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Introduction. This is the third part of a study of the infinitesimal Torelli problem
for complete intersections Xin Kahler C-spaces Y with b2(Y)=l. The preceding papers
[6] will be referred to as Parts I and II, where we showed that the problem has an
affirmative answer for almost all cases [Part II, Main Theorem]. However, it can never
be answered completely as in the case of projective complete intersections [3, Theorem
(3.1)]. In view of Flenner's criterion [3] which should be most workable in our context,
this is probably because it is technically hard to know precisely when Hq(Y, Ω$(m))
vanishes. So, in this article, we restrict ourselves to the case where Fis the Grassmannian
of lines in Pι in order to get a more accurate result.

In §1, we briefly review Flenner's result for the later use. In §2, we study the
infinitesimal Torelli problem for complete intersections in the Grassmannian Y of lines.
Unfortunately, in our main result (Theorem 2.6), a few cases are still left unsettled. In
order to apply Flenner's criterion, we need the vanishing theorem for Hq(Y, Ω%(m))
(Theorem 2.1) which will be shown in §4. In §3, we study annoying exceptions in
Theorem 2.6, i.e., the case where Xis of type (lc), 2<c<4. It eventually turns out that
some of them are counterexamples to the Torelli problem (Proposition 3.4): They depend
on some moduli whereas their Hodge structures have no variations, like a cubic surface
in P3 or an even-dimensional projective complete intersections of type (2, 2). We remark
here that the Hodge structure of X with codim X= 2, 3 was previously studied by
Donagi [2]. §4 will be devoted to the proof of Theorem 2.1.

The vanishing theorem for Hq(Y, Ω$(m)) was obtained by Kimura [4], when Y is
an irreducible Hermitian symmetric space of type Em or Eyn. In §5, we state the
corresponding infinitesimal Torelli theorems which can be shown as in §2.

ACKNOWLEDGEMENT. The author would like to thank Professor Shigeru Mukai
who pointed out Donagi's work [2].

1. Flenner's criterion. In this section, we recall and recast Flenner's criterion [3]
for the infinitesimal Torelli theorem.

NATATION 1.1. Let Y be a Kahler C-space with b2 = 1, and put iV=dim Y. The
Picard group of Y is isomorphic to Zand we let Θγ(\) denote its ample generator. There
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exists a positive integer k(Y) with KY = ΘY( — k(Y)). If a global section x of the vector

bundle

N-n

defines an irreducible nonsingular subvariety X of dimension n, we call it a nonsingular

complete intersection of type (rfl5 , dN_n) in Y. We put d=Yjdi and assume that

d1>d2> '' >dN_n. We sometimes write, for example, (2, I3) instead of (2, 1, 1, 1). We

say that X is of hyperplane-section type if di= 1 for 1 <i<N—«,i.e., Xisoftype(liV~").

For the fundamental properties of Kahler C-spaces with b2 = 1, see [6, Part I].

1.2. Let Y be a Kahler C-space with b2( Y) = 1, and let X be a nonsingular complete

intersection of type (dl9 , rfN_n). By using the exact sequence

0 >τv* >ΩY\X >Ωi . 0 ,

we can construct an exact Koszul sequence

(KS)p: 0

for any/?>0. Tensoring (KS)n_! with A^^1, we get an exact Koszul sequence

(1.1) 0

Dualizing (KS^.^ and tensoring it with Kx, we get another exact Koszul sequence

(1.2) 0 >ΩP

X >/\n~pΘγ®Kx > ••• >SjNx®/\"-p-jΘγ®Kx >

"• >S"-pNx®Kx - 0 .

