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Abstract. In 1982, Fuchs raised the following conjecture: Suppose that F is an
entire function of finite order with at least one finite deficient value. Then F is
pseudo-prime. In this paper, we prove this conjecture under the additional condition
that the number of the limiting directions of Julia directions of F is finite.

1. Introduction. Following Gross [5] we say that a meromorphic function
F(z) has a factorization with factors f(z) and g(z), if

Hz2)=1(9(2)) ,

where f(z) is meromorphic and g(z) is entire (g may be meromorphic when f'is rational).
F(2) is said to be pseudo-prime if every factorization of the above form implies that
f(2) is rational or g(z) is a polynomial.

Let F(z) be a meromorphic function. A ray J(0):={z:arg z=0, 0<0<2r} is called
a Julia direction of F(z) if, in any open sector containing the ray, F(z) takes all finte
values, with at most two finite exceptional values, infinitely often.

Goldstein [3] proved the following:

THEOREM A. Let F(z) be an entire function of finite order such that é(a, F)=1
for some a+# co. Then F(2) is pseudo-prime.

Recently Fuchs (cf. [11]) conjectured that the conclusion of Theorem A remains
true under the weaker assumption dé(a, F)>0.
In this paper, we will prove:

THEOREM. Suppose that F(z) is an entire function of finite lower order such that
da, F)>0 for some a# co. If the number of the limiting directions of Julia directions of
E(z) is finite, then F(2) is pseudo-prime.

ReEMARK. In the original version of this paper the author used the condition
that the number of Julia directions of F(z) is finite. The weakened version is due to the
referee.
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2. Notation. Let 0, <0, and 0<r, <r<r,< + o0, we define
I0,,0,;,r={z:0,<argz<0,,|z|=r},
Q0,,0,)={z:0,<argz<6,},
Q0,,0,;r)={z:0,<argz<0,, |z|<r}
and
Q0,,0,;ry,ry)={z:0,<argz<0,,r, <|z|<r,} .

Also, we denote by E the closure of a set E with respect to the plane |z|< + c0.
Furthermore, we write n(E, f=a) to be the number of roots with due count of
multiplicity of the equation f=a in E.
In addition, we assume that the reader is familiar with the standard notation of
the Nevanlinna theory (see [6]).

3. Known results.

LeMMA 1 (cf. [2]). Meromorphic functions with more than one deficient value
have a positive lower order.

The following lemma is the upper half part of Lemma 2 in [12].
LEMMA 2. Suppose that F(z) is an entire function of finite lower order u such
that 6 =0(a, F)>0 for some a# co. Set
E()={6:log | F(te®)—a|< —% T(t, F), 0<0<2r} .

Then there exists a sequence {t,} of positive numbers tending to infinity such that
mes E(t,) > K>0,
where K is an absolute constant depending only on é and p.

LEMMA 3 (a modified version of [12, Lemma 3]). Let F(z) be an entire function
of lower order p such that 0<u< + oo. Suppose that there exist two finite complex
numbers b, and b, (b, #b,) such that

log+{§, n(Q(6'0"; 1), F= b.-)}

=0.

lim sup
ro+wo logr

If there are postive numbers 6 and B, a finite complex value a, and a positive and sufficiently
large number R, such that

mes E> B
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for
E={0:0<0<0",log| F(Re")—a,|<—(6/4)T(R,, F)},
then for two positive numbers ¢ and Q, Q> 1, 0<e<min{B/4, (0" —0')/4},
log | F(z)—ay|< —AT(R,, F)
holds in the region
QO +¢, 0" —¢; 107 *2R,, 10*2R)) ,
where 0 < A< + o0 is a constant depending only on 9, ¢, B and Q, i.e.

5 20(10*2— 1)
A= v Ni=[10n/e], N2=[—8w +4,

o)

ReEMARK. In [12] it is assumed that the order of F is finite. The referee showed
to the author that this condition is unnecessary. Note that n, <R¢*! on p. 591 in [12]
iS unnecessary.

h=Be/8(2e+ 1)(10m +¢).

