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Abstract. A free boundary problem for a nonlinear second order differential

equation involving a small parameter is studied. The problem arises in the research of

certain generalized diffusion processes. Its solution is constructed by the aid of the unique

solution of a two-point boundary value problem for two nonlinear first order differential

equations, in which the right endpoint is singular.

1. Introduction. The present paper is a continuation of the paper [1]. In this

paper we study a free boundary problem of the form

(U L(Kv(y)) + e)\vXy)\N-hXy)J=-[yg(v(y)) + f(υ(ymυXri for y> Y,

(2ε) v\y=γ = Q, -Λ[/φ) + ε ] | ι / r - V μ y = 7 , v\y= + Q0 = B,

where ε is a small positive parameter, the constant Y and the function v(y) are to be

determined, while the constants A, B, N, and the functions f(s), g(s), k(s) are assumed

to satisfy the following hypotheses:

( I ) Both N and B are given positive numbers.

( I I ) G(s): = JQ g(t)dt is a strictly increasing, absolutely continuous function defined

on [0, B].

(III) k(s) is a nonnegative measurable function defined on [0, B~\ such that the

function (G(B)-G(s))k1/N(s) is Lebesgue integrable on [0, B\.

(IV) A > — l/G(B) is a given real number.

( V ) F(s): = J* f(t)dt is an absolutely continuous function defined on [0, B~] such

that the function F(B)(l+AG(s))/(l+AG(B))-F(s) is non-negative on [0, B].

By a solution of the free boundary problem (l ε) —(2ε) with ε>0, we shall mean

the pair (Γε, vε(y)) satisfying the following conditions:

( i ) Yε is a finite real number.

(ii) vε(y) is an absolutely continuous function defined on [Γ ε, +oo).

(iii) Kε(y): = (k(vε(y)) + ε) | vf

ε(y) \N~ 1v'ε(y) is (equivalent to) an absolutely continuous

function defined on [F ε , -foo).
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(iv) vε( Yε) = 0, - AKε{ Yε) = Fε, and vε( + oo) = B.

(v) The equality K'e(y)= -[_yg{vε{y)) + f(υε(y))~\υε{y) holds almost everywhere in

(F ε, +00).

If the solution (F ε, vε(y)) converges to a limit (F o , vo(y)) as ε tends to zero, then the

limit is called a solution of the reduced free boundary problem (l 0 ) — (20).

J From the form and the definition of solutions of the free boundary problem

(1O)-(2O), the free boundary problem (2.1) studied in the paper [1] is a particular case

of the problem in this paper. In the paper [1] the function k(s) was assumed to be

positive a.e. on [0, B], while in this paper k(s) is allowed to have intervals of degeneracy

in [0, B] (whose definition will be given in the last section). This is an important difference

between these papers.

The free boundary problem (l ε) — (2ε) is a perturbation problem. When the function

k(s) has at least one interval of degeneracy in [0, B]9 it is a singular perturbation problem.

The aim of studying the problem is to determine the solution of the reduced free

boundary problem (l 0 ) —(20) and to ascertain properties of the solution. As we shall

see later, vo(y), as a function defined on [ F o , + oo), has jump points if and only if the

function k(s) possesses intervals of degeneracy in [0, # ] , and there exists a one-to-one

correspondence between the set of all jump points and the collection of all intervals of

degeneracy.

The plan of this paper is as follows. In Section 2 we convert the free boundary

problem (l ε) — (2ε) into the two-point boundary value problem, namely,

_
g{s) \ w{s

(40) -Aw(0) = z(0), w(B) = 0.

Section 3 is devoted to the two-point boundary value problem. We show that for each

fixed ε^O the two-point boundary value problem has a unique solution (wε(s), zε(s))

under the hypotheses (I)-(V). In the last section we construct the solution (Ye9 vε(y)) of

the free boundary problem (l ε) - (2ε) with ε ̂  0, utilizing the unique solution (wε(s), zε(s)).