We break (1.1), (1.2) and (KS)p_χ into short exact sequences as follows:

0 >Li+1-+SiNx

1®Ωn

γ-
ί-i®Kx

ί >Li -0 ,

0 >Kj^SjNx®/\n-p-jΘγ®Kx >Kj+ί -0,

0 >Kk + 1 •S k7V|®β?- 1" f c >Kk >0

Considering the cohomology long exact sequences for these, we have coboundary maps

d'k\ H (k)

Note that the natural pairing

(SiNx®Ωn

γ-
1-ί®Kx

1)®(SjNx®/\n-p-jΘγ®Kx)



INFINITESIMAL TORELLI THEOREM 559

induces a pairing // s(L ί)®// r ί(^J)^// s + ί(A: ί_ j). In particular, we denote by μt (0<

i<n— 1) the following pairings:

μt: Hi+1(Li)®Hn-i-1(Ki+1~p) • //n(5 f p" 1^*) for p-\<i<n-\ .

The following can be found in [3, (2.10)].

LEMMA 1.3. (1) The diagram

/j (̂ x-/£ +1J Qy ** \~* x) *

commutes up to sign for 0<i<p — 2.

(2) Forp—\<i<n — 2, then diagram

Hi + 2(Li + 1) ® flr"-'-2(i:i+2-Ji) - ^ ^ //π(5p"1iV*)

commutes up to sign in the sense that μi+1(dμ®β)= +μi(ΰL®di + 1~pβ) for

A simple diagram chasing shows the following:

LEMMA 1.4. Let i0 and ix be integers satisfying 0<io<i1<n—\, and suppose that

the cup-product map μfl is non-degenerate in the first factor. Then so is μio provided that

the composite of the coboundary maps diχ_x ° °dio is injective.

The following is a special case of a more general result due to Flenner [3, Theorem

(1.1)].

THEOREM 1.5. Assume that the multiplication map

μ: H°(S"-pNx® Kx)® H^S*-1^® Kx) • H°{Sn~1Nx® K2

X)

is surjective. If the map d: = dn _ 2 ° * ° ̂ o ^ injective, then the infinitesimal period map

H\X, Θx) • Homc(i/"-"(X, βJ), H"-"+ \X, Ω'x~'))

is injective.

PROOF. It is clear that the infinitesimal period map is injective if and only if μ0,

which is nothing but the cup-product map
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H\Θx)®Hn-p{Ωp

x) >Hn-p+\Ωp

χ-
1),

is non-degenerate in the first factor. Therefore, by Lemma 1.4, we get the desired result if

μn_1:H
n(Sn~1Nx®Kx

1)®H°{Sn-pNx®Kx) •/f%Sp-17V$)

is non-degenerate in the first factor, which is equivalent to saying that μ is surjective.

q.e.d.

We clearly have the following:

LEMMA 1.6. The map d in Theorem 1.5 is injective if

(VX : Hi+1(X,SiNx®Ωn

γ-
1-i®Kx

1) = 0

holds for 0<i<n-2.

COROLLARY 1.7. The condition (V)f is satisfied if the condition

(V)u: Hi+j+ \Y, /\jE* ® SΈ* ® Ωn

γ~
l-\k{Y)-d)) = 0

is satisfied for 0<j<N—n.

PROOF. We use a spectral sequence associated to the resolution

0 • /\N~nE* • > f\2E* • E* • Θγ > Θx > 0 .

For details, we refer the reader to [Part II, 2.4].

REMARK 1.8. The result [Part II, Theorem 1.7] follows from Theorem 1.5 and

Lemma 1.6.

2. Infinitesimal Torelli theorem. From this section up to §4, Y is the Grassman-

nian of lines in P\ / > 4 . Therefore N=2l-2 and £(F) = / + 1 . The following will be

shown in §4.

THEOREM 2.1. Let Y be the Grassmannian of lines in P\ l>4. Then group

Hq(Y, Ω^(m)) vanishes except in the following cases.

(1) q = 0andm>l(p + 3)/2].

(2) p = q and m = 0.

(3) q = 2l-2andm<[(p + 2)/2]-l-l.

(4) q-l<p<3q-4l+5 and m = p-2q + 2l-3.

(5) 3q-l<p<q + l and m = p-2q+l.

Here, the symbol [ί] denotes the greatest integer not exceeding seQ.

