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Abstract. Let p be an odd prime. We give a list of certain types of /̂ -groups G
with two generators which satisfy the following two conditions (A) and (B): (A)
[Ker VG^H\ [G, G]] = [G:H] for the transfer homomorphism VG_H: G-+H/IH, H] of
G to every normal subgroup H with cyclic quotient G/H, and (B) there exists an
automorphism φoϊG of order 2 such that gφ+1 e [G, G] for every g e G. These conditions
are necessary for G to be the Galois group of the second /?-class field of an imaginary
quadratic field. The list contains such a group that it may be useful for us to find an
imaginary quadratic field with an interesting property on the capitulation problem.

1. Introduction. We fix an odd prime number p, and consider a finite metabelian
/7-group G with two generators which satisfies the following two conditions (A) and (B):

(A) For every normal subgroup H of G with cyclic quotient G/H, the index
[Ker VG^H: [G, G]] for the transfer homomorphism VG^H: G-•///[#, H]
coincides with the index [G:H~\\

(B) There exists an automorphism φ of G of order 2 such that gφ+1 belongs to [G, G]
for every g e G.

It is known as Hubert's Theorem 94 that the former index in (A) is a multiple of the
latter (cf. Suzuki [Su] for the general case); therefore, the condition (A) claims the
extreme for the normal subgroups H of the kind. If G is abelian, then it satisfies (A) if
and only if it is a cyclic group. It is also easy to see that G is not a metacyclic group
if it satisfies the condition (B). On his list in [Ja], roughly and boldly speaking, James
gave bout 500 types of /^-groups of order up to p6; however, we find only 8 of them
with two generators satisfy both of (A) and (B).

In this paper we determine all of such groups of the following form with either
one of the three conditions, (1) m = n = 2, (2) μ= 1 <v, and (3) μ = v = 2 (Theorems 1-3
in Section 7, respectively):
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G = (a,b,ciΛ,cίtj\ \<i<rn,

» + 1 , 1 , 1? α] = [ c u , cuj] =

= C

l,n+l

μ<v,

where ί(i) is the maximal integer which satisfies the inequality,

They consist of 13 families; 3 of them are classified with the condition (1), 7 with (2),
and 3 with (3). As for the groups on the list of James, all of them belong to the first
class of ours. It may be remarkable that we have either m = 2 or n = 2 under the condi-
tions (A) and (B) (Proposition 10 in Section 6).

In Section 2, we explain the arithmetic background.
In Section 3, we give some basic lemmas.
In Section 4, we see some fundamental structures of metabelian /7-grouρs with two

generators.
Section 5 is devoted to calculations of transfers of our groups to three types of

subgroups. From the results, we extract some necessary conditions for (A) to be satis-
fied, and show it in Section 6. Our three main theorems are given in the big Section 7.

In the final Section 8, we show a proposition on the capitulation problem in
imaginary quadratic number fields.

2. Arithmetic background. Let F be an imaginary quadratic number field, F the
Hubert /7-class field of F, and F the second /7-calss field of F; hence F is the maximal
unramified abelian /7-extension of F, and F is that of P. We denote the Galois groups,
Ga\(P/F) and Gal(F/F), simply by G and by A9 respectively; A is isomorphic to G/[G, G].
By class field theory, the Artin maps give isomorphisms of A and of [G, G], respectively,
onto the /^-primary parts, C\(P)(F) and Cl(p)(F), of the ideal class group C\(F) of F and
that of P. Let K be an unramified abelian /7-extension of F and H the corresponding
subgroup of G; then H/[H, H~\ is isomorphic to the /^-primary part C\(P)(K) of the ideal
class group C\(K) of K by the Artin map for K. We have a natural homomorphism

jκ/F:C\(F)-+C\(K)
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defined by regarding ideals of F naturally as those of K. By the Artin maps of F and

of K this is transformed to the homomorphism

P G . H :G/[G,G]-+///[#,//]

which is naturally induced from the transfer VG^H of G to H (cf., e.g., Miyake [Mi2]);

therefore the order of the kernel oΐjκ/F coincides with the index [Ker VG^H: [G, G]].

Hence we see that G = Ga\(P/F) satisfies the condition (A) given in the preceding section,

by the following proposition.

