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SMOOTH SL{n, H\ Sp{n, C)-ACTIONS ON {An- 1)-MANIFOLDS

TOMOJI TOMURO

(Received March 27, 1991, revised September 6, 1991)

Abstract. Smooth SL(n, C)-actions on (In — l)-manifolds were classified by
Uchida [12], while smooth SL(2, //factions on 7-manifolds are discussed in Abe [1].
In this paper, the classification of smooth actions of SL(n,H) and Sp(n, C) on simply
connected closed (An — l)-manifolds is carried out for « ^ 3 .

1. Known results. Let G be a Lie group and K a compact subgroup. A smooth
G-action Φ on a smooth manifold M naturally induces a ΛΓ-action Φ\K on M. For a
ΛΓ-action Φo on M, if Φ | ^ = Φ 0 on M, then Φ(resp. Φo) is called the extension (resp.
restriction) of Φ0(resp. Φ). Let Gx9 Kx, G(x) and K(x) denote the isotropy subgroups at
x and the orbits through x with respect to Φ, Φo, where Φ\K=Φ0. By definition,

(1.1) K n Gx = Kx and G(x) is ^-invariant.

(1.2) dim G - dim Gx = dim G(x) ̂  dim M .

Let H be the principal isotropy subgroup of the restricted AT-action Φo. Then for
any xeM, we have

(1.3) (GX)>(H),

where (A) denotes the conjugacy class of A in G, and (A1)<(A2) if there exist Bίe(Aί)
and B2e(A2) with B1<=B2.

2. Classification of smooth 5'/?(n)-actions on (4π—l)-manifolds. The maximal
compact subgroups of SL{n, H) and Sp(n, C) are both Sp(n). Hence we first classify
non-trivial smooth Sp(n)-actions.

The following results are proved by a standard method.

LEMMA 2.1 (cf. [5]). Assume n^3. Let K be a closed connected subgroup ofSp(ή)
such that dim Sp(n)/K^4n— 1. Then, up to inner automorphism of Sp(ή), K coincides
with one of

Sp(n-1\ U(l)xSp(n-l), Sp(l)xSp(n-l) and Sp(ή)

embedded in the standard way.

LEMMA 2.2. (1) Assume n^3. Then there exists no non-trivial representation
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iSp(tt)—•O(4n— 1), while there exists no non-trivial representation Sp(n— 1)—>O(3). (2) By

the identification R3 = H0, the set of all pure quaternions, a non-trivial representation

is equivalent to the adjoint representation Ad given by

(2.3) Ad(q)(h) = qhq-1 for qeSp(l), heH0.

REMARK 2.4. By Lemma 2.2 (1), we see that any non-trivial Sp(n)-action on a

(4n— l)-manifold has no fixed points, for n ^ 3 .

Using the above results, we obtain the following by standard methods (cf. [8]).

THEOREM 2.5. Assume n^3. Let (M, H, Φo) be a triple consisting of a non-trivial

smooth Sp(n)-action Φo on a simply connected closed (An—\)-manifold M with the principal

isotropy subgroup H. Then (M, iί, Φo) is equivariantly diffeomorphic to one of the following

triples:

(1) (S^-^Spin-llΦJ, Φ1(k,z) = kz.

(2) (S^-'xs^SWWxSpin-llΦJ, Φ2(/c, [z, x]) = [/cz, x].

(3) (Pn. ,{H) x AS3, Sp(l) x Sp{n-1), Φ3\ Φ3(k, ([z], x)) = ([fez], x).

REMARK 2.6. The Sp(l)-action on S3 in Theorem 2.5 (2) is given by

p(q, u + υ) = u + Ad(q)υ, where S3 is a unit sphere of quaternions of modulus one, u is

a real number and v is a pure quaternion, and Ad(q) is given in (2.3).

3. Certain subgroups of SL(n, H) and Sp(n, C). Let us now consider the following

subgroups of <SL(n, //):

0: «u = 1, «2i =«3i = * ' ' =am =0} ,

): a i l = l, aΐ2 = a13= = « l M = 0} ,

faH): a21=a31=- =anl=0} ,

5/?(n -1) = 5p(n) n LSL = Sp(n) n L*L .

PROPOSITION 3.1 (cf. [7, Lemma 2.1]). Assume n^3. Let P be a closed connected

proper subgroup of SL(n, H) such that

dim SL(n,H)/P^4n-1.

If P contains Sp(n—1), then either

LSLdP^NSL or L$LcPcNgL.

Next we consider the following subspaces of sp(«, C):

\YX ZΊ Ύ=Y, %Z = Z Λ {\X-YCΛ Ύ=Y,tX+Xc = 0}
\lY-<χ] X,Y,ZeMn(C)\ F W \lY Xc\ X,YeMn(C) J
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Here we denote by ^ and Xc, the transpose and the complex conjugate of a given

matrix X, respectively.

