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Abstract. In 1982, Fuchs raised the following conjecture: Suppose that F is an
entire function of finite order with at least one finite deficient value. Then F is
pseudo-prime. In this paper, we prove this conjecture under the additional condition
that the number of the limiting directions of Julia directions of F is finite.

1. Introduction. Following Gross [5] we say that a meromorphic function
F{z) has a factorization with factors f{z) and #(z), if

F(z)=f(g(z)),

where/(z) is meromorphic and g(z) is entire (g may be meromorphic when/is rational).
F(z) is said to be pseudo-prime if every factorization of the above form implies that
f(z) is rational or g(z) is a polynomial.

Let F{z) be a meromorphic function. A ray J(θ) : = {z: arg z = θ, 0 ̂  θ < 2π} is called
a Julia direction of F(z) if, in any open sector containing the ray, F(z) takes all ίinte
values, with at most two finite exceptional values, infinitely often.

Goldstein [3] proved the following:

THEOREM A. Let F(z) be an entire function of finite order such that δ(a,F)=\
for some aφoo. Then F(z) is pseudo-prime.

Recently Fuchs (cf. [11]) conjectured that the conclusion of Theorem A remains
true under the weaker assumption δ(a, F)>0.

In this paper, we will prove:

THEOREM. Suppose that F(z) is an entire function of finite lower order such that

δ(a, F)>0 for some aφco. If the number of the limiting directions of Julia directions of

F{z) is finite, then F(z) is pseudo-prime.

REMARK. In the original version of this paper the author used the condition
that the number of Julia directions of F(z) is finite. The weakened version is due to the
referee.
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2. Notation. Let θ1 < θ2 and 0 ̂  rί < r < r2 ^ + oo, we define

uθ2) = {z:θ1<<ιrgz<θ2},

and

Also, we denote by E the closure of a set E with respect to the plane | z | < + oo.

Furthermore, we write n{E, f= a) to be the number of roots with due count of

multiplicity of the equation / = a in E.

In addition, we assume that the reader is familiar with the standard notation of

the Nevanlinna theory (see [6]).

3. Known results.

LEMMA 1 (cf. [2]). Meromorphίc functions with more than one deficient value

have a positive lower order.

The following lemma is the upper half part of Lemma 2 in [12].

LEMMA 2. Suppose that F(z) is an entire function of finite lower order μ such

that δ = δ(a, F)>0for some aφco. Set

-a\^-—T(t,F
4

Then there exists a sequence {tn} of positive numbers tending to infinity such that

where K is an absolute constant depending only on δ and μ.

LEMMA 3 (a modified version of [12, Lemma 3]). Let F(z) be an entire function

of lower order μ such that 0 < μ < + o o . Suppose that there exist two finite complex

numbers b1 and b2 (bγ φb2) such that

limsup = 0 .
r-> + oo log r

If there are postive numbers δ andB, a finite complex value a0 and a positive and sufficiently

large number Rk such that

mes E>B
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for

E= {θ:θ'<θ<θ", log IF(Rke
iβ)-a01< -(δ/4)T(Rk, F)},

then for two positive numbers ε and Q,Q>\, 0<ε<min{JB/4, (&'— θ')/4},

log IF(z)-ao\^-AT(Rk,F)

holds in the region

Ω(0' + ε, 0"-ε; 1(Γ4QRk, \0*QRk),

where 0<A < + oo is a constant depending only on δ, ε, B and Q, i.e.

δ w r , Λ i-. , Γ 2 0 ( 1 0 4 Q -±
4 K 5 + 4 i o g l ) } 2 L e

REMARK. In [12] it is assumed that the order of F is finite. The referee showed
to the author that this condition is unnecessary. Note that nx <Rk

 + 1 on p. 591 in [12]
is unnecessary.

LEMMA 4 (cf. [1]). Suppose that f(z) is a transcendental meromorphic function and
g(z) is a transcendental entire function. Then

' - + «> T(r,g)

By virtue of Lemma 4 (as well as Pόlya's lemma). We have the following result.

LEMMA 5 (cf. [9]). Let f(z) be meromorphic with at most one pole and g{z) be
entire. If the lower order of f(g) is finite, then either f is of zero lower order or g is a
polynomial.

LEMMA 6 (cf. [8]). Suppose that f(z) is a meromorphic function of lower order
μ with 0^μ<l/2. If δ(co,/)> 1 —cos πμ, then

for some constant C(μ)>0, where μ(r,/) = min{|/(z)|; | z | = r} .