PROPOSITION 1. Let K be an unramified cyclic extension of odd degree of an

imaginary quandratic field F. Then the order of the capitulation kernel, |Ker7K / F | , is

equal to the degree [K\F~\.

PROOF. Since K/F is unramified and cyclic, we have

where EF and Eκ are, respectively, the unit groups of F and of K, and Nκ/F is the norm

map (cf., e.g., Schmithals [Sch]). We have EF = {±\} because Fis an imaginary quadratic

field; (note that the field of the third or the fourth roots of 1 has the class number 1).

Therefore we have [ F F : NK(F(EK)] = 1 because [X: F ] is odd by the assumption, q.e.d.

Next let us see that our group G = Gal(F/F) satisfies the condition (B) given in the

preceding section. Take an element p of order 2 in Ga\(F/Q); this induces the non-trivial

automorphism of F. The inner automorphism of Ga\(F/Q) defined by p induces an

automorphism φ of G = Gal(F/F) and an action of p on A = Gal(F/F). We also have a

natural action of p on C1(P)(F). The Artin isomorphism of Cl(p)(F) onto A is then

compatible with these actions of p. Hence we have the desired result by the following

proposition due to Suzuki.

PROPOSITION 2. Let F be α quadratic extension of an algebraic number field F o of

finite degree, and denote the non-trivial automorphism of F/Fo by p. Let c be an element

of the ideal class group C1(F) of F, and suppose that its order is relatively prime to the

class number hFo of F o . Then we have cp = c~1.

PROOF. It is clear that c1+p belongs to jF/Fo(Cl(F0)) and has the order relatively

prime to λFo = |Cl(Fo)|; therefore, it must be equal to 1. Hence we have cp = c~1.

q.e.d.

If the/7-class group C\ip\F) of an imaginary quadratic field Fis cyclic, then we have

F=F because a cyclic group does not possess any non-abelian central extensions. If

C1(P)(F) is of type (pμ,px), 1 < μ < v , however, F is actually bigger than F.

PROPOSITION 3. Let F be an imaginary quadratic field and suppose that C1(P)(F) is

°f tyPe {pμ>Px)-> l<ίμ^v. Then F has an unramified Galois extension whose group is

isomorphic to D = (a, b9cίtίy,
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The proposition is an easy consequence of Nomura [No, Th.l]. In fact, apply the
theorem to our case step by step starting from E=D/(cp

ίΛ}9 and then E=D/(cfΛ},
and so on. Here we omit the detail. Also cf. [Mi3, Theorem 1 and its proof in Section 3].

The group D of the proposition, however, does not satisfy the condition (A).
Therefore Ga\(F/F) must be a non-trivial extension of it. This paper grew out of the
author's search for some candidates for Gal(F/F).

3. Basic lemmas. To examine whether the condition (A) is satisfied or not, it is
not necessary to study all of the subgroups of the kind.

LEMMA 1. Let G be a finite group and H a normal subgroup of it. Suppose that
G/H is cyclic and that we have

Then for every subgroup N which contains H, we also have

PROOF (by Suzuki). It is well known that we have an equality,

[Ker VG^H: [G, G]] = [G: //] [(#/[#, tf])G: Im F G _ H

if G/H is cyclic in general. (E.g. check the formula for q in the case H—A in Miyake
[Mil, p. 88], and apply [Mil, Lemma 5, p. 89].) Hence we also have

[Ker VG^N: [G, G]] = [G: JV] [(ΛΓ/[N, NJ)G: Im F G . N ] .

We are given

(#/[#, 7/])G = I m F G . H

by the assumption on H of the lemma, and must show

For simplicity, we may assume [H, H] = 1 by replacing G with G/[/f, i/] if necessary.
Take an element g of G such that G=(g} H, and put d= [G:N]. Then we see

and

Since <0d> [Λί, N]/[JV, iV] is contained in (JV/[JV, ΛΓ])G, we have

, N1HH/IN,
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Hence it is sufficient to show

because the coset gd-\_N, JV] is equal to VG^N(g) and belongs to Im VG^N. Let x be an
element of H such that the coset x [iV, iV] belongs to (H/[N, N])G. Since

there exists an element y of H such that

χg-i—y9d-i—y(9d-ι+9d-2+

Then χ'y-(9d~1+9d-2 + - + D belongs to HG. Hence there is an element z of G such that

because of the assumption, HG = lm VG^H. Since y belongs to N, we have

by the definition of the transfer homomorphism. For simplicity, put u = gd and
e=[ΛΓ://]. Then we have

and hence, in HUN, ΛΓ|,

(cf. [Mil, Proposition 3] with the inner automorphism φ of G defined by u\ \<j<
e— 1). Thus we have obtained

x'{N, JV] = VG^N(yz"e-'+"e-1+- + 1)elm VG^N .