LEMMA 2.2. Let Y be as above and X an n-dimensίonal nonsingular complete

intersection in Y. Putp = n/2 ifn is even, andp = (n+ l)/2 ifn is odd. Then the multiplication

map

H°(X, Sn~pNx® Kx)® H°(X, Sp~ 1NX®KX) > H°(X, S"'1^ ® K2

X)



INFINITESIMAL TORELLI THEOREM 561

is surjective.

PROOF. AS in the proof of [Part II, Lemma 2.3], we can check that each direct

summand of SP~1NS®KX has nonnegative degree except when X is of hyper-

plane-section type with codim X< 4 or of type (2,1). Since p—\<n—p, our as-

sertion follows for those which are not the exceptions. If X is of hyperplane-section

type with codim X<4, then H°(X, Sn~1Nx®Kx) vanishes, since each direct summand

of Sn~1Nx®Kx has negative degree. If JTis of type (2, 1), we have Kx = (9x(2-l) and

p = l—2. Then

Sp~1Nx®Kx~Sp-1(Θx(l)®Θx)®(9x(-\),

S"-pNx®Kx^Sn-p(Θx(\)®Θx),

Sn-1Nx®K2

x~Sn-1(Θx(\)®Θx)®Θx(-l).

Therefore, the multiplication map in question is nothing but

n-p \ n-2

0 H°(Θχ(i)) • 0 H°(Θχ(ΐ)) ,
i =

which is clearly surjective. q.e.d.

By virtue of Theorem 2.1, an easy calculation shows the following:

LEMMA 2.3. With the above notation, for 0<i<n — 2 andO<j<N — n, the condi-

tion (V)ij in Corollary 1.7 is satisfied except in the following cases:

(1) X is of hyperplane-section type.

(2)

codim X=2

codim ^ = 3

codim X=4

codim X= 5

codim X= 6

(U) = ((/-5)/2,0),((/-7)/2,2)
(U) = ((/-6)/2,l)
(U) = ((/-5)/2,0),(/-5,3)
(U) = ((/-6)/2,l),(/-5,3)

(/:

(':

(/:

(':
(i, j) = ((/ - 5)/2,0), (/ - 5, 2), ((3/ -13)/2,4) (/:

(/,;) = (/-5, 2)

(U) = (/-5,l),

(u)=α- 5,o).
( is not of hyperplane-section type.

type (2)

type (2,

type (3,

type (2,

(U) = (0,0)
1) (i,;) = (/-3,0),((3/-9)/2,2)

(i, ;) = (/- 3,0),((/-4)/2,0)
1) (U) = (/-3,0),
1,1) (i,/) = (/-4,l),

(I:

C = 4),
(I: odd),

(I: even)

odd),

even),

odd),

even),

odd),

even),

type (2, 1,1,1) (i, j) = (l-4, 0).
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COROLLARY 2.4. X is rigid, that is, H1(X, Θx) = 0, in the following cases:

(1) X is a hyper surface of degree 1.

(2) 1=4 and X is of hyperplane-section type with codim X<4.

PROOF. By Lemma 2.3, Corollary 1.7 and Lemma 1.6, we see that Hι(Θx) is

mapped injectively in Hn(Sn~1Nx(g)Kx~
i). But this latter is zero, since we have

by Serre duality. q.e.d.

LEMMA 2.5. Let p be an integer with 0<2p<n = άimX. Then HP(Y,Ω$)~

Hp(X,Ωp

γ\x).

PROOF. Let Ix denote the ideal sheaf of X in Y. Then we have

0 • Ix® Ωp

γ > Ωp

γ • Ωp\x > 0 .

Therefore, it suffices to check that HP(IX <g) Ω?) = HP+1(IX <g) Ω{) = 0. We have the Koszul

resolution

0 >/\N-nE*®Ω$ > - >E*®ΩP

Y >IX®ΩP

Y ^0

Therefore, by an easy spectral sequence argument, it suffices to check that

for 1 <i<N—n, which follows from Theorem 2.1. q.e.d.