LEMMA 7 (cf. [4]). Let g be an entire function, f F be meromorphic functions
such that F=f{g). Suppose that L is a path tending to infinity such that F(z)^0 as
z-xx) along L, and g(L) is bounded. Then g(z)-+z0 as z->oo along L, where z0 is a zero
off
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4. Properties of functions having no Julia directions in angles. Now we shall give
a property of meromorphic functions without Julia directions in angles, which essentially
belongs to Zhang [13].

LEMMA 8. If a meromorphic function F(z) has no Julia directions in p angles
fl(0*iA2) (k=l9...,p; 0^θ11<θί2^θ21<θ22^ <θpί<θp2<2π), then for any
small ε (0<ε<min 1 < f e < p(θ k 2-θ f c l)/2), there exist three distinct complex numbers bu b2

and b3 such that

j
lim sup — = 0

r-*oo log r

and the mutual spherical distances between bί9 b2 and b3^d, 0<d<\/2, where

PROOF. Assume the conclusion is false. Then for all values Z, except possibly two

values,

h m s u p — - — — ->0 .
r-><x> log T

By the finite covering theorem, for any η>0, there exists a half line J(θ)e

+ε» θk2 — ε) such that the line measure of the set

logr

is positive. On the other hand, since J(θ) is not a Julia direction of F(z), it follows that
there exist a positive number η' and three distinct values α, β and γ such that the series

π = l

converges for an arbitrary small number σ > 0, where an(η', Z) (n = 1, 2,... | ax(η', Z) | ^
\a2(η', Z) |< •) denote all zeros of F(z) in Ω(θ-η\ θ + ηf). According to a known
result [10, p. 31], the series

converges for any value Z, except a set with zero line measure. Note that σ can be
arbitrarily small, thus for all Z, except a set with zero line measure,

logr
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which is a contradiction. This completes the proof of Lemma 8.

5. Proof of Theorem. From Lemma 1 and the assumption we have 0 < μ < -f oo,
where μ is the lower order of F(z). By a well known classical result of Julia, F(z) has
at least one Julia direction. Let m be the number of the limiting directions of Julia
directions of F(z). Then 0 < m < +oo. Without loss of generality, we assume that <z = 0
and m = l . For convenience, we suppose that the limiting direction is /(0). Next we
distinguish the proof into five steps.

Step 1. According to Lemma 2, there eixst a sequence {/„} of positive numbers
tending to infinity and a set En c [0, 2π) such that, for θ e En,

(1) log \F(tne
iθ)\< -AT(t n , F), tx>r0

and

where δ — (5(0, F) > 0. Now we take a small number η with 0 < η < k/32. Then, by m — 1,
the number of Julia directions of F(z) in the complement of Ω( — η, η) is finite. Thus
there exist q rays J(θk) (η = Θ1< <θq_ί<θq = 2π — η) such that F(z) has no Julia
directions in the region (J£~\ Ω(θk, θk+1), where 1 <q< + oo and q depends on η. Put
ω = min x ̂  k ̂  _ t (0k +! — #fc) and take a number ε such that 0 < ε < min{ω/32, K/32q, 1 βe]
and define a sequence {ε̂  } of positive numbers

(3) ε; = 2-(;+1>ε 0 = 0,1, . . . ) .

By Lemma 8 applied to Fand ε0, there exist distinct finite complex numbers bx and b2

such that

}nσ + ίn(Ω F=hΛ4-n(O F=zhΛ\
(4) Hi

logr

where

— q _
Q — M Q(0 - f g 0 — £ - fΛ

Step 2. For any n, by (2) and the choise of ε0 there exists an integer k(n)
(l^k(n)^q-l) such that, for θeEΪ = Enn(θm + ε0, θm + 1-ε0),

(5) * ' " ' ίΛ ' δ

and
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K
(6) m e s £ ;

2q

Since q< + oo, there exists a sequence {«,} tending to infinity such that

(7) *(»1)=Λ(

Thus for

(8) β ε * = £ *

we have

(9) log\F

and

(10) m e s £ £

In particular,

(11) 0 2 - ^ > £ .
2?

Step 3. In this step, we shall deal with the values of F(z) in the region Ω(θ1 + ε,

0 2 -ε).

For a chosen positive number β (1 < 0 and any j^ 2, there exists a non-negative

integer m7- such that

(12) l O ^ V x <tnj< 1 0 4 ^ + "tHj_t .

Now put

(13) Λ it,= 1 0 - 4 % ( ^ = - 1 , 0 , 1 , . . . , ^ + ! ) .