The proof is completed.

In this paper we frequently use the following well-known lemma. A proof of it is
found in Blackburn [Bl].

LEMMA 2. Let x, y and z be elements of a metabelian group. We have
[[2, x], }>] = [[z, y], x] and [yz, x] = [ j , x] [z, x] if z commutes with [x, y]. Put

α«ί/ suppose that z commutes with each ofyh / = 1, 2 , . . . . Then we have

and
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For the condition (B) of Section 1 to be satisfied, we have a useful necessary

condition. Let G = (a, b} be a finite metabelian /?-group with two generators, and put

ίCi,p 0] = Ci+l J , ίCi,p bΛ = Citj + 1 ,

for i,j = 1, 2, 3, . . . . The first statement of the preceding lemma assures that these cu

are well defined. Put

Cij = <Cu.υ\U = U i+ 1, i' + 2 , . . . , v=jj+1,7 + 2, . . . >

and

Q./ = ( ^ I « = /, i + 1 , i + 2 , . . . , v=jj+ 1,7 + 2 , . . . , and (u, t;)#(i,7)>

for i,7= 1, 2, 3 , . . . . These are abelian normal subgroups of G.

LEMMA 3. Let the notation and the assumptions be as above and suppose that G

satisfies the condition (B). Then for ij= 1, 2, 3 , . . . , we have

ij

PROOF. We proceed by mathematical induction on i-\-j. First of all, note that

cij= 1 if i+7 is larger than the class of G. Let x and y be the elements of [G, G] = C1Λ

such that aφ = a~ίx and bφ = b~1y. Then we easily see

= la~\ ZT1] m o d C ' u .

Since [ β " 1 , b~ι~\ = bac1Λa~ιb~ι =c1Λ

m[c1Λ, a~1b~1~\, we have the congruence relation

of the lemma for c1Λ. By definition, we have

cf+ Uj = ICTJ, a*] = Icfj, a~'χ-] = [c^ , fl"
x] ,

and

The desired relations for cf+ίJ and cfJ+1 now easily follow from the induction hypo-

theses and the next lemma.

LEMMA 4. The notation and the assumptions being as above, we have

aci,fi-ι= Π cίΐϋ?, and bcub~ι= f[ c\^
u=0 u=0

, /« particular, we have
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lC'ij9a-ι]<zC'i + 1j and [ C l ^ - ^ c C ^ p

PROOF. The first equality is easily obtained if we study the conjugate of the right

hand side by a. The second will be also clear in a similar way. The rest follows from

these two equalities at once.

4. Metabelian /?-groups with two generators. Let G = <α, b} be a finite metabelian

p-gτoxxp with two generators, and let the notation be as in the preceding section. We

consider the case of

(4.1) C2t2=l9 i.e. cUj=l if i>2 and y > 2 ,

and take such m and n that cmΛΦ\, clnΦ\ and cm + 1Λ=cln + 1 = \. We suppose,

furthemore, that G/[G, G] is of type (pfi,pv), 1 < μ < v , i.e.

(4.2) apμ = I\cΐjJ, ft*v = Π*ϊy>

qij9 rtj

Throughout this paper, we assume

(4.3) q i ί = r1Λ=0, i.e. ^ μ , * p V e C ' l f l = G 3 = [[G, G], G] ,

because of Lemma 3 for G to satisfy (B). Since apμ (resp. bpV) commutes with a (resp. b),

we must have

(4.4) ft ^1,1 = 1 /

For an element cUj of C1Λ = G2 = [G, G] and for a positive integer fc, we denote

r[fc]. = Γ ( l ) . Γ (2) . . .Λk)

and

. = r ( l ) . Γ (2) . . .Λk)
* c ί,j c i,j +1 L ij + k - 1 *

It is clear that we have

[c!kJ,ί»]=c|g+1 ( = c f J + 1 ) ;

