n is even, and p = (n+1)/2 if n is odd. Then the multiplication map

$$H^0(X, S^{n-p}N_X \otimes K_X) \otimes H^0(X, S^{p-1}N_X \otimes K_X) \longrightarrow H^0(X, S^{n-1}N_X \otimes K_X^2)$$

is surjective.

PROOF. As in the proof of [Part II, Lemma 2.3], we can check that each direct summand of $S^{p-1}N_S\otimes K_X$ has nonnegative degree except when X is of hyperplane-section type with codim $X\leq 4$ or of type (2,1). Since $p-1\leq n-p$, our assertion follows for those which are not the exceptions. If X is of hyperplane-section type with codim $X\leq 4$, then $H^0(X,S^{n-1}N_X\otimes K_X^2)$ vanishes, since each direct summand of $S^{n-1}N_X\otimes K_X^2$ has negative degree. If X is of type (2,1), we have $K_X=\mathcal{O}_X(2-l)$ and p=l-2. Then

$$\begin{split} S^{p-1}N_X \otimes K_X &\simeq S^{p-1}(\mathcal{O}_X(1) \oplus \mathcal{O}_X) \otimes \mathcal{O}_X(-1) \;, \\ S^{n-p}N_X \otimes K_X &\simeq S^{n-p}(\mathcal{O}_X(1) \oplus \mathcal{O}_X) \;, \\ S^{n-1}N_X \otimes K_X^2 &\simeq S^{n-1}(\mathcal{O}_X(1) \oplus \mathcal{O}_X) \otimes \mathcal{O}_X(-1) \;. \end{split}$$

Therefore, the multiplication map in question is nothing but

$$\left(\bigoplus_{i=0}^{p-2} H^0(\mathcal{O}_X(i))\right) \otimes \left(\bigoplus_{i=0}^{n-p} H^0(\mathcal{O}_X(i))\right) \longrightarrow \bigoplus_{i=0}^{n-2} H^0(\mathcal{O}_X(i)),$$

which is clearly surjective.

q.e.d.

By virtue of Theorem 2.1, an easy calculation shows the following:

LEMMA 2.3. With the above notation, for $0 \le i \le n-2$ and $0 \le j \le N-n$, the condition $(V)_{i,j}$ in Corollary 1.7 is satisfied except in the following cases:

(1) X is of hyperplane-section type.

(2) X is not of hyperplane-section type.

type (2)
$$(i, j) = (0, 0)$$
 $(l = 4)$,
type (2, 1) $(i, j) = (l - 3, 0)$, $((3l - 9)/2, 2)$ $(l : odd)$,
 $(i, j) = (l - 3, 0)$, $((l - 4)/2, 0)$ $(l : even)$,
type (3, 1) $(i, j) = (l - 3, 0)$,
type (2, 1, 1) $(i, j) = (l - 4, 1)$,
type (2, 1, 1, 1) $(i, j) = (l - 4, 0)$.

COROLLARY 2.4. X is rigid, that is, $H^1(X, \Theta_X) = 0$, in the following cases:

- (1) X is a hypersurface of degree 1.
- (2) l=4 and X is of hyperplane-section type with codim $X \le 4$.

PROOF. By Lemma 2.3, Corollary 1.7 and Lemma 1.6, we see that $H^1(\Theta_X)$ is mapped injectively in $H^n(S^{n-1}N_X^* \otimes K_X^{-1})$. But this latter is zero, since we have

$$H^{n}(S^{n-1}N_{X}^{*}\otimes K_{X}^{-1}) \simeq H^{0}(S^{n-1}N_{X}\otimes K_{X}^{2})^{*}$$

by Serre duality.

q.e.d.

Lemma 2.5. Let p be an integer with $0 < 2p \le n = \dim X$. Then $H^p(Y, \Omega_Y^p) \simeq H^p(X, \Omega_Y^p|_X)$.