THEOREM 2.6. Let Y be the Grassmannίan of lines in Pι, />4. For a nonsingular

complete intersection X of type (du , dN_n) in Y, the infinitesimal Torelli theorem holds

except possibly in the following cases:

(1) X is of hyperplane-section type, l>5 and 2 < codim X<5.

(2) 1 = 4 and X is of type (2).

(3) X is of type {2, \m), \<m<2.

PROOF. Except when Xis of type (3, 1), (2, I 3) or (I 6 ), the assertion follows from

Theorem 1.5 by Lemmas 1.6, 1.7, 2.2 and 2.3.

We assume that X is of type (3, 1), since the other cases can be treated similarly.

We put p = n/2 = l— 2. In view of Lemma 2.3, dt is injective unless i=p— 1. By Lemma

1.3, we have the commutative diagram

i) ® H\Ωp

x) - ^ Hn{Sp~ιNx)

Hp + 1(Lp) ® / F - 1 ^ 1 ) - ^ H^Sf

We shall show that μp^x is non-degenerate in the first factor. For this purpose, since
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HP(SP~1NX®ΩP®KX

1) p p

and since we already know, by Lemmas 1.4 and 2.2, that μp is non-degenerate in the

first factor, it suffices to show that

(2.1) H^S"-^* ® Ωp ® Kx') ® Hp(Ωp

x) > H\SP~

is non-degenerate in the first factor. Note that we have Kx = Θx(\ —p) and, furthermore,

Hp(Sp-1Nx®Ωp®Kx

1)~Hp(Sp-\Θx®Θx(-2))®Ωp)~Hp(Ωp\x),

Hn(Sp-1Nx)~Hn(Sp-1N*®Θx(p-l)®Kx)

~Hn{Sp-1{Θx@Θx{-2))®Kx)

^H\Kx)®@P:lH\Kx{-2i)).

Therefore, the pairing (2.1) is non-degenerate in the first factor, if so is

(2.2) Hp(Ωp\x) ® Hp(Ωp

x) • H\KX).

Note that we have HP(ΩP

Y\X)~HP{ΩP

Y)^HP{ΩP

X) by Lemma 2.5 and the Lefschetz

theorem. Since HP{ΩP

X)®Hp(Ωp

x)->Hn(Kx) is non-degenerate, we see that (2.2) is

non-degenerate in the first factor. q.e.d.

REMARK 2.7. If / is odd, a nonsingular hypersurface of degree 1 is the Kahler

C-space of type (C ( / + 1 ) / 2 , α2) (see [9] or [7]). Therefore, the infinitesimal Torelli theorem

holds for a general X of type (2, 1) by [Part II, Main Theorem].

3. Complete intersections of hyperplane-section type. In this section, we as-

sume that X is a nonsingular complete intersection of hyperplane-section type with 2 <

codim X<4. We also assume that />5.

LEMMA 3.1. Let X be as above. If 2p<n, then Hn~p(ΩP

<) = 0 except in the cases

where I is odd and

(1) codim X=3 andp = l— 3, or

(2) codim X=4 andp = l-4, IΦ5.

Therefore, no variations of Hodge structures exist except in the above cases.

PROOF. By (KS)p, if Hn-p + i(SiN*®Ωp-i) = 0 for 0<i<p, then H"-p(Ωp

x) = O.

Since X is of hyperplane-section type, it suffices to check Hn~p+i+j(Y, Ωp,~i(-i-j)) = 0

for 0 <i<p, 0 < 7 < codim X. By Theorem 2.1, these hold except in the cases:

(a) 2i = l — 5J = 3,p = l — 3, n is odd,

(b) 2i = l — ΊJ = 4,p = l — 4, n is even.

q.e.d.

REMARK 3.2. If c o d i m ^ = 3 and / is odd, then we have h21'5 = hι~2J~3 +
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/*'- 3 ' '- 2 = (/_l)(/-3)/4, see [2, Lemma 2.6].

LEMMA 3.3. Let Xbe as above. If coάimX=3 or 4, then H1(ΘX)^O.

PROOF. We consider the cohomology long exact sequence for

0 >ΘX >ΘY\X >NX >0.