Denote by Sp(n— 1), L S p , Lfp, Λ ^ and Ngp the connected subgroups of Sp(n, C)

corresponding to sp(/i—1), lSp, l^p, nSp and n^p, respectively. We obtain the following

results:

LEMMA 3.2. Each Ad(Sp(n— \))-invariant real proper subspace of a has the form

a(a +jb, c +jd)for some α, b,c,de C.
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PROPOSITION 3.3 (cf. [8, Lemma 1.1]). Assume «^3. Let p be a proper subalgebra
of$p(n, C) such that dim sp(n, C)/p ̂  4n — 1. Ifp contains sp(n — 1), then for some complex
numbers (e,/)^(0, 0), we have

(3.4) p = sp(n - 1 , C) ® a(e, f) ® (p n 3).

COROLLARY 3.5. Assume n^.3. Let P be a closed connected subgroup of Sp(n, C)
such that dimSp(n9 C)/P^4n-1.

(1) If P contains U(l)xSp(n-l), then LSpczPaNSp, LξpczPczNgp or P =
Sp(n,C).

(2) If P contains Sp(l)x Sp(n- 1), then P = Sp(n, C).

4. Smooth actions of SL(n, H) and Sp(n, C) on (4n — 1 )-manifolds. Let G be either
SL(n,H) or Sp(n,C), and K=Sp(ή). If G acts smoothly and non-trivially on a
(4n— l)-manifold M through Φ then the restricted Abaction Φ|A îs also non-trivial, since
G is a simple Lie group. Hence, the ^-action Φ\K on M is equivariantly diffeomorphic
to one in Theorem 2.5.

For a given G-action Φ, we can define a new G-action Φ* by

(4.1)

In our cases, the restricted ^-actions Φ*\K and Φ\K coincide.
We now show the following result.

THEOREM 4.2. Assume n^.3. Then a triple (G, M, Φ) or (G, M, Φ*) w equivariantly
diffeomorphic to one of the triples given in Table 1.

TABLE 1

Sp(n)-manifold ΦfoΓ G = SL(n,H)

z-llflfzlΓ^V
te,[2,x])^[^/||^z||,ψ(log||^||,x)]

(̂ , ([z], x))-^([^z], ψ(log(|| ẑ 11/11 z ||), x))

ΦforG = 5>(«, C)

z-^llδfzir 1"^
not exist
not exist

Exact notation is explained in the proof. The proof is separated into three parts,
according to Theorem 2.5. Throughout this section, we assume n^3 and let
P* = {X: lXeP) for a subgroup P of G.

I. First we consider the case M = S4"" * with the restricted 5/?(ΛΓ)-action Φo given
by Φ0(k, z) = kz. In this case, the G-action is also transitive. Thus the problem is reduced
to finding a connected closed subgroup P of G satisfying

(4.3) dim G/P = 4n-l and P n Sp(n) = Sp(n-1).

LEMMA 4.4. Let P be a connected closed subgroup of SL(n, H) satisfying (4.3).
Then P is conjugate to
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f Γexp(ί(l + ir)) * Ί

PROOF. By (4.3) and Proposition 3.1, we see that P = P(q) or P = P(q)*, where

IL o
for a non-zero quaternion q. By the second condition of (4.3), we see that q has a
non-zero real part. Then we may assume q— 1 +/z, for some pure quaternion h. We see
that P{\ +h) is conjugate to P,Λ, q.e.d.

Similarly, we can prove the following:

LEMMA 4.5. Let Pbea connected closed subgroup ofSp(n, C) satisfying (4.3). Then
P is conjugate to

On the other hand, an action of G = SL(n, H) or Sp(n, C) on S4"'1 is defined by
, z) = || gz || ~ 1 " ίr0z. We see that the isotropy subgroup of this action is conjugate to Pr.

REMARK 4.6. As a matter of fact the actions obtained above are nothing but the
twisted linear actions in [9], [10].

II. Next we consider the case M=S*n~1 x S p ( 1 ) 5
3 with the restricted 5p(n)-action

Φo given by Φ0(k, [z, x]) = [fcz, x]. The 5p(l)-action p on S3 is described precisely in
Remark 2.6. In fact, the action p on S3 has a fixed point, and hence the Sp(π)-action
Φo on M has <Sp(l)x Sp(n— 1) as an isotropy subgroup. In particular, we see that the
action Φo on M has no extended Sp(n, C)-action by Corollary 3.5 (2). So we assume
G = SL(n,H).

Let φ be a smooth /^-action on S3 which commutes with the Sp(l)~action p. Then
we see that the /^-action φ defines a smooth SL(n, /fraction Φ on M given by

(4.7) <%, [z, x]) = [0z/|| gz ||, φ(log|| ^z ||, x)] .

On the other hand, let an extended iSL(«, //)-action Φ of Φo be given. Then we
see that

,M) or F(Sp(n-1), M) = F(L*L, M),

where F(P, M) denotes the fixed point set of the restricted action of Φ to P. Moreover,
if F(Sp(n—l), M) = F(LSL, M), then there exists a smooth /^-action φ on S3 which
commutes with the Sp(l)-action p, and the action Φ on M satisfies the equation (4.7)
(cf. [7, Section 3]). In addition, if F(Sp(n-1), M) = F(L|L, M), then we see that
F(Sp(n-1), M) = F(LSL, M) for the action Φ*.
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III. Finally, we consider the case M = Pn_1(H)xhS3 with the restricted
Sp(/t)-action Φo given by Φ0(k,([z']9x)) = ([kz']9x). As in the previous case, we see that
the action Φo on M has no extended Sp(n, C)-action. So we assume G = SL(n, H).

