A GENERALIZED IGUSA LOCAL ZETA FUNCTION AND LOCAL DENSITIES OF QUADRATIC FORMS

HIDENORI KATSURADA

(Received March 11, 1991, revised August 8, 1991)

Abstract. A certain formal power series attached to local densities of quadratic forms is defined. It is shown that this series can be realized as a coefficient of the Laurent expansion of a generalized Igusa local zeta function.

1. Introduction. Böcherer and Sato [BS] found a relation between the p-adic integrals defined by Denef [D1] and certain formal power series attached to local densities of quadratic forms. In this paper we consider another type of relation between the p-adic integrals defined by Igusa [I] and Deshommes [D2] and similar formal power series.

To be more precise, let A and B be non-degenerate symmetric matrices of degrees m and n, respectively, with entries in the ring Z_p of p-adic integers. Let $R = Z_p[x_{ij} \ (1 \le i \le m, 1 \le j \le n), x_i \ (1 \le i \le n)]$ be the polynomial ring over Z_p . We simply write $X = (x_{ij})_{1 \le i \le m, 1 \le j \le n}$, and $x = (x_1, \ldots, x_n)$. Let (g_{ij}) be the symmetric matrix of degree n with entries in R defined by

$$(g_{ij}) = A[X] - B[\operatorname{diag}(x_1, \ldots, x_n)],$$

where for an (m, m)-matrix U and an (m, n)-matrix V we write $U[V] = {}^{t}VUV$, and for square matrices A_1, \ldots, A_r we often simply write

diag
$$(A_1, \ldots, A_r) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & \cdot & 0 \\ 0 & 0 & A_r \end{pmatrix}.$$

For a set S and non-negative integers n and s, put $\langle n \rangle = n(n+1)/2$, and

$$S^{\langle n \rangle + s} = \{ ((a_{ij})_{1 \leq i \leq j \leq n}, a_1, \dots, a_s); a_{ij}, a_k \in S \}$$
.

We often write an element $((a_{ij})_{1 \le i \le j \le n}, (a_i)_{1 \le i \le s})$ of $S^{\langle n \rangle + s}$ as $((a_{ij}), (a_i))$ if no confusion arises. Further for an element (a_{ij}) of $S^{\langle n \rangle}$ with S a commutative ring, we often write $\sum_{1 \le i \le j \le n} a_{ij}$, and $\prod_{1 \le i \le j \le n} a_{ij}$ as $\sum a_{ij}$, and $\prod a_{ij}$, respectively. Let C be the field of complex numbers, and Z the ring of rational integers. Further let ord_p be the normalized additive valuation of the field Q_p of p-adic numbers, and put $|v|_p = p^{-\operatorname{ord}_p(v)}$ for $v \in Q_p$.

We then define a function $Z(B, A; (s_{ij}), s_1, \ldots, s_n)$ on the set

¹⁹⁹¹ Mathematics Subject Classification. Primary 11E08; Secondary 11E95.

$$\boldsymbol{C}_{+}^{\langle n \rangle + n} = \{((s_{ij}), s_1, \ldots, s_n) \in \boldsymbol{C}^{\langle n \rangle + n}; \operatorname{Re} s_{ij} > 0, \operatorname{Re} s_i > 0\}$$

by

$$Z(B, A; (s_{ij}), s_1, \ldots, s_n) = \int_{\mathbb{Z}_p^n \times M_{mn}(\mathbb{Z}_p)} \prod |g_{ij}|_p^{s_{ij}} \prod_{i=1}^n |x_i|_p^{s_i} dx dX,$$

where $M_{mn}(Z_p)$ denotes the ring of (m, n)-matrices with entries in Z_p (for the precise definition, see Section 2). We call this function a generalized Igusa local zeta function attached to A and B. Put $z_{ij}=p^{-s_{ij}}$ $(1 \le i \le j \le n), z_i=p^{-s_i}$ $(1 \le i \le n)$. We often write $Z=(z_{ij}), w=(z_i)$. Then $Z(B, A; (s_{ij}), s_1, \ldots, s_n)$ can be regarded as a function of Z and w. Thus we write $\zeta(B, A; Z, w)=Z(B, A; (s_{ij}), s_1, \ldots, s_n)$.