It is known, and can be shown by using Theorem 2.1, that H1(ΘY\X) = 0. Therefore, we get

0 > H\ΘX) • H°(ΘY\X) • H°(NX) • H\Θx)^0 .

Since we have W'^Y, Θγ®/\iE*) = Hi(Y, ΘY(S)/\iE*) = Ofor\<i<N-nbyΊheoτcm

2.1, we get H°(ΘY)~H°{ΘY\X). Therefore, we have h°(Θγ\x) = 1(1+2). Furthermore, we

have h°(Nx) = c(l(l+l)/2-c), where c = codimX. Since h°(Θγ\x)<h°(Nx) for c>3, we

have h^Θ^φO. q.e.d.

By Lemmas 3.1 and 3.3, we get:

PROPOSITION 3.4. Let X be a complete intersection of hyperplane-section type in

the Grassmannίan of lines in P\l>5. Then the Torelli theorem cannot hold in the following

cases'.

(1) l=5andcoά\mX=A.

(2) / is even and codim X= 3, 4.

REMARK 3.5. When Xis of type (I 2 ) , Donagi [2,2.2 and 2.3] showed the following:

We have h2l~4 = hι~2J~2 = 1-1 (/ is odd), 1/2 (I is even). Let H and H' be hypersurfaces

of degree 1 with X=HnH\ and consider the pencil L spanned by them. If / is odd, L

depends on (/—5)/2 parameters, whereas, if / is even, it has no moduli. Since X is the

base locus of L, we may have h1(Θx) = (l—5)/2 if / is odd, and hx(Θχ) = 0 if / is even.

4. Proof of Theorem 2.1. For irreducible Hermitian symmetric spaces of compact

type, Kimura [4] gave a method to determine when the cohomology group Hq(Ω%(m))

vanishes, following Bott [1] and Kostant [8]. In this section, we show Theorem 2.1

using his method.

NATATION 4.1. Let {et: 1 < / < / + 1} be the standard orthonormal basis of Rι + 1

with respect to the usual inner product ( , •). Put Φ = {ei — ej\ \<ij<l+l, iφj}. Then

we can identify it with the root system of the simple Lie algebra of type Al9 and

A = {oci: = ei — ei+1: l < / < / } is a basis consisting of positive simple roots. We also put

l+l

λi = e1+e2+ ' ' ' + e, —(//(/+1)) Σ ej-

Then (λi9 0Cj) = δ{j and the λ{ are the fundamental weights. If δ denotes the half of the

sum of all positive roots, then
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The Weyl group W of Φ can be identified with the permutation group of /+ 1 letters:

σe—e^y Therefore, we can write σe W as

σ(2) •• (7(7+1).

We set

and

The index n(σ) of σeW1 is given by

(cf. Takeuchi [10]) and we set W1(p)={σe Wι ;n(σ)=p}. We also remark that the

following hold:

Ol 2 ,α)=l ,

For σe W1, we set st = σ 1(i) (/= 1, 2) for simplicity. Then,

[i-2, if

σ-
ί(ι)=\ / - I , if

I i , if

If β varies in Φ(«+) and σ in W1, (cr(5, /?) can take the following values:

(i-2-Sl if
(σδ,e1-ei)=\ ι-l-s1 if

1 i-Sl if

Π-2-s2 if

[j — s2 if

For the proof of the following fact, see [4, Theorems 1 and 2].

LEMMA 4.2. Lei Γ 6e the Grassmannian of lines in Pι. The group Hq(Ω$(m)) does

not vanish if and only if there exists a σe W1(p) satisfying the following conditions.

(1) mφ-{σδ9 β)for all βeΦ(n+).

(2) q = card{βeΦ(n+):{σδ,i

4.3. Now, using Lemma 4.2, our calculation proceeds as follows. Let σe Wι{p).

Then p = s1-\-s2 — 3. We consider the case \<s1<s2—l<l for simplicity. If m is an
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integer with — m<—s2, —m = 0 or — m>l+\— sl9 then Lemma 4.2 (1) is satisfied.