Let φ be a smooth i?-action on a homotopy 3-sphere hS3. Then we see that the
R-action φ defines a smooth SL(n, //)-action Φ on M given by

(4.8) <%, [z, χ])=([flfz],

On the other hand, let an extended SL(n9 /fraction Φ of Φo be given. Then we see that

F(Sp(n-1), M) = F(LSL, M) or F(Sp(n -1), M) = F(LfL, M ) ,

and the set F{Sp(n— 1), M) is naturally diffeomorphic to the homotopy 3-sphere hS3.
Now we assume F(Sp(n— 1), M) = F(LSL, M) = hS3. Then the factor group NSL/LSL acts
on /ιS3 via the action Φ, where NSL/LSL is isomorphic to the group of all non-zero
quaternions. Moreover, we see that the maximal compact subgroup of NSL/LSL acts on
hS3 trivially. Then we get a smooth i^-action φ on hS3, and the action Φ on M satisfies
the equation (4.8). In addition, if F(Sp(n-1), M) = F(L%L, M), then we see that
F(Sp(n-1), M) = F{LSL, M) for the action Φ*.

Combining these results, we obtain the proof of Theorem 4.2.

REMARK 4.9. For G = SL(2, H) and M=SΊ or S 7 x Sp(i)S3> the same results are
given in [1].

5. Smooth ^-actions on a 3-sphere. Here we consider a smooth /^-action φ on
S3 which commutes with the Sp{\)-action p. Since F(U(l), S3) = SX is invariant under
the /?-action φ, an /?-action θ on S1 can be defined naturally. The /?-action 0 on S 1

satisfies the following conditions.

(5.1) θ commutes with the involution / on S1 defined by J(x, y) = (x, —y).

(5.2) <p(ί, x + z) = ρ(q, θ(t, x + i|z|)), for some qeSp(\), such that z = Ad(^)(/|z|),
where x is a real number and z is a pure quaternion.

PROPOSITION 5.3. Let θ be a smooth R-action on S1 satisfying (5.1). Then there
exists a smooth R-action φ on S3 satisfying the condition (5.2).

PROOF. Since the restricted £/(l)-action on Sx of p is trivial, we see that an abstract
R-action φ on S3 can be defined and commutes with the S/?(l)-action p.

Finally, we show the smoothness of φ. Set

0(ί, x + iy) =/i(ί, x, y) + if2(t, x, y).

Then we see that /i is a smooth even function and / 2 is a smooth odd function with
respect to the variable y, by (5.1). On the other hand, for

φ(t, x + z) = /i(ί, x, I z I) + (z/| z |)/2(ί, x, I z I).
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Thus the smoothness of φ except at z = 0 is clear. Since /2(ί, x, y) is a smooth odd
function, we see that/2(ί, x, y)/y is a smooth even function with respect to the variable
y. Hence/Λί, x, | z |) and/2(ί, x, | z |)/| z | are both smooth at z = 0 (cf. [2, (7.15)]). Thus
the smoothness of φ at z = 0 is shown. q.e.d.

EXAMPLE 5.4. For each non-zero real number r, we can define an /^-action 0r

on S1 by

0r(ί, xΘ iy) = (ertx® iy)/\\ ertx@iy || ,

which satisfies (5.1). The fixed points are 1 ©0, - 1 0 0 , Oφί and 0® (-/)• Let us de-
note S1 with the J?-action θr by S1^). The involutions / and Ji9 defined by Jt(xφ iy) =
( — xφiy), are /?-equivariant diffeomorphisms of S^r). Moreover, the diffeomorphism
A, defined by h(xφiy)=yφix, is an /?-equivariant diffeomorphism of S\r) to S1( — r).

We see that there exists an /?-equivariant homeomorphism of Sx(r) to S1(s) for
any non-zero real numbers r, s (cf. [11, Section 2]). Now we show the following.

PROPOSITION 5.5. If\r\^\s\, then there is no R-equivariant C1-diffeomorphism

between S\r) and S\s).

PROOF. We may assume r>0 and s>0. Let / be an #-equivariant C1-
diffeomorphism of Sx(r) to S1(s). Then we may assume that f(x0 0 iy0) = x0 Θ iy0, f°

Γ

Xo==yo = 2-v\ and/(10O)=l®O (cf. [11, Section 2]). We see that

x> 0 iy' =f(x 0 iy) =f((ertx0 © i>0)/|| ertx0 © iy0 ||) = (estx0 © iyo)/\\ estx0 © iy0 \\ .

Then

dx'/dx = (dx'/dή/(dx/dή = e2rts(xl + e~2rty2

0γ
l2le2str(x2 + e~2sty2

0f
12 .

If \imt_+^(dx'/dtyidx/dt) exists, then we see rf^s. Similarly, we see s^r. q.e.d.
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