PROOF. Let I_X denote the ideal sheaf of X in Y. Then we have

$$0 \longrightarrow I_X \otimes \Omega_Y^p \longrightarrow \Omega_Y^p \longrightarrow \Omega_Y^p|_X \longrightarrow 0.$$

Therefore, it suffices to check that $H^p(I_X \otimes \Omega_Y^p) = H^{p+1}(I_X \otimes \Omega_Y^p) = 0$. We have the Koszul resolution

$$0 \longrightarrow \bigwedge^{N-n} E^* \otimes \Omega_Y^p \longrightarrow \cdots \longrightarrow E^* \otimes \Omega_Y^p \longrightarrow I_X \otimes \Omega_Y^p \longrightarrow 0.$$

Therefore, by an easy spectral sequence argument, it suffices to check that

$$H^{p+i-1}(\bigwedge^{i}E^{*}\otimes\Omega_{Y}^{p})=H^{p+i}(\bigwedge^{i}E^{*}\otimes\Omega_{Y}^{p})=0$$

for $1 \le i \le N - n$, which follows from Theorem 2.1.

q.e.d.

THEOREM 2.6. Let Y be the Grassmannian of lines in P^l , $l \ge 4$. For a nonsingular complete intersection X of type (d_1, \dots, d_{N-n}) in Y, the infinitesimal Torelli theorem holds except possibly in the following cases:

- (1) X is of hyperplane-section type, $l \ge 5$ and $2 \le \operatorname{codim} X \le 5$.
- (2) l = 4 and X is of type (2).
- (3) $X \text{ is of type } (2, 1^m), 1 \le m \le 2.$

PROOF. Except when X is of type (3, 1), $(2, 1^3)$ or (1^6) , the assertion follows from Theorem 1.5 by Lemmas 1.6, 1.7, 2.2 and 2.3.

We assume that X is of type (3, 1), since the other cases can be treated similarly. We put p=n/2=l-2. In view of Lemma 2.3, ∂_i is injective unless i=p-1. By Lemma 1.3, we have the commutative diagram

We shall show that μ_{p-1} is non-degenerate in the first factor. For this purpose, since

$$H^p(S^{p-1}N_X^* \otimes \Omega_Y^p \otimes K_X^{-1}) \longrightarrow H^p(L_{p-1}) \xrightarrow{\hat{\mathcal{O}}_{p-1}} H^{p+1}(L_p)$$

and since we already know, by Lemmas 1.4 and 2.2, that μ_p is non-degenerate in the first factor, it suffices to show that

$$(2.1) H^{p}(S^{p-1}N_{X}^{*}\otimes\Omega_{Y}^{p}\otimes K_{X}^{-1})\otimes H^{p}(\Omega_{X}^{p})\longrightarrow H^{n}(S^{p-1}N_{X}^{*})$$

is non-degenerate in the first factor. Note that we have $K_x = \mathcal{O}_x(1-p)$ and, furthermore,

$$H^{p}(S^{p-1}N_{X}^{*} \otimes \Omega_{Y}^{p} \otimes K_{X}^{-1}) \simeq H^{p}(S^{p-1}(\mathcal{O}_{X} \oplus \mathcal{O}_{X}(-2)) \otimes \Omega_{Y}^{p}) \simeq H^{p}(\Omega_{Y}^{p}|_{X}),$$

$$H^{n}(S^{p-1}N_{X}^{*}) \simeq H^{n}(S^{p-1}N_{X}^{*} \otimes \mathcal{O}_{X}(p-1) \otimes K_{X})$$

$$\simeq H^{n}(S^{p-1}(\mathcal{O}_{X} \oplus \mathcal{O}_{X}(-2)) \otimes K_{X})$$

$$\simeq H^{n}(K_{X}) \oplus \bigoplus_{i=1}^{p-1} H^{n}(K_{X}(-2i)).$$

Therefore, the pairing (2.1) is non-degenerate in the first factor, if so is

$$(2.2) H^p(\Omega_Y^p|_X) \otimes H^p(\Omega_X^p) \longrightarrow H^n(K_X).$$

Note that we have $H^p(\Omega_X^p|_X) \simeq H^p(\Omega_X^p) \subset H^p(\Omega_X^p)$ by Lemma 2.5 and the Lefschetz theorem. Since $H^p(\Omega_X^p) \otimes H^p(\Omega_X^p) \to H^n(K_X)$ is non-degenerate, we see that (2.2) is non-degenerate in the first factor.