Therefore, H°(Ωγ(m)) (resp. H2l~2(Ωγ(m))) does not vanish if m>s2 (resp. m<sί -I-1),

and Hp(Ωψ)φ0. Furthermore, note that it may be possible that m with — m = s2 — sί,

sx—s2 satisfies (1) of Lemma 4.2. The case —m = s2 — s1 can occur if and only if

/+1 —s2<s2—s1. Then, we have

q = card{βeΦ(n+):(σδ, β)<-m = s2-s1} = l

Therefore, we have s1=p — q + l, s2 = q — l-\-3 and — m = 2q—p — 2l-\-3. The condition

/+1 — s2<s2— s1 is equivalent to 3q—p>4l—5. Since we have assumed that

1 < s1 < s2 — 1 < /, we have p — q + l>\ and q<2l—2 in addition. Therefore,

Hq(Ωγ(p + 2l-3-2q)) does not vanish if 3q-p>4l-4, p-q + l>\, q<2\-2. Quite

similarly, considering the case — m = s1 — s2, we know that Hq(Ωγ(p+ \—2q)) does not

vanish if 3q — p < l , #>0, p — q+\ </.

For the other types of σε ^(p), e.g., st = 1, the calculation goes similarly. Then,

varying σe W1(p), we get Theorem 2.1. The details are.left to the reader.

5. Complete intersections in Em and £Vn F o r t n e irreducible Hermitian symmetric

space Y of type Em or ^yπ, Kimura [4] determined completely when Hq(Ω{(m)) vanishes.

Therefore, as in the case of the Grassmannian of lines, we can show the following

theorems.

THEOREM 5.1. Let Y be the irreducible Hermitian symmetric space of type Em. The

infinitesimal Torelli theorem holds for a nonsingular complete intersection X in Y, except

possibly when X is one of the following types.

(1) type(\m), 2<m<9,

(2) type(dl9 I"1),

(3) type(22, lm),

(4) type (3,2, I).

THEOREM 5.2. Let Y be the irreducible Hermitian symmetric space of type Eyn.

The infinitesimal Torelli theorem holds for a nonsingular complete intersection X in Y,

except possibly when X is one of the following types.

(1) type(\m\ 2<m<10,

(2) type(dul
m\2<d1<5, \<m<U-2d1,

(3) type(22, lm), l < m < 4 ,

(4) types (3,2, 1), (3, 2, I2), (23, 1).

OUTLINE OF THE PROOF OF THEOREMS 5.1 AND 5.2. Since the surjectivity of μ in

Theorem 1.5 can be shown as in Lemma 2.2, our task is reduced to showing the

injectivity of d in Theorem 1.5. Using [4, Theorems 4 and 5], one can check that the

condition (V)itJ does not hold for some (i,j) only when the type of X is one of the above

and the following:



(2 :

(3,

(2 :

( I 1

(22

(3,

(32

(4,

M 4)
2,1 2 )

M)
ι)

A5)
2, I3)

, 1)

2,1)
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(I 1 0 ) (U) = (2,0),
1 1 - 2 d O , 2 ^ d 1 < 5 , ( i J M ^ + 1,0),
4) (U) = (4,0),

(i,j) = (5,0),

(i,/) = (5,0).

ft./) = (7,0),

(i,/) = (9,0),

(i,j) = (10,0),

(U) = (H,0),

ftj) = ( l l ,0) .

In these cases, however, we can show that d is injective as in the proof of Theorem 2.6.

REMARK 5.3. If Y is of type Em, then a nonsingular hypersurface of degree 1 is

the Kahler C-space of type (F 4, α4) (see [5] or [7]). Therefore, if X is a general complete

intersection of type (dl9 1), 2 < ί / 1 < 4 , (22, 1) or (3, 2, 1), then the infinitesimal Torelli

theorem holds for X by [Part II, Main Theorem]. If Y is of type Eyn, a nonsingular

hypersurface of degree 1 is rigid.
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