(4.6;
Γ r W AT — r W

Lcϊj j °J — c u + i

Since b~1ab = ac1 1 ? we have by Lemma 2
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and hence by (4.2) and (4.3)

(4-7)

Similarly with a~ίba = bcϊt\, we also have

(4.8)

j=2

~ίba = bcϊ\ we also have

i = 2

PROPOSITION 4. Under the conditions (4.1) and (4.2), we have

C 2 , l — C 3 , l — — C m , l ~ 1 '

In particular, we have

rP
μ —rp

μ — 1

PROOF. By (4.7), we see [c[/^], ά] = l. Hence we have the first assertion by using

(4.5) successively. It is apparent that we have the second in a similar way. By definition,

we see c{^l = cζΛ = \. To obtain cp^n=l, transform c{^ by forming the commutator

with b successively n — 1 times; then by (4.5) and (4.7), we have c1?^ = c{"n = 1. The proof

is completed.

PROPOSITION 5. Let peiJ be the exponent of cUj.

(1) If μ = v, we have

e1Λ

Γm-iΊ

LP-I J

(2) If μ<v, we have

lΛ

Γm-Π
iΛ<μ+ -—γ
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eUj<μ, n-\<j<n.

Here [r] for reQ is the largest integer which does not exceed r.

PROOF. First we show eiΛ<μ + [(m — i)/(p— 1)], 2<z<ra, by mathematical
induction on m — i. The case of m — i = 0 has been shown by the preceding proposition.
Suppose 2<i<m and that the statement is true for allm — k, i<k<m. By the preceding
proposition, we also have

To complete the induction process, it is enough to show that

( Όμ \ r m ~h rm-(f + fc-l)Ί

KpU-iJ i s divisible bypμ + ί P-I J
k J

for every k,i<k<m. This will be seen by the next lemma.

LEMMA 5. (1) Ifpe\k, then pμ~e\(

(2) If p% then

Ht-Di p^rm-(i+k-i)l e

P-I J p-i L p-i J
PROOF. For A:, 2<k<pμ, we have

> Λ / ^ M Pμ-(k-l)
k) \k-\J k

Hence (1) is easily shown by induction on k. As for (2), we have an equality,

since kp~e'{pe— \)/(p— 1) is a positive integer, (2) follows from this at once. q.e.d.

Now let us go back to the proof of Proposition 5. If μ = v, the third statement of
(1) is shown in the same way as the second was done above. Then the first immediately
follows from these, (4.7) and (4.8). If μ<v, we have c^Λ=cp^n=\ by Proposition 4.
Furthermore we also have c^π_! = 1 in the same way as we did for cp

1"n= 1. With these
and the second statement of Proposition 4, we easily obtain all of (2) by a careful
modification of the proof above to (1). Here we omit the detail.

From now on, we impose much stronger conditions on the orders of cUj given in
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Section 1 than what we saw in Proposition 5; namely, we suppose the following

additional relations

(4.9) c£-' ( ' ) = c f Γ μ v-tϋ)1 = l , l<i<m, \<j<n,

where t(i) is the maximal integer which satisfies the condition, pt(ι)<i<pt(ι)+ί. These

are so chosen, beside the condition C2a = U t n a t w e n a v e

(4.10) ^ = ^ = 1

and hence, automatically, all of the relations in Propositions 4 and 5, and that we have

small groups which seem easy to be handled. In particular, it follows from (4.7) and

(4.8) together with (4.4) that

(4.H) ft * i . i = Πtf+i.i = l
i = 2 / = 2

and

(4.12) ήcΐj+1=f\cϊj+1 = \.
3=2 7=2

P R O P O S I T I O N 6. If either q21 or r21 is not congruent to 0 modulo /?, then we

have m < 2 , i.e. c3Λ=cArΛ = ••• = !. Similarly, if either q12 or rίt2 is not congruent to

0 modulo p , we have n<2, i.e. cί3 = c1A= • • • = ! .

PROOF. Assume, on the contrary, that either q2Λ or r2Λ is not congruent to

0 modulo p and m>2. Then we have

CmΛ —Cm,l— l

by forming commutators of the first or the second term of (4.11) successively m — 3

times with a. Hence we should have cml = 1 in contradiction to the choice of m. The

latter half of the proposition is shown in a similar way.