On the other hand, define a local density $\alpha_p(B, A)$ by

$$\alpha_p(B, A) = \lim_{e \to \infty} p^{(-mn + \langle n \rangle)e} \# \{ \overline{X} \in M_{mn}(\mathbb{Z}_p) / p^e M_{mn}(\mathbb{Z}_p); A[X] \equiv B \mod p^e \}$$

Then we define a formal power series $P(B, A; x_1, ..., x_n)$ by

$$P(B, A; x_1, ..., x_n) = \sum_{r_1, ..., r_n = 0}^{\infty} \alpha_p(B[\operatorname{diag}(p^{r_1}, ..., p^{r_n})], A) x_1^{r_1} \cdots x_n^{r_n}.$$

See Section 2 for the relation between our formal power series and the one defined by Böcherer and Sato [BS].

The main purpose of the present paper is to show that the series $P(B, A; x_1, ..., x_n)$ can be realized as a coefficient of the Laurent expansion of $\zeta(B, A; Z, px_1 \prod (p^{-1}z_{ij})^{-4}, ..., px_n \prod (p^{-1}z_{ij})^{-4})$ with respect to (z_{ij}) :

THEOREM 1.1. Put

$$N(B) = \{(k_{ij}) \in \mathbb{Z}^{\langle n \rangle}; \min k_{ij} \ge 2 \operatorname{ord}_p(2 \det B) + 1\}.$$

Then in the region

$$E = \{((z_{ij}), x_1, \ldots, x_n) \in C^{\langle n \rangle + n}; 0 < |z_{ij}| < 1, 0 < |px_i \prod (p^{-1}z_{ij})^{-4}| < 1\},\$$

we have

$$\begin{aligned} \zeta(B, A; Z, px_1 \prod (p^{-1}z_{ij})^{-4}, \dots, px_n \prod (p^{-1}z_{ij})^{-4}) \\ &= \sum_{(k_{ij}) \in \mathbb{Z}^{\langle n \rangle} \setminus N(B)} P((k_{ij}); x_1, \dots, x_n) \prod (p^{-1}z_{ij})^{k_{ij}} \\ &+ (1 - p^{-1})^{\langle n \rangle + n} \sum_{(k_{ij}) \in N(B)} P(B, A; x_1, \dots, x_n) \prod (p^{-1}z_{ij})^{k_{ij}}, \end{aligned}$$

where $P((k_{ij}); x_1, \ldots, x_n)$ is a convergent power series of x_1, \ldots, x_n for each (k_{ij}) in $\mathbb{Z}^{(n)} \setminus N(B)$.

In Section 2, we treat a more general case (cf. Theorem 2.4). Using our arguments

we can prove the rationality of $P(B, A; x_1, ..., x_n)$ and calculate its denominator explicitly. The details will be published in a subsequent paper [K].

2. Generalized Igusa local zeta functions and the proof of the main result. Let $R = \mathbb{Z}_p[[x_1, \dots, x_s]]$ be a formal power series ring, and

 $R_c = \{f(x_1, \ldots, x_s) \in R; f(a_1, \ldots, a_s) \text{ converges for any } (a_1, \ldots, a_s) \in \mathbb{Z}_p^s\}$

For two sets S and Λ , we put

$$S^{\Lambda} = \prod_{\lambda \in \Lambda} S_{\lambda}$$

with $S_{\lambda} = S$. Let Λ be a finite set. Put

$$C_+^{\Lambda} = \{(s_{\lambda}) \in C^{\Lambda}; \operatorname{Re} s_{\lambda} > 0\}.$$