2. Formal reduction. Let (F, v(y)) be a solution of the free boundary problem

(l ε )-(2 ε ) . We claim that v(y) is monotone (increasing) on [F, + oo). For if this is not

the case, there will be numbers α, fce[F, +oo), a<b, and Ce[0, B], such that

υ(a) = υ(b) = C and v(y)>C (say) in (α, b). Integrating the equation (l ε) over (α, b), we get

0 > Kε(b) - KJta) = ί(G(v(y)) - G(C))dy > 0 .
J a

This contradiction proves our claim. If υ(y) is still strictly increasing on [F, + oo), then

ι/(+oo) = 0 and the function y = z(s)9 inverse to s = υ{y), exists. Furthermore, z(0)= F,

s = v(z(s)) in [0, B\ and v/(z(s))=l/zf(s)>0 a.e. in (0, B). Substituting y = z{s) into the
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equation (l ε) and then putting w(s) = (k(s) + ε)/(z'(s))N, we obtain the two-point boundary

value problem (3ε) — (40).

3. Two-point boundary value problem. In this section we address ourselves to the

two-point boundary value problem (3ε) — (40). As the endpoints s = B is singular for it,

we need to consider the two-point boundary value problem without singularity, namely,

g(s)

(4 Λ ) - Aw(0) = z(0), w(B) = h>0.

We shall call a pair (w(s), z(s)) a solution of the two-point boundary value problem

(3β) — (4Λ) with /z^O, if it satisfies the following conditions:

( i ) w(s) is an absolutely continuous function defined on [0, B~\ and positive in

[0, B), while z(s) is (equivalent to) an increasing, locally absolutely continuous function

defined in [0, B).

(ii) - Ayφ) = z(0) and w(B) = h.

(iii) The equalities

-(w'(s) + f(s)) = z(s)g(s) and z'(s) = Pε(s, w(s))

hold a.e. in (0, B).

By the hypotheses (I)-(V), it is readily verified that if a nonnegative continuous

function w(s) is a solution of the integral equation

ί β

Jo

! ^ ί ί • = (Mw)(5), J e [0, B]
1+^G(^) Jo

where

_f(G(fo)G(5))(+G(ί))/( + G()) for
b 5 ' r "~ 1 (G(b)G(0)(l 4G())/(l lG(fc)) for

then the pair (w(s), z(s)) is a solution of the two-point boundary value problem (3ε) — (4h)

with ε ^ 0 and /z^0, where the function z(s) is defined by

(6) ^ . f
1+^G(B) J O 1 + ^ G ( 5 ) J s 1+^G(B)

and vice versa. It must be pointed out that the integral representations (5^) and (6) are

both valid when /c(s) + ε = 0.

LEMMA 1. For each fixed h>0 and ε^0, the integral equation (5£) has at least

one solution, say w(s', ε, h\ which is positive on [0, B~\.

PROOF. Define the mapping M: X-+X by the right side of (5^), where
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X = {w(ί) e C [0, B]\ 0 < U(t) < W(t) < {Mutt)} ,

C[0, B~] is the set of all real-valued continuous functions defined on [0, £ ] , and

u(t): = fc(l + AG{t))l{\ + AG{B)) > 0.

By the hypotheses (I)-(V), it is easy to check that M is a compactly continuous

mapping from X into X. The Schauder fixed point theorem tells us that the mapping

M has at least one fixed point, say vφ; ε, /z), in the set X. vφ; ε, /z) is clearly a solution

of the equation (5^).

LEMMA 2. Ifhί^h2>0, then for all s e [0, £]

0 ^ vφ; ε, hx)- vφ; ε, ft2)<i{hί- A2)(l + .4G(s))/(l + ylG(β)).

Hence vφ; ε, /ι) w α unique solution of the equation {5h

B) with h>0.