5. Calculation of transfers. There are three types of minimal ones among those

normal subgroups H of G whose quotient groups G/H are cyclic:

Type 1: H= <asb) [G, G] , (5, p) = 1

Type 2: H=(asb}'[G, G] , s = s'pe, ( s ' ,p)=l , l<e<μ;

Type 3: H=(abs)ΊG, G] , s = s'pe, ( s ' , p ) = l , \<e<v.

PROPOSITION 7. The images of the transfer homomorphism

are given in the following list:
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Type 1: VG^H(a) = apμ lH, # ] , VG^H(b) = bpμ'lH, i ί ]

Type 2: VG^H(a) = apμ [iί, //] ,

3: VG^H(a) = a"λ fl c$2 x [fl, fl] ,
k = 2

where pλ = [_G:H~\, λ = m\n{μ + e, v}.

PROOF. Type 1: We have

9 and

Hence by the definition of transfers, we obtain the desired results at once.

Type 2: We have G = (a) H and [G:f/]=/7 μ . Hence we see VG^H(a)

apμ-[H, H]. Since asbeH, we have

In G/[H, H ] , the coset of asb commutes with each member of [G, G]/[H, H~\. Therefore

we may apply Lemma 2 to the right hand side of this equality with x = a and z = asb,

and obtain

VG^H(asb) = (asbr fl {ck-1ΛyM lH9Hl

k = 2

because [asb, a] = [b, a] = cϊ}.

LEMMA 6. If H is of Type 2, we have

moreover, for k>\,

(1) 6α s f c 6" 1 =α s f c (c[

1

s]

1)~Λ

(2) (asb)k = ask (cψΛ) ^2'

we read I 1 = 0 if k < i.

PROOF. It is clear that [//, H~\ is generated by [ c u , α s6] and [_cιp αsfo], 1 <i<m,

\<j<n. Since C 2 > 2 = 1?

 w ^ easily see [ c l f l , α s i ] = c[

2

sj1 c l f 2 , and [c i ( 1, α s6] = c j s | l f l ,

2<i<m, by Lemma 2, and also [clf</ , «
s6] = ̂ i, J + i , 2<j<n. Next we show (1). Since c 1 J ?

y<«, belongs to [iί, H ] , we have
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bab-1 =acϊlcU2==acϊl(cψΛy
1 mod [if, H

Therefore

ba'b~*= a\cψΛT VΪJi)" 1 mod[H, H] ,

because [cψΛ, ά] = cψΛ e [iϊ, # ] . Then

ΞαsVis,]iΓ VξfίiΓ^* * ^ mod[#, tf] ,

because [ c ^ a i s i c ^ f mod[H, H] by the last statement of Lemma 2. Finally (2)
will easily be shown by induction on k to utilize (1) because we have

ίcψΛ,b-^ = cl^(cψΛγ mod[ff,H]

and

The detail is omitted.

Now we resume the calculation of the transfer for H of Type 2. By (2) of this
lemma, we see

(asb)pμ = aspμ- bpμ mod[/J, H] ,

because pμ divides all of

{p7)-A(p:>(p:
in our case of s = s'pe, e>\. Therefore we have

Vβ^a'b) = a"r b>*> fί (ck_uiy^-lH,H^ .
k = 2

Since KG^H(«) = βpA4 [iί, H~\ as we have already seen, we obtain what the proposition
claims for H of Type 2.

Type 3: We have G = (b) H and <Z>> n/f = <Z>̂ > in this case.

LEMMA 7. If H is of Type 3, we have

[H, H] = <c2 ) 1 4s,}

2, c u , eft I

moreover, for k>\,
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(1) a-ιbska = bsk-{cfΛ)-k-{c{l]2)~s^ mod[H,/Γ|;

(2) μfΞ^.^ fc^'^ ίcϊy^1) mod[fί,tf].

PROOF. The proof may be carried out in a way similar to that of Lemma 6. It is

almost trivial to determine the commutator. As for (1), we have a~1ba = bc^\ by

definition, and hence a-1bsa = bs-(c{?]iy
1. Since [c{;]l9 b] = c{f]2 and [c^2,

ffe] =

c{;]3 e IH, / / ] , we have [c{{]l9 £>s] =(c{f]2)
smod[H, if] by the last statement of Lemma 2.