LemMMA 4 (cf. [1]). Suppose that f(z) is a transcendental meromorphic function and
g(2) is a transcendental entire function. Then

LT G)
ro+w T(r, g)

+ 0.

By virtue of Lemma 4 (as well as Polya’s lemma). We have the following result.

LEMMA S (cf. [9]). Let f(z) be meromorphic with at most one pole and g(z) be
entire. If the lower order of f(g) is finite, then either f is of zero lower order or g is a
polynomial.

LEMMA 6 (cf. [8]). Suppose that f(z) is a meromorphic function of lower order
uwith 0<u<1/2. If 8(o0, f)>1—cos nu, then

+
lim sup w =>C(p)

roo T(r, f)
for some constant C(u)>0, where u(r, f)=min{| f(2)|;|z|=r} .

LEMMA 7 (cf. [4]). Let g be an entire function, f, F be meromorphic functions
such that F=f(g). Suppose that L is a path tending to infinity such that F(z)—0 as
z— o0 along L, and g(L) is bounded. Then g(z)—z, as z— oo along L, where z, is a zero

of f.
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4. Properties of functions having no Julia directions in angles. Now we shall give
a property of meromorphic functions without Julia directions in angles, which essentially
belongs to Zhang [13].

LEMMA 8. If a meromorphic function F(z) has no Julia directions in p angles
Q0,1,0,,) k=1,...,p; 0<0,,<0,,<0,,<0,,<--<0,,<0,,<2n), then for any
small ¢ (0<e<min, ¢ <,(0i; —01)/2), there exist three distinct complex numbers by, b,
and by such that

3
log* Y. n(Q, F=b))

lim sup j=11 =0
r—o ogr

and the mutual spherical distances between b,, b, and by>d, 0<d<1/2, where
Q= UII:= 1 Q(ekl +é, 91‘2—‘8; r).

PrOOF. Assume the conclusion is false. Then for all values Z, except possibly two
values,

tu(O F=
lim supW>0 .
r~o log r

By the finite covering theorem, for any #>0, there exists a half line J(0)e
U?P_, (6, +¢, i, —e) such that the line measure of the set

+ _ . _
{Z:lim sup 08 MO —n,0+nn), F Z)>O}
roo logr

is positive. On the other hand, since J(6) is not a Julia direction of F(z), it follows that
there exist a positive number n’ and three distinct values a, § and y such that the series

Ylam,2)7°,  Z=a,B,y
n=1

converges for an arbitrary small number ¢ >0, where a,(', Z) (n=1, 2, ...;|a;(n', Z) | <
lay(n', Z)|< - - -) denote all zeros of F(z) in Q6—n', 0+1'). According to a known
result [10, p. 31], the series

Ylam', 2y, n'<y
n=1

converges for any value Z, except a set with zero line measure. Note that o can be
arbitrarily small, thus for all Z, except a set with zero line measure,

+ ” ”. —
limsuplog n(QO—n",0+n";r), F—Z)=

0,
roo log r
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which is a contradiction. This completes the proof of Lemma 8.

5. Proof of Theorem. From Lemma 1 and the assumption we have 0 <u < + o0,
where yu is the lower order of F(z). By a well known classical result of Julia, F(z) has
at least one Julia direction. Let m be the number of the limiting directions of Julia
directions of F(z). Then 0 <m < + co. Without loss of generality, we assume that a=0
and m=1. For convenience, we suppose that the limiting direction is J(0). Next we
distinguish the proof into five steps.

Step 1. According to Lemma 2, there eixst a sequence {z,} of positive numbers
tending to infinity and a set E, < [0, 27) such that, for € E,,

) o
(1) lOg |F(tnelo)'< —_‘4—T(tm F), t1>r0
and
@) mes E,>K>0,

where § =8(0, F)>0. Now we take a small number s with 0 <5 <k/32. Then, by m=1,
the number of Julia directions of F(z) in the complement of Q(—n, ) is finite. Thus
there exist ¢ rays J(6,) (n=0,<---<0,_,<0,=2n—n) such that F(z) has no Julia
directions in the region Uz;i Q(6,, 6, +,), where 1 <g< + oo and ¢ depends on 5. Put
w=min; ¢, < _; (6 +, —6,) and take a number ¢ such that 0 <¢ <min{w/32, K/32q, 1/8¢}
and define a sequence {¢;} of positive numbers

3) =27V (j=0,1,...).