- REMARK 2.7. If l is odd, a nonsingular hypersurface of degree 1 is the Kähler C-space of type $(C_{(l+1)/2}, \alpha_2)$ (see [9] or [7]). Therefore, the infinitesimal Torelli theorem holds for a general X of type (2, 1) by [Part II, Main Theorem].
- 3. Complete intersections of hyperplane-section type. In this section, we assume that X is a nonsingular complete intersection of hyperplane-section type with $2 \le \text{codim } X < 4$. We also assume that l > 5.

LEMMA 3.1. Let X be as above. If 2p < n, then $H^{n-p}(\Omega_X^p) = 0$ except in the cases where l is odd and

- (1) $\operatorname{codim} X = 3 \text{ and } p = l 3, \text{ or }$
- (2) codim X = 4 and p = l 4, $l \neq 5$.

Therefore, no variations of Hodge structures exist except in the above cases.

PROOF. By $(KS)_p$, if $H^{n-p+i}(S^iN_X^*\otimes\Omega_Y^{p-i})=0$ for $0\le i\le p$, then $H^{n-p}(\Omega_X^p)=0$. Since X is of hyperplane-section type, it suffices to check $H^{n-p+i+j}(Y,\Omega_Y^{p-i}(-i-j))=0$ for $0\le i\le p$, $0\le j\le codim X$. By Theorem 2.1, these hold except in the cases:

- (a) 2i=l-5, j=3, p=l-3, n is odd,
- (b) 2i=l-7, j=4, p=l-4, n is even.

q.e.d.

REMARK 3.2. If codim X=3 and l is odd, then we have $h^{2l-5}=h^{l-2,l-3}+$

 $h^{l-3,l-2} = (l-1)(l-3)/4$, see [2, Lemma 2.6].

LEMMA 3.3. Let X be as above. If codim X=3 or 4, then $H^1(\Theta_X) \neq 0$.

PROOF. We consider the cohomology long exact sequence for

$$0 \longrightarrow \Theta_X \longrightarrow \Theta_Y|_X \longrightarrow N_X \longrightarrow 0.$$

It is known, and can be shown by using Theorem 2.1, that $H^1(\Theta_Y|_X) = 0$. Therefore, we get

$$0 \longrightarrow H^0(\mathcal{O}_X) \longrightarrow H^0(\mathcal{O}_Y\big|_X) \longrightarrow H^0(N_X) \longrightarrow H^1(\mathcal{O}_X) \to 0 \ .$$

Since we have $H^{i-1}(Y, \Theta_Y \otimes \bigwedge^i E^*) = H^i(Y, \Theta_Y \otimes \bigwedge^i E^*) = 0$ for $1 \le i \le N-n$ by Theorem 2.1, we get $H^0(\Theta_Y) \simeq H^0(\Theta_Y|_X)$. Therefore, we have $h^0(\Theta_Y|_X) = l(l+2)$. Furthermore, we have $h^0(N_X) = c(l(l+1)/2 - c)$, where $c = \operatorname{codim} X$. Since $h^0(\Theta_Y|_X) < h^0(N_X)$ for $c \ge 3$, we have $h^1(\Theta_X) \ne 0$.

By Lemmas 3.1 and 3.3, we get:

PROPOSITION 3.4. Let X be a complete intersection of hyperplane-section type in the Grassmannian of lines in \mathbf{P}^l , $l \ge 5$. Then the Torelli theorem cannot hold in the following cases:

- (1) l=5 and codim X=4.
- (2) l is even and codim X = 3, 4.