PROOF. We denote the solutions vφ; ε, hx) and vφ; ε, /i2) by w φ ) and w2(s),

respectively, and first prove the inequality on the left hand side, namely, w φ ) — w2(s)^0

on [0, 5 ] . If not, then there will be a point s = E at which w^E) — w 2 (£)<0. We now

distinguish two cases.

Case (i) vv^O) — w 2(0)<0. In this case we can choose the left endpoint s — 0 as the

point s = E. As w1{B) — w2{B)~hί—h2^09 there exists a maximal interval [0,6] such

that w1(b) — w2(b) = 0 and w1(s) — w2(s)<0 in [0, 6]. Note that for almost all se{0, B)

(7)

Multiplying the equality (7) by Jb(0, s) and then integrating the result over (0, b), we get

0> W l (0)-w 2 (0)= Γ Λ ( 0 , s)(Pε(s,
Jo

This is impossible.

Case (ii) w^O) — w 2(0)^0. In this situation there exists a maximal interval (α, b),

0^a<E<b^B, such that w^a) — w2(a) = w^b) — w2(b) = 0 and w φ ) — w2(s)<0 in (α, b).

Multiplying (7) by

τ,v ^ HG(b)-G(E))(G(s)-G(a))/(G(b)-G(a)) for

l(G(b)~G(s))(G(E)-G(a))/(G(b)-G(a)) for

and then integrating the result over (α, b), we get

0>wί(E)-w2(E)=

This is also impossible.

The above argument shows that the inequality on the left hand side is true. The
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inequality on the right hand side follows from that on the left by (5h

B).

LEMMA 3. The equation (5h

B) has a solution w(s; ε, 0)^0.

PROOF. When k(s) + ε = 0, F(B)(1 + AG(s))/(l + AG(B)) - F(s) is a solution of (5g).

We now consider the case k(s) + εψθ. In view of Lemma 2, the solution w(s; ε, h) con-

verges to a limit w(s; ε, 0) uniformly on [0, B], as A-» + 0 . Inserting w(s; ε, A) into the

equation (5h

B) and then letting A-++0, we have the equality (52), by the monotone

convergence theorem. This shows that the uniform limit w(s; ε, 0) is a solution of the

equation (52).

LEMMA 4. Ifε1^ε2^0, then for all s e [0, B~]

( K v φ ; εl9 h)-w(s; ε2, h)^Ch-ifN{e1-e2f ,

where θ: =min{l 5 \/N} and C is a number independent ofεί9 ε2e[0, 1] and h>0.

LEMMA 5. The equation (5B) with ε ^ 0 and h^0 has at most one solution.

The proofs of the two lemmas above are similar to that of Lemma 2 and hence

omitted here.

LEMMA 6. The solution w(s; ε, 0) uniformly converges to the solution w(s; 0, 0) as

ε->+0.

PROOF. In virtue of Lemmas 2 and 4, we have

w(s; 0, 0) < w(s; 0, h) ̂  w(s; 0, 0) + h on [0, B~] ,

w{s; 0, h)^ w(s; ε, h)^ w{s; 0, h) + Ch~ 1/Nεθ on [0, B~\ .

Hence, setting εθ = h1 + 1/N, we obtain

0 ^ w(5; 0, 0) < w(s; ε, 0) < w(s; ε, Λ) ̂  w(s; 0, 0) + (C +1)/*

for all se[0,2?]. This shows that w(s; ε, 0) uniformly converges to w(s; 0,0) as

Let (w(s; ε, 0), z(s; ε, 0)) be the unique solution of the two-point boundary value

problem (3ε) — (40). By the representation (6), it follows from Lemma 6 that as e-> + 0,

z(s; ε, 0) converges to z(s; 0, 0) uniformly on [0, B~ δ~] whenever δe(0, B).