By Lemma 8 applied to F and ¢, there exist distinct finite complex numbers b, and b,
such that

(T Fe A F—
@ fim sup log*{n(Q, F=b,)+n(Q, F=b,)} _

0,
ro+ o log r

where
— q e
Q= U QO +e9, O 1 —805 1) .
k=1

Step 2. For any n, by (2) and the choise of g, there exists an integer k(n)
(1<k(n)<g—1) such that, for e E}¥ =E,n (O + €05 Oimy+1 —80)s

) log |F(1,e) | < —{i— TG, F)

and
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K
(6) mes E¥>_— |

2q
Since g < + oo, there exists a sequence {n;} tending to infinity such that
) k(n)=k(ny)= - =1(say).
Thus for
8) Oen=E¥ n(0,+¢o, 0,—&0)
we have

i0 0

® log | F(t,,e) | < =~ T, F)
and

K
(10) mes E¥ >— .

J 2q

In particular,

K
(11) 0,—0,>—.

2q

Step 3. In this step, we shall deal with the values of F(z) in the region Q(6, +e¢,
0,—¢).

For a chosen positive number Q (1 <Q) and any j>2, there exists a non-negative
integer m; such that

(12) 10“‘3"‘1'1,,1,4<t,,j<10“Q‘"'f+”t,,j'1 .
Now put
(13) Rj,s=10”“Qst,,j (s=-1,0,1,...,m;+1).

By applying Lemma 3 with

Ry=R;o, 0=0,+¢,, 0'=0,—¢,, e=¢,, B=K/2q, E=E; and a,=0,
we deduce from (9) and (10) that
(14) log | F(z)|< — A, T(R) o, F),< — A, T(R; ,, F),

where ze Q(0, +¢o+¢,, 0, —go—¢y; R; 1, R, —1), 0<A, <+ o0 is a constant depending
only on K, Q, ¢, 6 and ¢,. In particular, we have

(15) log| F(z)|< — A, T(R;,4, F)

J 1

for zeI'(0, + ¢y +¢1, 0, —&o—¢;; R; ;). Now by the choice of ¢, we deduce from (3) and
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(11) that, for any s>0,
Eo+e +  +e=8Q7T 2724+ 427 ) <e

and

O,—eg—e;— " —&)—(0,+eo+e,+ - +e)=20,—0,—2e=>K/4q .
Thus, by applying Lemma 3 again with

B=0,—0,—2(eq+¢,)>k/4q, 0=0,+¢ey+¢e;, 0'=0,—¢ey—¢,,

e=¢,, Ry=R;,, E=I(0,+¢ey+¢,,0,—¢o—¢;; R;;), 0=44,,
we derive from (15) that

(16) log | F(z) | — 4, T(R;,;, F)< —A,T(R) 5, F)

J
where zeQ(0; +go+¢,+82, 0,—60—€; — €25 Rj 5, Rj o), 0<A,<+00 is a constant
depending only on K, Q, g, 6, ¢, and &,.
By induction we obtain

a7 log | F(2) |< —AT(R;,, F),

where 1<S<m;+1 and zeQ(0;+¢o+¢&, +¢,0,—eo— " —&5 R, R;

18> 7 7),8—

A< + o0 is a constant depending only on K, Q, ¢, &, ..., &, 0. Note that
QO,+e,0,—¢; t,,_ ,t,)

nj-1>°n;j

,) and 0<

is contained in the set

mj+1
U QO0,+e0+ - +e,0,—eg— " —&g Rj Rj5_5) .
=1

J
s

We conclude that, for ze (0, +¢, 0,—¢;1,,_, 1,),
log | F(z)|< — ) <n<1in+ . {A,T(R;, F)} <O,

i.e., | F(z)| < 1. Since j is arbitrary, F(z) is bounded on Q(0, +¢, 6, —¢&). Hence, there exists
an absolute constant M >0 such that

(18) |F(2)|<M, zeQ0,+e, 0,—¢).