REMARK 3.5. When X is of type (1²), Donagi [2, 2.2 and 2.3] showed the following: We have $h^{2l-4} = h^{l-2,l-2} = l-1$ (*l* is odd), l/2 (*l* is even). Let H and H' be hypersurfaces of degree 1 with $X = H \cap H'$, and consider the pencil L spanned by them. If l is odd, L depends on (l-5)/2 parameters, whereas, if l is even, it has no moduli. Since X is the base locus of L, we may have $h^1(\Theta_X) = (l-5)/2$ if l is odd, and $h^1(\Theta_X) = 0$ if l is even.

4. Proof of Theorem 2.1. For irreducible Hermitian symmetric spaces of compact type, Kimura [4] gave a method to determine when the cohomology group $H^q(\Omega_Y^p(m))$ vanishes, following Bott [1] and Kostant [8]. In this section, we show Theorem 2.1 using his method.

NATATION 4.1. Let $\{e_i: 1 \le i \le l+1\}$ be the standard orthonormal basis of \mathbb{R}^{l+1} with respect to the usual inner product (\cdot, \cdot) . Put $\Phi = \{e_i - e_j: 1 \le i, j \le l+1, i \ne j\}$. Then we can identify it with the root system of the simple Lie algebra of type A_l , and $\Delta = \{\alpha_i: = e_i - e_{i+1}: 1 \le i \le l\}$ is a basis consisting of positive simple roots. We also put

$$\lambda_i = e_1 + e_2 + \cdots + e_i - (i/(l+1)) \sum_{j=1}^{l+1} e_j$$
.

Then $(\lambda_i, \alpha_j) = \delta_{ij}$ and the λ_i are the fundamental weights. If δ denotes the half of the sum of all positive roots, then

$$2\delta = le_1 + (l-2)e_2 + \cdots - (l-2)e_l - le_{l+1}$$
.

The Weyl group W of Φ can be identified with the permutation group of l+1 letters: $\sigma e_i = e_{\sigma(i)}$. Therefore, we can write $\sigma \in W$ as

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & l+1 \\ \sigma(1) & \sigma(2) & \cdots & \sigma(l+1) \end{pmatrix}.$$

We set

$$\Phi(n^+) = \{e_1 - e_i \ (3 \le i \le l+1), e_2 - e_i \ (3 \le j \le l+1)\}$$

and

$$W^{1} = \left\{ \sigma \in W : \sigma^{-1} = \begin{pmatrix} 1 & \cdots & l+1 \\ \sigma^{-1}(1) & \cdots & \sigma^{-1}(l+1) \end{pmatrix}, \quad \begin{array}{c} \sigma^{-1}(1) < \sigma^{-1}(2) \\ \sigma^{-1}(3) < \cdots < \sigma^{-1}(l+1) \end{array} \right\}.$$

The index $n(\sigma)$ of $\sigma \in W^1$ is given by

$$n(\sigma) = \sigma^{-1}(1) + \sigma^{-1}(2) - 3$$

(cf. Takeuchi [10]) and we set $W^1(p) = \{ \sigma \in W^1 ; n(\sigma) = p \}$. We also remark that the following hold:

$$\begin{split} &(\lambda_2,\alpha)=1\;, \qquad \forall \alpha \in \varPhi(n^+)\;, \\ &(\sigma\delta,\,e_i-e_j)=\sigma^{-1}(j)-\sigma^{-1}(i)\;, \qquad 1\leq i,j\leq l+1\;, \quad \forall \sigma\in W\;. \end{split}$$

For $\sigma \in W^1$, we set $s_i = \sigma^{-1}(i)$ (i = 1, 2) for simplicity. Then,

$$\sigma^{-1}(i) = \begin{cases} i-2, & \text{if} \quad 3 \le i \le s_1 + 1\\ i-1, & \text{if} \quad s_1 + 2 \le i \le s_2\\ i, & \text{if} \quad s_2 + 1 \le i \le l + 1 \end{cases}$$

If β varies in $\Phi(n^+)$ and σ in W^1 , $(\sigma\delta, \beta)$ can take the following values:

$$(\sigma\delta, e_1 - e_i) = \begin{cases} i - 2 - s_1 & \text{if} \quad 3 \le i \le s_1 + 1, \\ i - 1 - s_1 & \text{if} \quad s_1 + 2 \le i \le s_2, \\ i - s_1 & \text{if} \quad s_2 + 1 \le i \le l + 1. \end{cases}$$

$$(\sigma\delta, e_2 - e_j) = \begin{cases} j - 2 - s_2 & \text{if} \quad 3 \le j \le s_1 + 1, \\ j - 1 - s_2 & \text{if} \quad s_1 + 2 \le j \le s_2, \\ j - s_2 & \text{if} \quad s_2 + 1 \le j \le l + 1. \end{cases}$$

For the proof of the following fact, see [4, Theorems 1 and 2].