LEMMA 7. Let f(s)/g(s) be (equivalent to) an increasing, absolutely continuous

function defined on [0, J5]; namely, let F(Q(r)) be a continuous convex function defined on

[0, G(B)~\, where s = Q(r) is the function inverse to r = G(s). Then a necessary and sufficient

condition for z(B; ε, 0) to be finite is that

Jo \G(B)-G(s)j

PROOF. When k(s)+ε = 0, z(s; 0, 0) = - AF(B)/(l + AG(B)) is constant. Hence we
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consider only the case where k(s) + εφθ. In this situation, —w(Q(r); ε, 0) is a continuous

convex function defined on [0, G(B)] and w(0; ε, 0) > 0, in virtue of the assumption of

the lemma. Hence

w(Q(r); ε, 0) ̂  Θ(G(B) - r) on [0,

where 0 = w(0; ε, 0)/G(B), namely,

w(s; ε, 0) ^ Θ(G(B) - G(s)) on [0, B~] .

If the condition (8) holds, then

l+AGjt) ( W + e \IN

dί

o l+AG(B)\θ(G(B)-G(t))J

This shows that z(B; ε, 0) is finite.

Assume z(B; ε, 0) is finite. Then there is a positive number M such that

G(B) dr

Hence it follows that w(Q(r); ε, 0)^M(G(B)-r) on [0, G{B)~], that is,

w(s; ε, 0) ̂  M(G(B) - G(s)) on [0, B'] .

Consequently,

l+AG(B) J o l + G(B)A

"B λ , ΛnίΛ / k(t) + Z

Jo 1 + AG(B)\M(G(B)-G(t)\

This shows that the condition (8) holds.

We can summarize the above results in the following statement.

THEOREM 1. Under the hypotheses (I)-(V), for each ε ̂  0 the two-point boundary

value problem (3ε) — (40) has a unique solution (wε(s), zε(s)). Moreover, as ε tends to zero,

wε(s) converges to wo(s) uniformly on [0, 22] and zε(s) converges to zo(s) uniformly on

tO,B-δ]for any δe(0, B).

Theorem 1 shows that the two-point boundary value problem (3ε) — (40) involving

a small parameter ε is a regular perturbation.

4. Free boundary problem. In this section we construct the solution (Yε, vε(y)),
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utilizing the unique solution (wε(s), zε(s)) of the two-point boundary value problem

(3 ε )-(4 0 ) .
We first introduce several propositions and definitions.

PROPOSITION 1. Let v(s) be an increasing function defined on [a, b~\ and u(t) an

absolutely continuous function defined on [v{a], v(b)~\. Then u(v(s)) has a finite derivative

a.e. on \a, b~\ and the chain rule

ds

holds a.e. on [α, b~\.

PROPOSITION 2. Let υ(s) be an increasing, absolutely continuous function defined on

[a, b] and u(t) an integrable function defined on [y(a), υ(b)~\. Then u(υ(s))υr(s) is integrable

on [a, b~\ and the change of variables formula

u(υ(s))v'(s)ds=U(v(b))-U(v(a))

holds, where U(t) is an indefinite integral of u(t).

PROPOSITION 3. Let (a,b) be a finite open interval and z(s) a strictly increasing,

locally absolutely continuous function defined in (a,b). Then the function s = v(y), in-

verse to y = z(s), is a strictly increasing, absolutely continuous function defined in

(z(a + 0),z(b-0)).

Propositions 1 and 2 are respectively Corollaries 4 and 6 in [2], and Proposition

3 is a direct consequence of them. Hence the proofs are omitted.

DEFINITION 1. Let k(s) be a nonegative measurable function defined on [0, B~\

such that k1/N(s) is integrable on [0,2?]. A closed subinterval \_a,b~\ is said to be an

interval of degeneracy possessed by k(s) in [0, E], if, for any δ>0,

Γb fa f*b + δ

k1/N{s)ds = 0, k1/N(s)ds>0 or kί/N(s)ds>0,
Ja Ja-δ Jb

whenever a — δ^0 or b + δ^B.