Step 4. In this step, we shall prove that F(z) tends to zero in the set (0, +4e,
0, —4e).

Put

G(z)=zFK(z) .
Then we can verify that 6(0, G) =6(0, F) >0 and that G and Fhave the same lower order.
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Now for sufficiently large r we determine a positive integer »n such that
(19 Mlrg2m.
We define

ri=2 (j=1,...,n).
For any j<n, we consider the mapping
(™" 20 —(r)’
(€2’ +(r)"
where 0* = (0, +0,)/2 and 6 =7/(0, — 6, —2¢). Then the image of Q(6, +¢, 0, —¢) in the
w-plane is |w|<1. Now for each z=1¢' € Q(6, +2¢, 6, —2¢;r;_,, r;) we have
=< 3 41(r;)°cos 6(p — 6%) >” 2
24+ (r)** +26(r)° cos 0(9p—60*))

Note that r;_, <t<r; and ¢ <60, —2¢. Thus

J
12+ (r)* + 26%r;)° cos (o — 0%) <4(r)* ,

(20) w=wz)=

toeiO((p —6% __ (rj)ﬂ

te eiO(rp —0%) + ( rj)e

(e2)) (w|=

41%(r;)° cos B(p — 0*) = 4(r;_ )°(r;)° cos (% - 98> > %(rj_ D0y’ .
T

Substituting these into (21) we obtain

20¢ 1/2 20e/ 1\\Y2 . 0e/1)°
<(1=-Z20,_0r) =(1-22)) <1-2(=).
vl < x 1/r’)) ( n<2>> n(2>
0
R=1_E<L)_
T\ 2

Then we see that the image of Q(0, +2¢, 6,—2¢; r;_,, r;) in the w-plane is contained
in the circle | z| < R< 1. Furthermore, we can derive from (20) that the inverse mapping

of w=wyz) is
oo 14 W\
z=z (w)=re" <ﬂ> )
1—w

Let

Thus for |w|<(1+ R)/2, we have

1/6 4 1/0 1/6 4 1/6
l z I < ri{w} < ri<__%) = 2r1<4n) < 4<_n> r.
1—(1+R)/2 1—R O¢ O¢

Hence the inverse image of | w|<(1+ R)/2 is contained in the region
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Q(0, +¢, 0,—¢; 4(4n/0e)'°r) .
Now put
Hy(w) = Glz,(9)) = 2() Flz W) -

Then Hj(w) is holomorphic in |w|< 1. For two distinct and finite complex numbers x,
y we denote by | x, y| the spherical distance between x and y. It is easy to verify that

1
(22) log*|x|+log*|y|+log <log .
|x—y| [x, ]

From the Boutroux—Cartan Theorem [10], we have
(23) [11H,0), a|>¢"
j=1

for any complex number a, except a set of « which can be enclosed in a finite number
of disks with the sum of total spherical radii not exceeding 2e¢ < 1/4. The union of these
disks is denoted by (y).

Choose a ¢ (y) such that o satisfies (23). By the first fundamental theorem we deduce
from (22) and (18) that

n(Q(0, +2¢,0,—2¢;r;_ 4, 1), G(2) =) <n(R, H(w)=0)

(1+R)/2 —
< 1 J‘ n(t, H(w)=a) dr
log(1+ R)—log 2R t

R

< 1 N(1+R 1 )
“log(1+R)—log 2R 2 " Hw)—a

1 1+R 1
< {T( + ,Hj(w)—a>+log—}
log(1+ R)—log 2R 2 | H(O) — |
1 1+R 1
< {log+ M(L, Hj(w)>+log 2+log*|a|+log ———-—}
log(1 + R)—log 2R 2 | H(O)—a|

1 Iy 4m\1/°
< log"M{ 2 0,+¢,0,—¢;4 — ) r),zF(2)
log(1+ R)—log 2Rl O

1
+log2+log 7}
|H{0), «|

1
SD{log r+log—+ C} ,
|H{(O), «|

where
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1 4n 1+R\!
C=log*M+—log—+3log2, D=|lI .
g 6 g08 & 8 2R