LEMMA 4.2. Let Y be the Grassmannian of lines in \mathbf{P}^1 . The group $H^q(\Omega_Y^p(m))$ does not vanish if and only if there exists a $\sigma \in W^1(p)$ satisfying the following conditions.

- (1) $m \neq -(\sigma \delta, \beta)$ for all $\beta \in \Phi(n^+)$.
- (2) $q = \operatorname{card}\{\beta \in \Phi(n^+) : (\sigma \delta, \beta) < -m\}$.
- 4.3. Now, using Lemma 4.2, our calculation proceeds as follows. Let $\sigma \in W^1(p)$. Then $p = s_1 + s_2 3$. We consider the case $1 < s_1 < s_2 1 < l$ for simplicity. If m is an

integer with $-m \le -s_2$, -m=0 or $-m \ge l+1-s_1$, then Lemma 4.2 (1) is satisfied. Therefore, $H^0(\Omega_Y^p(m))$ (resp. $H^{2l-2}(\Omega_Y^p(m))$) does not vanish if $m \ge s_2$ (resp. $m \le s_1-l-1$), and $H^p(\Omega_Y^p) \ne 0$. Furthermore, note that it may be possible that m with $-m = s_2 - s_1$, $s_1 - s_2$ satisfies (1) of Lemma 4.2. The case $-m = s_2 - s_1$ can occur if and only if $l+1-s_2 < s_2-s_1$. Then, we have

$$q = \operatorname{card} \{ \beta \in \Phi(n^+) : (\sigma \delta, \beta) < -m = s_2 - s_1 \} = l - 3 + s_2$$
.

Therefore, we have $s_1=p-q+l$, $s_2=q-l+3$ and -m=2q-p-2l+3. The condition $l+1-s_2< s_2-s_1$ is equivalent to 3q-p>4l-5. Since we have assumed that $1< s_1< s_2-1< l$, we have p-q+l>1 and q< 2l-2 in addition. Therefore, $H^q(\Omega_Y^p(p+2l-3-2q))$ does not vanish if 3q-p>4l-4, p-q+l>1, q< 2l-2. Quite similarly, considering the case $-m=s_1-s_2$, we know that $H^q(\Omega_Y^p(p+1-2q))$ does not vanish if 3q-p<1, q>0, p-q+1< l.

For the other types of $\sigma \in W^1(p)$, e.g., $s_1 = 1$, the calculation goes similarly. Then, varying $\sigma \in W^1(p)$, we get Theorem 2.1. The details are left to the reader.

- 5. Complete intersections in $E_{\rm III}$ and $E_{\rm VII}$. For the irreducible Hermitian symmetric space Y of type $E_{\rm III}$ or $E_{\rm VII}$, Kimura [4] determined completely when $H^q(\Omega_Y^p(m))$ vanishes. Therefore, as in the case of the Grassmannian of lines, we can show the following theorems.
- Theorem 5.1. Let Y be the irreducible Hermitian symmetric space of type $E_{\rm III}$. The infinitesimal Torelli theorem holds for a nonsingular complete intersection X in Y, except possibly when X is one of the following types.
 - (1) $type(1^m), 2 \le m \le 9,$
 - (2) type $(d_1, 1^m)$, $2 \le d_1 \le 4$, $1 \le m \le 10 2d_1$,
 - (3) $type(2^2, 1^m), 1 \le m \le 3,$
 - (4) type(3, 2, 1).