By applying Lemma 3 with

Rk = Rj,o, θ' = θx+ε0, Θ" = θ2-εo, ε = ε l 9 B = K/2q, E=E% and α o = 0 ,

we deduce from (9) and (10) that

(14) \og\F(z)\^~AίT(Rjt0, Fl^-A^iRj^ F) ,

where z€Ω(θ1-\-ε0 + ε1, θ2 — ε0 — ε1; Rj l 9 Rjf-ι), 0<Aί< +oo is a constant depending

only on K, Q, q9 δ and εx. In particular, we have

(15) l o g l F ί z ^ - ^ Γ O R ^ F )

for zeΓ(θί +εo + ε1, θ2 — ε0 — ε1; Rjtί). Now by the choice of ε, we deduce from (3) and
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(11) that, for any s^O,

εo + ε i+ ' ' + εs = ε(2~1 + 2~2 + + 2 " s ~ 1 ) < ε

and

(θ2-ε0-εί --" -fi s)-(0i+εo + ε1 + • + εs)^θ2-θ1-2ε^K/4q .

Thus, by applying Lemma 3 again with

B = θ2-θί-2(εo + ει)>k/4q9 θf = θ1 + ε0 + εί9 Θ" = θ2-εo-εl9

ε = ε 2, Rh = RJtl, E=Γ(θ1+ε0 + εl9θ2-ε0-εί'9Rjfl)9 δ = 4A1 ,

we derive from (15) that

(16) log I F{z) I < -A2T(RjΛ, F)^ -A2T(Rj>2, F),

where zeΩ(0 1 +ε o + fi1 + ε2, θ2 — ε0 — ε1—ε2; Rj2, RjtOX 0<A2< +oo is a constant

depending only on K, Q, q,δ,ε1 and ε2.

By induction we obtain

(Π) \og\F(z)\^-

w h e r e l^S^mj+l a n d zeΩ(θ1 +εo + εt - f ε s , θ2 — ε0— ••• — ε s ; Rjs, RjtS-2) a n d 0 <

As< + oo is a constant depending only on K, Q, q, ε 0 , . . . , εs, δ. Note that

Ω(θ1+ε,θ2-ε; tnj_ι9tHJ)

is contained in the set

U Ω(0! + e o + +ε s , θ2-ε0- • • • -εs; Ru, Λ J i S_ 2).
S = 1

We conclude that, for zeΩ(θ1+ε, θ2 — ε; tnj_ι9 tn),

log I F(z) I < - min {AST(RU, F)} ^ 0 ,
1 < s < m j + 1

i.e., I F(z)| ̂  1. Sincey' is arbitrary, F(z) is bounded on Ω(θί + ε, θ2 — ε). Hence, there exists

an absolute constant M >0 such that

(18) \F(z)\^M, z e β ( 0 1 + e , θ 2 - ε ) .

Step 4. In this step, we shall prove that F(z) tends to zero in the set

0 2 -4ε).

Put

Then we can verify that ^(0, G) = <5(0, F) > 0 and that G and Fhave the same lower order.
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Now for sufficiently large r we determine a positive integer n such that

(19) 2-"

We define

rj=y 0 = 1 , . . . , Λ ) .

For anyy^w, we consider the mapping

(20) w = Wj(z)=ί/?

where θ* = (θγ + 02)/2 and 0 = π / ( 0 2 - θ ί - 2 ε ) . Then the image of Ω(θ1 + ε, 02 - ε ) in the

w-plane is |w\ ̂  1. Now for each z = teiφ e Ω(θx + 2ε, θ2 — 2ε; r7 _ 1? r̂ ) we have

(21) I u-I- tβ£mφ~βt)~^ -ίl 4l«(r/cos θ(φ-θ*) ^ 1 ' 2

Note that r ^ . ^ / ^ ^ and φ^θ2 — 2ε. Thus

/2Θ + (r,-)20 + 2tθ(rj)θ cos 0(φ — θ*

4ίβ(rJ)
θ cos θ(φ - θ*) ̂  4(rJ _ O 0 ^) 6 cc

Substituting these into (21) we obtain

1/2 / 2θε/iYV'2 θεf l\

Let

Then we see that the image of Ω(θι + 2ε, Θ2~2ε; r}_x, ry) in the w-plane is contained

in the circle | z | < R < 1. Furthermore, we can derive from (20) that the inverse mapping

of w = Wj(z) is

Thus for I w I ^ (1 + Λ)/2, we have

1 ' Ίl(l+Λ)/2j l-R

Hence the inverse image of | w | < ( l +R)/2 is contained in the region

\θεj
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Ωφ^ε, θ2-ε; 4(4π/θε)1/θr).