Hence

n{Q(0,+2¢, 6,—2¢;r), G(z) =0}

< Y n{Q0,+2¢,0,~2er;_y, 1), Gz)=a}+0(1)
ji=1

n -1
<D{n log r+log< [11H(O),« |) +nC}+ oQl).
j=1
Now from (19) we have n<(log 2) ! log r+ 1. Therefore, by (23),
n{Q(0, +2¢, 0,—2¢; r), G(z) =}

D 1 1
<—— {(log r)? +<log 2+ C+log—>log r+log 2<C+ log —)} +0(1),
log 2 £ £

which results in

+ .10 9. -
24) lim log*n{Q(0, +2¢,0,—2¢;r), G(z) =a} _
ro+wo logr

0,

where a ¢ () and « satisfies (23). Obviously, there are infinitely many such complex values

a.
Now we deduce from (9) and 7(r, G)<log r+ T(r, F) that

log IG(tnj eiO) | <<1 +%)log tﬂj—%T(tnj’ G), OEE:J, .

Since the lower order p of G is positive, we have
(1+6/4) log 1, = o(T(t,,, G)) .

Thus, for sufficiently large j,
. o
log | G(1,,€°) | < oy I(t,,, G), O Ey..

By the same reasoning as in Step 3 we conclude that, with Lemma 8 replace by
(24), the function G(z) is bounded in the region Q(0, +4¢, 0, —4¢). Hence

(25) im  Fz)=0.

Z— 0
2eQ(0 + 4£,0, — 4¢)

Step 5. Suppose that F(z) is not pseudo-prime. Then there exist a transcendental



FACTORIZATION OF ENTIRE FUNCTIONS 269

meromorphic function f{z) and a transcendental entire function g(z) such that

(26) Hz)=f(9(2)) -

Thus by Lemma 5, f{(z) is of zero lower order. Also, f{z) has at most one pole, since
F(z) is entire. Hence d(o0, f)=1. By this and Lemma 6 there exists a sequence {u,} with
u,— + 00 as n— oo such that

27) min |£(2)|-+ oo .

Now take a connected path L running to infinity and having the following properties:
(i) L contains I'(6, +4e, 0, —4¢; ) (=1,...);
(i) LcQ(6,+4e, 6,—4).

From (8), (9) and (10) we have, for fe 1[77,,J4=((91 +4¢,0,—4e)nE, ,

28) log| FO)I< 3T, ), 2=(2,)e
and
(29) mes £, > X

J 4q

By (25), (26) and (27), g(L) must be bounded. Hence Lemma 7 asserts that g(z)—z, as

z— o0 along L, where z, is a zero of f{z). Thus there exists an integer j,>1 such that,
for j=j,,

(30) lg(z)—zo1<e, OekE, and z=(t,)e"”.
Now, if f(z) has a zero of order m (m>1) at z,, then there is a constant ¢>0 such that
| f(@)|=clz—zo|™ if |z—zyl<e.
Combining this with (30) we obtain
|F2)|=| flg(2)) |=clg(z)— 20|, O€E, (j=jo) and z=(1,)e”.
So, for f¢e E, (j=jo) and z=(,)e", we have
m-log* —1—> —log | F(z) | +1og c>£-T(t,,_, F)+logec.
19(z)— 2o 4 7
It follows from (29) and the first fundamental theorem that
m-T(t,,, g)+0(1)>m'm<t,,‘, —1—>>ﬂf log™ ——1,,——
g g=z0) 2mlr, 19—zl
mes E~,,j

=
2

) Ko K
—T1(t,, F)+lo >——1(t,, F)+—Ilogc.
<4(,F) gc> 32qn(,F)gqng
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This contradicts Lemma 4. The proof is completed.

FINAL REMARK. Niino [7] proved another kind of result: If an entire function f

belongs to some family &(4, 1) and entire function g is of order 4 and lower order p,
then d(a, f{g))=0 for any a in C.
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