For a subset $\{f_{\lambda}\}_{\lambda \in A}$ of R_c , and $(s_{\lambda}) \in C^A_+$ define $Z(\{f_{\lambda}\}; (s_{\lambda}))$ by

$$Z(\lbrace f_{\lambda}\rbrace;(s_{\lambda})) = \int_{\mathbf{Z}_{p}^{s}} \prod_{\lambda \in A} |f_{\lambda}(x_{1},\ldots,x_{s})|_{p}^{s_{\lambda}} dx ,$$

where dx is the Haar measure of Q_p^s so normalized that

$$\int_{\mathbf{Z}_p^s} dx = 1 \; .$$

This function was studied by Igusa [I] when $\#\Lambda = 1$, and was generalized by Deshommes to the case where $\#\Lambda$ is arbitrary. So we call this function a generalized Igusa local zeta function attached to $\{f_{\lambda}\}$. The function $Z(\{f_{\lambda}\}; (s_{\lambda}))$ is holomorphic on C_{+}^{4} . Put $z_{\lambda} = p^{-s_{\lambda}}$. Then $Z(\{f_{\lambda}\}; (s_{\lambda}))$ can be regarded as a function of (z_{λ}) . So we put $\zeta(\{f_{\lambda}\}; (z_{\lambda})) =$ $Z(\{f_{\lambda}\}; (s_{\lambda}))$.

Let *m* and *n* be non-negative integers such that $m \ge n \ge 1$. Let *A* and *B* be non-degenerate symmetric matrices of degrees *m* and *n*, respectively, with entries in \mathbb{Z}_p . For a subset *I* of $I_{mn} = \{(i, j); 1 \le i \le m, 1 \le j \le n\}$, put

$$\alpha_p(B, A, I) = p^{\#I} \lim_{e \to \infty} p^{(-mn + \langle n \rangle)e} \#\{\overline{(x_{ij})} \in M_{mn}(\mathbb{Z}_p) / p^e M_{mn}(\mathbb{Z}_p);$$

$$A[(x_{ij})] \equiv B \mod p^e, \text{ and } x_{ij} \equiv 0 \mod p \text{ for any } (i, j) \in I\}.$$

We note that $\alpha_p(B, A, I) = \alpha_p(B, A)$ if $I = \emptyset$. Now let $m, n, l, \text{ and } n_1, \ldots, n_s, n_{s+1}, \ldots, n_{s+t}$ be non-negative integers such that $m \ge n \ge 1$, and $m \ge l, n_1, \ldots, n_{s+t} \ge 1, n_1 + \cdots + n_s = n$, and $n_{s+1} + \cdots + n_{s+t} = l$. Let A and B be non-degenerate symmetric matrices of degrees m and n, respectively, with entries in \mathbb{Z}_p , and I be a subset of $I_{m,n}$. Define a formal power series $P(B, A, I; l; n_1, \ldots, n_{s+t}; x_1, \ldots, x_{s+t})$ by

$$P(B, A, I; l; n_1, \dots, n_{s+t}; x_1, \dots, x_{s+t})$$

$$= \sum_{r_1, \dots, r_{s+t}=0}^{\infty} \alpha_p(B[\operatorname{diag}(p^{r_1}E_{n_1}, \dots, p^{r_s}E_{n_s})], A[\operatorname{diag}(E_{m-l}, p^{r_{s+1}}E_{n_{s+1}}, \dots, p^{r_{s+t}}E_{n_{s+t}})], I)$$

$$\times x_1^{r_1} \cdots x_{s+t}^{r_{s+t}},$$

where E_k denotes the unit matrix of degree k. We note that the formal power series $P(B, A, I; l; n_1, \ldots, n_{s+t}; x_1, \ldots, x_{s+t})$ coincides with $P(B, A; x_1, \ldots, x_n)$ in Section 1 if l=0, s=n, and $I=\emptyset$. Further if $l=0, I=\emptyset$, and $B=\text{diag}(b_1E_{n_1}, \ldots, b_sE_{n_s})$, the formal power series

$$\sum_{e_1,\dots,e_s=0,1} x_1^{e_1}\dots x_s^{e_s} P(\text{diag}(p^{e_1}b_1E_{n_1},\dots,p^{e_s}b_sE_{n_s}), A, I; 0; n_1,\dots,n_s; x_1^2,\dots,x_s^2)$$

coincides with the $P(B, A, x_1, ..., x_s)$ defined in 1.2 of [BS]. In this section we show that $P(B, A, I; l; n_1, ..., n_{s+t}; x_1, ..., x_{s+t})$ can be realized as a coefficient of the Laurent expansion of a certain generalized Igusa local zeta function.