Now put

Hj(w) = G(Zj(w)) = ZJ(W)F(ZJ(W)) .

Then Hj(w) is holomorphic in | w | ̂  1. For two distinct and finite complex numbers x,
y we denote by \x,y\ the spherical distance between x and y. It is easy to verify that

(22) log^ ^ 1

\x-y\ \x,y\

From the Boutroux-Cartan Theorem [10], we have

for any complex number α, except a set of α which can be enclosed in a finite number
of disks with the sum of total spherical radii not exceeding 2eε< 1/4. The union of these
disks is denoted by (y).

Choose α φ (y) such that α satisfies (23). By the first fundamental theorem we deduce
from (22) and (18) that

, θ 2 - 2 ε ; 0 _ 1 , 0 ) ,

1

log(l+Λ)-log2Λ \ 2

1
δlog(l+Λ)-log2Λ

ϊ-ε;4( —
*\og(l+R)-\og2R\

1
+ log2 + log TΐΪJ

where
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θ σ θε ° ' V 2R

Hence

n{Ω(θί + 2ε, 02 - 2ε; r), G(z) = α}

^ X n{Ω(θ1+2ε,θ2-2ε;rJ_l9rj)9
i

Now from (19) we have «^(log 2)" 1 log r+ 1. Therefore, by (23),

— jlog r + log 2U: + log —

which results in

(24) lim
+
m Q
+ oo l o g Γ

where α φ (y) and α satisfies (23). Obviously, there are infinitely many such complex values
α.

Now we deduce from (9) and Γ(r, (TKlog r + Γ(r, F) that

log I G(tnje
iθ) \Jl + y

Since the lower order μ of G is positive, we have

(1+5/4) log ^ = 0(7X^,0

Thus, for sufficiently large j ,

log I G(tn/
Θ) I ̂  - j T(tnj, G\

By the same reasoning as in Step 3 we conclude that, with Lemma 8 replace by
(24), the function G(z) is bounded in the region Ω(θγ +4ε, 02~4ε). Hence

(25) lim F(z) = 0.
zeΩ(βi+4ε,02-4ε)

Step 5. Suppose that F(z) is not pseudo-prime. Then there exist a transcendental
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meromorphic function f(z) and a transcendental entire function g(z) such that

(26) F(z)=f(g(z)).

Thus by Lemma 5, f(z) is of zero lower order. Also, f(z) has at most one pole, since

F(z) is entire. Hence δ(co,f)= 1. By this and Lemma 6 there exists a sequence {un} with

MΠ-> + oo as n-+oo such that

(27) min|/(z)|-> + oo.
\z\=Un

Now take a connected path L running to infinity and having the following properties:

(i) L contains Γ(θ1 + 4ε, 02 -4ε; /„.) (7= 1,...);

(ii) Lczβ(0 1+4ε, 0 2 - 4 ε ) .

From (8), (9) and (10) we have, for θeEn. = (θ1+4ε9 θ2-4ε)nEn.,

(28) log I F(z) I ^ ~Ί\tΛj9 F)9 z = (tn)eiθ

and

(29) m e s £ > — .

By (25), (26) and (27), g(L) must be bounded. Hence Lemma 7 asserts that g(z)->z0 as

z->oo along L, where z0 is a zero of/(z). Thus there exists an integer j 0 ^ 1 such that,

(30) | 0 (z )-z o |<ε, β e ^ and z = {t.y.

Now, if/(z) has a zero of order m (m^ 1) at z0, then there is a constant c>0 such that

|/(z) |>c|z-z 0 Γ if \z-zo\<e.

Combining this with (30) we obtain

\F(z)\ = \f(g(z))\^c\g(z)-zor, θeEn. (j>h) and z = (Qeiβ.

So, for θeEnj(j^j0) and z = (tnj)eiθ, we have

m log+p— ->-log |^z) | + logc>—Γ(ί F) + logc.

It follows from (29) and the first fundamental theorem that

'({*-
mes EπJδ _, „ . \ Kδ

/
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This contradicts Lemma 4. The proof is completed.

FINAL REMARK. Niino [7] proved another kind of result: If an entire function /
belongs to some family $(λ, μ) and entire function g is of order λ and lower order μ,
then δ(a,β<g)) = 0 for any a in C.
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