DEFINITION 2. Let y = z(s) be an increasing, locally absolutely continuous function

defined in [0, B). A function s = υ(y) is called a generalized inverse to y = z(s), if it is

defined on [Γ, +oo), increasing, of bounded variation, v(+ao) = B, and possibly

multiple-valued, and its graph in the region {(j/, s); Y^y< z(B—0), 0 ̂  s < B} is congruent

with the graph of y = z(s). Here F: = z(0).

For example, if z(s)= Y on [0, B), then v(y) = BH(y- Y), where H(y) = 0 for y<0,

H{y)=\ for^>0, and i/(0) = [0, 1].
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Let (wε(s), zε(s)) be the unique solution of the two-point boundary value problem

(3ε) — (40), ε ̂  0. Then zε(s) is an increasing, locally absolutely continuous function defined

in [0, B). Consequently, the function s = vε(y), generalized inverse to y = zε(s\ is defined

on [7 ε , +oo), where 7 ε :=z ε (0); when zε(B-0) is finite, vε(y) = B for y^zE(B-0). We

now prove that (Yε, vE(y)) is a solution of the free boundary problem (1J —(2ε).

LEMMA 8. As ε—>+0, Γε = zε(0) converges to F o = zo(0) and vε(y) converges to

vo(y) poίntwise on [ F o , +oo).

This lemma is an immediate consequence of the definition of (Yε9 υε(y)) and Theo-

rem 1.

LEMMA 9. If ε>0 or ε = 0 and k(s)>0 a.e. on [0, 2?], then (Γε, vε(y)) is a solution

of the free boundary problem (lε) — (2ε).

PROOF. In virtue of the assumption of the lemma, we have

Λ/N

(9) z'ε(s) =

is positive a.e. in (0, J5), i.e., zε(s) is strictly increasing in [0, B). Thus, vε(y) is a strictly

increasing, absolutely continuous function defined on [F ε , zε(B — 0)) by Proposition 3.

Hence it follows that

(10fi) w ε ( s ) = (k(s) + ε)/(zε(s))N

holds a.e. in (0, B). As the function wε(s) is absolutely continuous on [0, ff],

(k(s) + ε)/(z'(s))N can be regarded as an absolutely continuous function defined on

[0, B~\. Inserting s = vε(y) into (10ε) and the first of (3ε), we get

^ t y ) a.e. in [ r ε , z ε ( 5 - 0 ) ) ,

(12ε) W'My))=-lyg(υε{y)) + f{vε{y))-] a.e. in [7 ε , zε(B-0)).

Here we have used the facts that zε(υε(y)) = y in [7 ε , zε(B-0)) and that v'ε(y)= l/zε(vε(y))

in (Yε, zε(B — 0)). When zε(B — 0) is finite, the two equalities above read 0 = 0 for

y^zε(B — 0). By the chain rule, we obtain

l(k(vε(y)) + β) I υ'l y) \N ~' v'ε(y)J = wf

ε(vε(y)K(y) = - ίyg(vε(y))+f(vε(y)M(y)

holds a.e. in (YE, zε(B - 0)); when zε(J5 - 0) is finite, the equality reads 0 = Ofor y ^ zε(B - 0).

From the definition of vε(y), (ll ε) and (40), we conclude that υε(y) satisfies all the bound-

ary conditions in (2ε). Thus, the pair (F ε, vε(y)) is a solution of the free bondary prob-

lem ( l ε )-(2 ε ) , as both vε{y) and Kε(y):=(k(vε(y)) + ε)\ v'^y)^'^'^) are absolutely con-

tinuous functions defined on [F ε , +oo) regardless of whether zε(B — 0) is finite or not.

Lemmas 8 and 9 tell us that (Γ o, vo(y)) must be a solution of the reduced free

boundary problem (l 0 ) —(20); in particular, when k(s)>0 a.e. on [0, 5 ] , i.e., k(s) has
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no interval of degeneracy in [0,5], υo(y) is absolutely continuous on [Γ o , +00) and

hence the free boundary problem (l ε) —(2ε) is a regular perturbation problem. In the

ensuing paragraphs we consider the case where k(s) has at least one interval of degeneracy

in [0, B].