For this, we give some preliminaries. For a commutative ring R, let Sym(k; R) denote the set of symmetric matrices of degree k with entries in R. Let $U = (u_{ij}) \in \text{Sym}(m, \mathbb{Z}_p)$, and $V = (v_{ij}) \in \text{Sym}(n, \mathbb{Z}_p)$, and I be a subset of $\{(i, j); 1 \le i \le m, 1 \le j \le n\}$. For each $(e_{ij}) \in \mathbb{Z}^{\langle n \rangle}$, put $M((e_{ij})) = \max_{ij}(e_{ij})$, and

$$A((e_{ij}); V, U, I) = \{\overline{(x_{\alpha i})} \in M_{mn}(\mathbb{Z}_p) / p^{M((e_{ij}))} M_{mn}(\mathbb{Z}_p);$$

$$\sum_{1 \le \alpha, \beta \le m} u_{\alpha\beta} x_{\alpha i} x_{\beta j} \equiv v_{ij} \mod p^{e_{ij}} \text{ for any } i, j \text{ and } x_{\alpha i} \equiv 0 \mod p \text{ for any } (\alpha, i) \in I\},$$

and

$$a((e_{ii}); V, U, I) = #A((e_{ii}); V, U, I)$$
.

If $e_{ij} = e$ for all *i*, *j*, we simply write $A((e_{ij}); V, U, I) = A(e; V, U, I)$. The following lemma is well known:

LEMMA 2.1 (cf. Siegel [S, Hilfssatz 13]). In addition to the above notation and assumptions, assume that U and V are non-degenerate, and put $e_0 = 2 \operatorname{ord}_p(2 \det V) + 1$. Then for any integer $e \ge e_0$, we have

$$a(e+1; V, U, I) = p^{mn-\langle n \rangle} a(e; V, U, I)$$

The following is essential to proving Theorem 2.4.

PROPOSITION 2.2. Let the assumptions and notation be as above. Then for any $(e_{ij}) \in \mathbb{Z}^{\langle n \rangle}$ such that $\min_{ij} e_{ij} \ge e_0$, we have

$$p^{-M((e_{ij}))mn + \sum e_{ij}} a((e_{ij}); V, U, I) = p^{e_0(-mn + \langle n \rangle)} a(e_0; V, U, I) .$$

PROOF. Put $e = M((e_{ij}))$. For an element $(u_{ij})_{1 \le i \le j \le n}$ of $\mathbb{Z}^{\langle n \rangle}$, we define an element

 $(u_{ij}^*)_{1 \le i,j \le n}$ of Sym (n, \mathbb{Z}_p) by $u_{ij}^* = u_{ij}$ or $= u_{ji}$ according as $i \le j$ or not. Then we have

(2.1)
$$a((e_{ij}); V, U, I) = \sum_{(c_{ij})} a(e; V + ((p^{e_{ij}}c_{ij})^*), U, I)$$

where (c_{ij}) runs through all representatives of the direct product $\prod Z_p/p^{e^{-e_{ij}}}Z_p$ of $\{Z_p/p^{e^{-e_{ij}}}Z_p\}_{1 \le i \le j \le n}$. On the other hand, for any (c_{ij}) , we have

$$a(e; V + ((p^{e_{ij}}c_{ij})^*), U, I) = p^{(e-e_0)(mn-\langle n \rangle)}a(e_0; V, U, I)$$

Thus the right-hand side of (2.1) is equal to

$$p^{(e-e_{0})(mn-\langle n \rangle)} # \prod \mathbb{Z}_{p} / p^{e-e_{ij}} \mathbb{Z}_{p} a(e_{0}; V, U, I) = p^{(e-e_{0})(mn-\langle n \rangle)} \prod p^{e-e_{ij}} a(e_{0}; V, U, I)$$
$$= p^{emn-\sum e_{ij}} p^{e_{0}(-mn+\langle n \rangle)} a(e_{0}; V, U, I) .$$