Theorem 5.2. Let Y be the irreducible Hermitian symmetric space of type E_{VII} . The infinitesimal Torelli theorem holds for a nonsingular complete intersection X in Y, except possibly when X is one of the following types.

- (1) $type(1^m), 2 \le m \le 10,$
- (2) type $(d_1, 1^m)$, $2 \le d_1 \le 5$, $1 \le m \le 11 2d_1$,
- (3) $type(2^2, 1^m), 1 \le m \le 4,$
- (4) types $(3, 2, 1), (3, 2, 1^2), (2^3, 1)$.

OUTLINE OF THE PROOF OF THEOREMS 5.1 AND 5.2. Since the surjectivity of μ in Theorem 1.5 can be shown as in Lemma 2.2, our task is reduced to showing the injectivity of ∂ in Theorem 1.5. Using [4, Theorems 4 and 5], one can check that the condition $(V)_{i,j}$ does not hold for some (i,j) only when the type of X is one of the above and the following:

$$E_{\text{III}}: \quad (1^{10}) \qquad \qquad (i,j) = (2,0) \,, \\ (d_1, 1^{11-2d_1}), 2 \leq d_1 \leq 5 \,, \quad (i,j) = (d_1+1,0) \,, \\ (2^2, 1^4) \qquad \qquad (i,j) = (4,0) \,, \\ (3,2,1^2) \qquad \qquad (i,j) = (5,0) \,, \\ (2^3, 1) \qquad \qquad (i,j) = (5,0) \,. \\ E_{\text{VII}}: \quad (1^{11}) \qquad \qquad (i,j) = (7,0) \,, \\ (d_1, 1^{12-2d_1}), 2 \leq d_1 \leq 5 \,, \quad (i,j) = (d_1+6,0) \,, \\ (2^2, 1^5) \qquad \qquad (i,j) = (9,0) \,, \\ (3,2,1^3) \qquad \qquad (i,j) = (10,0) \,, \\ (3^2,1) \qquad \qquad (i,j) = (11,0) \,, \\ (4,2,1) \qquad \qquad (i,j) = (11,0) \,.$$

In these cases, however, we can show that ∂ is injective as in the proof of Theorem 2.6.

REMARK 5.3. If Y is of type E_{III} , then a nonsingular hypersurface of degree 1 is the Kähler C-space of type (F_4, α_4) (see [5] or [7]). Therefore, if X is a general complete intersection of type $(d_1, 1)$, $2 \le d_1 \le 4$, $(2^2, 1)$ or (3, 2, 1), then the infinitesimal Torelli theorem holds for X by [Part II, Main Theorem]. If Y is of type E_{VII} , a nonsingular hypersurface of degree 1 is rigid.

REFERENCES

- [1] R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
- [2] R. Donagi, On the geometry of Grassmannians, Duke Math. J. 44 (1977), 795–837.
- [3] H. FLENNER, The infinitesimal Torelli problem for zero sets of sections of vector bundles, Math. Z. 193 (1986), 307-322.
- [4] Y. Kimura, On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. Math. 16 (1979), 97–119.
- [5] Y. KIMURA, A hypersurface of the irreducible Hermitian symmetric space of type EIII, Osaka J. Math. 16 (1979), 431–438.
- [6] K. Konno, Infinitesimal Torelli theorem for complete intersections in certain homogeneous Kähler manifolds, Tôhoku Math. J. 38 (1986), 609–624; II, ibid. 42 (1990), 333–338, (referred to as Parts I and II).
- [7] K. Konno, Homogeneous hypersurfaces in Kähler C-spaces with $b_2 = 1$, J. Math. Soc. Japan 40 (1988), 687–703.
- [8] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329–387.
- [9] Y. SAKANE, On non-singular hyperplane sections of some Hermitian symmetric spaces, Osaka J. Math. 22 (1985), 107-121.
- [10] M. TAKEUCHI, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo 12 (1965), 81–192.

DEPARTMENT OF MATHEMATICS
COLLEGE OF GENERAL EDUCATION
KYUSHU UNIVERSITY
ROPPONMATSU, CHUO-KU, FUKUOKA 810
JAPAN