Let {[βp bj];j=l, 2,...} be the collection of all intervals of degeneracy possessed

by the function k(s) in [0, B]. Then (0, B)\D, where D is the closure of (J .{_aj9 bj],

must be an open set in which fc(s)>0 a.e.

It follows from (100) that z'0(s) has the same interval of degeneracy in [0, B] as

k(s). Therefore, zo(s) is strictly increasing in (09B)\D, whilst on each interval of

degeneracy {ap bj],j= 1, 2 , . . . , zo(s) = yj are constant, and

Thus, y=yj9j=l929...9is3, j u m p point of vo(y), where

(13) vo(yj - 0) = aj, vo{yj + 0) = bj, and υo(yj) = [_ap bj] .

In virtue of Proposition 3, from the fact that zo(s) is strictly increasing and (locally)

absolutely continuous in (0, B)\D, it follows that vo(y) is strictly increasing and

absolutely continuous in each connected component of the open set zo((0, B)\D) =

(Yθ9 zo(B — O))\\Jj{yj}. Repeating the proof of Lemma 9, we draw the following

conclusion: vo(y) satisfies the equation ( l 0 ) a.e. in each connected component of the

open set (Yo, + o o ) \ U J {/VJ }-
Integrating the equality

= 0 for all se(0,B)

over each interval of degeneracy [aj9 bj'], j= 1, 2 , . . . , we get

(14) w»o()0)itajor~Vo(j^^

Here we have used the equalities ( l l 0 ) and (13).

We can summarize the above results in the following statement.

THEOREM 2. Under the hypotheses (I)-(V), for each fixed ε^O the free boundary

problem ( l ε )-(2 ε ) has a solution (Yε, vε(y)), where Yε<0ifA>0, Yε = 0ifA = 0, F ε > 0

ifA<0, and vε(y) is increasing and of bounded variation; when ε>0 or ε = 0 and k(s)>0

a.e. on [0, B], vε(y) is absolutely continuous on [YE9 -I- oo). As ε tends to zero, Yε converges

to Yo and vε(y) point wise converges to vo(y). Moreover,

Vo(y) = Σ(bj-aj)H(y-yJ)+{yυ'o(s)ds for all y^Y0,

where υ'0(y), a derivative of vo(y), is nonnegative and ίntegrable on [ 7 0 , +00), {[aj9 bj];

j=\,2,...} is the collection of all intervals of degeneracy possessed by the function k(s)

in [0, B]9 and {y/J= 1, 2, . . . } is the set of all jump points of vo(y), whilst H(y) = 0 for

y<0, H(y)= 1 for y>0, and H(0) = [0, 1]. In each connected component of the open set
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(y0, zo(B — 0))\\Jj{yj}9 vo(y) is strictly increasing and absolutely continuous, and almost

everywhere satisfies the equation ( l 0 ), while at each jump point y=yp j= 1, 2, . . . , vo(y)

satisfies the conditions (13) and (14). Here zo(s) is the second component of the unique

solution (WQ(S\ZQ(S)) to the two-point boundary value problem (30) — (40). In addition,

zε(B — O) is finite and vε(y) = B for all y^zε(B — O), if and only if the condition (8) holds.

Theorem 2 shows that when k(s) is positive a.e. on [0, B~], the free boundary problem

(1J — (2fi) is a regular perturbation problem, whilst when k(s) has intervals of degeneracy

in [0, B~\ it is a singular perturbation problem; in the second case, vo(y) possesses jump

points and there exists a one-to-one correspondence between the collection of all inter-

vals of degeneracy and the set of all jump points.

Finally, it should be pointed out that the jump condition (14) is exactly an extension

of the Rankine-Hugoniot condition.
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