Now let A, B and I be as above. Define an element $(g_{ij})=(g_{ij}(X))$ of $Sym(n, \mathbb{Z}_p[x_{\alpha k} (1 \le \alpha \le m, 1 \le k \le n)]$ by

$$(g_{ij}) = A[(p^{e(\alpha,k;I)}x_{\alpha k})] - B,$$

where $e(\alpha, k; I) = 1$ or = 0 according as $(\alpha, k) \in I$ or not. Further for each $(e_{ij}) \in \mathbb{Z}^{\langle n \rangle}$ put

$$E((e_{ij}; B, A, I) = \{X \in M_{mn}(\mathbb{Z}_p); g_{ij}(X) \in p^{e_{ij}}\mathbb{Z}_p \text{ for any } 1 \le i \le j \le n\},\$$

and let $\tilde{v}((e_{ij}); B, A, I)$ be the volume of $E((e_{ij}); B, A, I)$. Then we have:

PROPOSITION 2.3. For each $(e_{ij}) \in \mathbb{Z}^{\langle n \rangle}$ such that $\min_{ij} e_{ij} \ge e_0$, we have

 $\tilde{v}((e_{ii}), B, A, I)p^{\sum e_{ij}} = \alpha_p(B, A; I)$.

PROOF. We have

 $\tilde{v}((e_{ij}), B, A, I) = p^{-M((e_{ij}))mn} p^{\#I} a((e_{ij}); B, A, I).$

Thus the assertion follows from Proposition 2.2.

COROLLARY. Let $v((e_{ij}), B, A, I)$ be the volume of the set

$$\{(X) \in M_{mn}((\mathbb{Z}_p); g_{ij}(X) \in p^{e_{ij}}\mathbb{Z}_p^* \text{ for any } 1 \le i \le j \le n\},\$$

where Z_p^* denotes the unit group of Z_p . Then for each $(e_{ij}) \in \mathbb{Z}^{\langle n \rangle}$ such that $\min_{ij} e_{ij} \ge e_0$, we have

$$v((e_{ij}); B, A, I)p^{\sum e_{ij}} = (1 - p^{-1})^{\langle n \rangle} \alpha_p(B, A; I)$$

PROOF. We simply write $v((e_{ij})) = v((e_{ij}); B, A, I)$. We arrange the quantities $\{e_{ij}\}$ indexed by the set $\{(i, j); 1 \le i \le j \le n\}$ in the lexicographic order, and put $e_1 = e_{11}, e_2 = e_{12}, \ldots, e_n = e_{1n}, \ldots, e_{\langle n \rangle} = e_{nn}$, and $\sum e_i = \sum_{1 \le i \le \langle n \rangle} e_i$. Then we have

$$v((e_i)) = \sum_{j=0}^{\langle n \rangle} (-1)^j \sum_{1 \le i_1 < \cdots < i_j \le \langle n \rangle} \tilde{v}(e_1, \ldots, e_{i_1} + 1, \ldots, e_{i_j} + 1, \ldots, e_{\langle n \rangle}).$$

Then by Proposition 2.3, for any (e_i) such that min $e_i \ge e_0$ we have

$$\widetilde{v}(e_1,\ldots,e_{i_1}+1,\ldots,e_{i_j}+1,\ldots,e_{\langle n\rangle})p^{\sum e_i}=p^{-j}\alpha_p(B,A,I).$$

Thus the assertion holds.

Now let $x_{ij}(1 \le i \le m, 1 \le j \le n), x_1, \ldots, x_{s+t}$ be variables over \mathbb{Z}_p , and put $R = \mathbb{Z}_p[x_{ij}(1 \le i \le m, 1 \le j \le n), x_1, \ldots, x_{s+t}]$. Let A, B, I, l, and the others be as above. Define elements y_{n+1}, \ldots, y_{m+n} of R by

diag
$$(y_{n+1}, \ldots, y_{n+m}) =$$
diag $(E_{m-l}, x_{s+1}E_{n_{s+1}}, \ldots, x_{s+t}E_{n_{s+t}})$.

Define an element $(h_{ij}(x, X))_{1 \le i, j \le n}$ of Sym(n, R) by

$$(h_{ij}(x, X)) = A[(y_{n+\alpha}p^{e(\alpha, k; I)}x_{\alpha k})_{1 \le \alpha \le m, 1 \le k \le n}] - B[\operatorname{diag}(x_1 E_{n_1}, \dots, x_s E_{n_s})].$$

Now let $\Lambda = \{(i, j); 1 \le i \le j \le n\} \cup \{i; 1 \le i \le s + t\}$, and define a subset $\{h_{\lambda}\}_{\lambda \in \Lambda}$ of R indexed by Λ by

$$h_{\lambda} = \begin{cases} h_{ij} & \text{if } \lambda = (i,j) \\ x_i & \text{if } \lambda = i , \end{cases}$$

and $\zeta(B, A, I; l, n_1, \dots, n_{s+t}; (z_{ij})_{1 \le i \le j \le n}, z_1, \dots, z_{s+t})$ by

$$\zeta(B, A, I; l; n_1, \ldots, n_{s+t}; (z_{ij})_{1 \le i \le j \le n}, z_1, \ldots, z_{s+t}) = \zeta(\{h_{\lambda}\}; (z_{\lambda})).$$

We write $\zeta(B, A, I; l; n_1, ..., n_{s+t}; (z_{ij})_{1 \le i \le j \le n}, z_1, ..., z_{s+t}) = \zeta(B, A, I; l; n_1, ..., n_{s+t}; Z, w)$ as in Section 1. Then $\zeta(B, A, I; l; n_1, ..., n_{s+t}; Z, w)$ can be expressed as

$$\zeta(B, A, I; l; n_1, \dots, n_{s+t}; Z, w) = \int_{\mathbf{Z}_p^{s+t} \times M_{mn}(\mathbf{Z}_p)} \prod |h_{ij}|_p^{s_{ij}} \prod_{k=1}^{s+t} |x_k|_p^{s_k} dx dX,$$

where dx (resp. dX) denotes the Haar measure of Q_p^{s+t} (resp. $M_{mn}(Q_p)$) so normalized that

$$\int_{\mathbf{Z}_{P_{\perp}}^{s+t}} dx = 1 \quad \left(\text{resp. } \int_{M_{mn}(\mathbf{Z}_{P})} dX = 1 \right).$$

We note that $\zeta(B, A, I; l; n_1, \dots, n_{s+t}; Z, w)$ coincides with $\zeta(B, A; Z, w)$ if l=0, s=n, and $I=\emptyset$. Thus Theorem 1 is a special case of the following:

THEOREM 2.4. In the region

$$E = \{ ((z_{ij}), x_1, \ldots, x_{s+t}) \in C^{\langle n \rangle + s+t}; 0 < |z_{ij}| < 1, 0 < |px_i \prod (p^{-1}z_{ij})^{-4n_i}| < 1 \},\$$

we have

$$\begin{aligned} \zeta(B, A, I; l; n_1, \dots, n_{s+i}; Z, px_1 \prod (p^{-1}z_{ij})^{-4n_1}, \dots, px_{s+t} \prod (p^{-1}z_{ij})^{-4n_{s+t}}) \\ &= \sum_{(k_{ij}) \in \mathbb{Z}^{\langle n \rangle \setminus N(B)}} P((k_{ij}); x_1, \dots, x_{s+t}) \prod (p^{-1}z_{ij})^{k_{ij}} \\ &+ (1 - p^{-1})^{\langle n \rangle + s+t} \sum_{(k_{ij}) \in N(B)} P(B, A, I; l; n_1, \dots, n_{s+t}; x_1, \dots, x_{s+t}) \prod (p^{-1}z_{ij})^{k_{ij}} \end{aligned}$$

where $P((k_{ij}); x_1, \ldots, x_{s+i})$ is a convergent power series of x_1, \ldots, x_{s+i} for each (k_{ij}) in $\mathbb{Z}^{\langle n \rangle} \setminus N(B)$.

Proof. Put $\zeta(Z, w) = \zeta(B, A, I; l; n_1, \dots, n_{s+t}, Z, w)$. Then we have

$$\zeta(Z, w) = \int_{\mathbb{Z}_p^{s+t} \times M_{mn}(\mathbb{Z}_p)} \prod |h_{ij}(x, X)|_p^{s_{ij}} \prod_{k=1}^{s+t} |x_k|_p^{s_k} dx dX$$

= $\sum_{r_1, \dots, r_{s+t}=0}^{\infty} \int_{X'_0(r_1, \dots, r_{s+t})} \prod |h_{ij}(x, X)|_p^{s_{ij}} \prod_{i=1}^{s+t} |x_i|_p^{s_i} dx dX$,

where $X'_0(r_1, \ldots, r_{s+t}) = \{(x, X) \in \mathbb{Z}_p^{s+t} \times M_{mn}(\mathbb{Z}_p); |x_i|_p = p^{-r_i}\}$. Thus we have

$$\zeta(Z, w)$$

$$=\sum_{r_1,\dots,r_{s+t}=0}^{\infty}\prod_{i=1}^{s+t}(p^{-1}p^{-s_i})^{r_i}\int_{\mathbf{Z}_p^{*s+1}\times M_{mn}(\mathbf{Z}_p)}\prod |h_{ij}(p^{r_1}x_1,\dots,p^{r_{s+t}}x_{s+t},X)|_p^{s_{ij}}dxdX.$$

Define elements y_1, \ldots, y_{n+m} of R by

$$\operatorname{diag}(y_1,\ldots,y_n) = \operatorname{diag}(x_1 E_{n_1},\ldots,x_s E_{n_s}),$$

and

diag
$$(y_{n+1}, \ldots, y_{n+m}) =$$
diag $(E_{m-l}, x_{s+1}E_{n_{s+1}}, \ldots, x_{s+t}E_{n_{s+t}})$.

We change the variables as follows:

$$x_{\alpha j} \longmapsto x_{\alpha j} y_{j} y_{n+\alpha}^{-1} \ (1 \le \alpha \le m, \ 1 \le j \le n), \quad x_{j} \longmapsto x_{j} \ (1 \le j \le s+t) \ .$$

Then we have

$$\zeta(Z, w) = \sum_{r_1, \dots, r_{s+t}=0}^{\infty} \prod_{i=1}^{s+t} (p^{-1}z_i)^{r_i} \int_{\mathbf{Z}_p^{*_{s+t}} \times M_{mn}(\mathbf{Z}_p)} \prod |h_{ij}(p^{r_1}, \dots, p^{r_{s+t}}, X)|_p^{s_{ij}} dx dX$$

= $(1-p^{-1})^{s+t} \sum_{r_1, \dots, r_{s+t}=0}^{\infty} \prod_{i=1}^{s+t} (p^{-1}z_i)^{r_i} \int_{M_{mn}(\mathbf{Z}_p)} \prod |h_{ij}(p^{r_1}, \dots, p^{r_{s+t}}, X)|_p^{s_{ij}} dX.$

Now for non-negative integers $r_1, \ldots, r_{s+t}, e_{ij} (1 \le i \le j \le n)$, put $v(r_1, \ldots, r_{s+t}, (e_{ij})) = v(\{X \in M_{m,n}(\mathbb{Z}_p); h_{ij}(p^{r_1}, \ldots, p^{r_{r+s}}, X) \in p^{e_{ij}}\mathbb{Z}_p^* \text{ for any } 1 \le i \le j \le n\}).$ Then we have

$$\zeta(Z, w) = \sum_{r_1, \dots, r_{s+t}, e_{ij} = 0}^{\infty} v(r_1, \dots, r_{s+t}, (e_{ij})) \prod z_{ij}^{e_{ij}} \prod_{i=1}^{s+t} (p^{-1}z_i)^{r_i}.$$

We write $(r) = (r_1, ..., r_{s+t})$ and $s((r)) = 4(n_1r_1 + \cdots + n_{s+t}r_{s+t})$. Define

$$\tilde{\zeta}(Z, x_1, \dots, x_{s+t}) = \zeta(Z, px_1 \prod (p^{-1}z_{ij})^{-4n_1}, \dots, px_{s+t} \prod (p^{-1}z_{ij})^{-4n_{s+t}})$$

Then we have

$$\widetilde{\zeta}(Z, x_1, \dots, x_{s+t}) = \sum_{r_1, \dots, r_{s+t}=0}^{\infty} \sum_{(k_{ij})} v(r_1, \dots, r_{s+t}, (s(r)) + k_{ij})) p^{\sum (s(r)) + k_{ij})} \times \prod (p^{-1} z_{ij})^{k_{ij}} \prod_{i=1}^{s+t} x_i^{r_i},$$

where (k_{ij}) runs through all elements of $\mathbb{Z}^{\langle n \rangle}$ such that $k_{ij} \ge -s((r))$ for any $1 \le i \le j \le n$. For each (k_{ij}) , define a formal power series $P((k_{ij}); x_1, \ldots, x_{s+i})$ by

$$P((k_{ij}); x_1, \ldots, x_{s+t}) = \sum_{r_1, \cdots, r_{s+t}} v(r_1, \ldots, r_{s+t}, (s((r)) + k_{ij})) p^{\sum (s((r)) + k_{ij})} x_1^{r_1} \cdots x_{s+t}^{r_{s+t}},$$

where r_1, \ldots, r_{s+t} run through all non-negative integers such that $r_1, \ldots, r_{s+t} \ge 0$, and $s((r)) \ge -k_{ij}$ for any $1 \le i \le j \le n$. Since the right-hand side of $\zeta(Z, x_1, \ldots, x_{s+t})$ is absolutely convergent in the region $0 < |z_{ij}| < 1$, $0 < |px_i \prod (p^{-1}z_{ij})^{-4n_i}| < 1$, the formal power series $P((k_{ij}); x_1, \ldots, x_{s+t})$ is a convergent power series, and we have

$$\widetilde{\zeta}(Z, x_1, \ldots, x_{s+t}) = (1 - p^{-1})^{s+t} \sum_{(k_{ij})} P((k_{ij}); x_1, \ldots, x_{s+t}) \prod (p^{-1} z_{ij})^{k_{ij}}.$$

Further by Corollary to Proposition 2.3, for any $(k_{ij}) \in N(B)$ we have

$$P((k_{ij}); x_1, \ldots, x_{s+i}) = (1 - p^{-1})^{\langle n \rangle} P(B, A, I; l; n_1, \ldots, n_{s+i}; x_1, \ldots, x_{s+i}).$$

Thus the assertion holds.

REFERENCES

- [BS] S. BÖCHERER AND F. SATO, Rationality of certain formal power series related to local densities, Comment. Math. Univ. Sancti Pauli 36 (1987), 53–86.
- [D1] J. DENEF, The rationality of the Poincaré series associated to p-adic points on a variety, Invent. Math. 77 (1984), 1–23.
- [D2] B. DESHOMMES, Critères de rationalité et application à la série génératrice d'un système d'équation à coefficients dans un corps local, J. Number Theory 22 (1986) 75–114.
- J.-I. IGUSA, Complex powers and asymptotic expansions I, II, J. Reine Angew. Math. 268/269 (1974), 110-130; 278/279 (1975), 307-321.
- [K] H. KATSURADA, Rationality of a certain formal power series attached to local densities of quadratic forms, to appear.
- [S] C. L. SIEGEL, Über die analytische Theorie der quadratischen Formen, Ann. of Math. 36 (1935), 527–606.

Muroran Institute of Technology 27–1 Mizumoto Muroran 050 Japan