Then we obtain (1) immediately again by Lemma 2. The second and the third factors

at the right hand side of the congruence relation of (2) belong to //, and so does abs.

Hence they commute with each other in H/[H, i f] . The induction argument, therefore,

easily proves (2) by making use of (1).

Now in the same way as we did first for Type 2, we obtain

and

={abY
k = 2

because

and

Since pμ divides

we now have the desired results for H of Type 3 by (2) of Lemma 7. The proof is

completed.

PROPOSITON 8. (1) IfH is of Type 2, then

moreover, the p-th powers of these products are equal to 1.
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(2) // H is of Type 3, then

Furthermore if μ = v, we have λ = μ, and

ίΛe /?-//* powers of these products are equal to 1.

PROOF. (1): If A: is not a power of/7, then we have t(k— l) = t(k) by definition; for
k=p\ t{k- \) = t(k)-1. Therefore (1) follows from (1) of Lemma 5. As for (2), we see

pμ divide I I if k<pλ μ + 1, again by (1) of Lemma 5; furthermore if μ — v, we have
\k )

the conclusion for the same reason as that for (1) above.

6. Necessary conditions for (A). First we consider subgroups of Type 1.

PROPOSITION 9. ifH is of Type 1, then

[#, H] = (cs

2Λ-clf2, ciΛ9cUj\ 3<i<m

Hence we have

for every H of Type 1 if and only if we are in one of the following three cases:
(6-i) #2,i#ri,2~#i,2'r2,i=^0 mod/?; hence \<m,n<2;
(6-ii) (#2,i?

r2,i) = 0 and(q12,rlt2)φ0 mod/?; hence \<n<2\
(6-iii) (#2,i> r 2,i)#0 and(ql2, rι2) = Q mod/?; hence l < r a < 2 .

PROOF. If (5, p) = 1, then <cs> = <c> for each ceClΛ = [_G,G]. Therefore it is easy

to see by induction on m — i, i = 1, 2 , . . . , m, that

<45A \k = U ΐ + 1, . . . , /w> = <cΛ>11Λ = Ϊ, /+ 1, . . . , /w>

for 1 <i<m. Hence the first assertion of the proposition is clear because

cψΛ = c2Λ m o d < c M |fc = 3, 4, . . .,m> .

Then by Proposition 7, we have

and
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Since < c 2 j l >
 n LH> H~} = 1 a n d I <c2,i> I =Pμ> we see

[Ker KG^H: [G,G]] = [G: if ]

for every H of Type 1 if and only if

(02,i -s-qlt29 r2Λ - J r l f 2 ) # ( 0 , 0) mod/?

for every 5, (s, p) — 1; evidently, this happens if and only if either the two vectors (#2,i>
 r2,i)

and (^ l f 2, r l t 2 ) are linearly independent over Z//?Z or one of them is equal to (0, 0) and

the other is not. In the former case, neither one of the vectors is equal to (0, 0); by

Proposition 6, therefore, we have 1 <m, n<2. This shows (6-i) of the proposition. The

rest is now also obvious.

PROPOSITION 10. If the condition (A) is satisfied, then we have either m = 2orn = 2.

PROOF. Suppose that n is equal to 1, and take an H of Type 3. Then by Lemma

7, we have

therefore by Propositions 7 and 8 together with (4.3), we see that VG^H: G-*Hj[H9 H~]

is trivial, i.e. Ker VG^H = G. Hence (A) is not satisfied. If m— 1, we similarly see that

VG^H is trivial for every H of Type 2. The proposition now immediately follows from

the preceding one.

Now suppose that n = 2 and that H is of Type 3. In this case we have

by Lemma 7 because c^]2 — c\ 2 . Since pd—1=2 if and only if p = 3 and d= 1, and since

ίpμ\
pμ divides I I if p φ 3, we obtain

and

by Propositions 7 and 8; here δλμ is Kronecker's δ. Note also that μ<λ if μ<v. Since

p divides s in this case, simple observations show us the following proposition.

PROPOSITION 11. Suppose that n = 2. Then we have

for every H of Type 3 if and only if we are in one of the following three cases:

(6-iv) μ<v and rί2^0 mod/?;

(6-v) either μ = v and/?>3, or, μ = v > l andp = 3, and(qί2, rί,2)#(0, 0) mod/?;
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(6-vi) μ = v=\,p = 3,and(qU2,ria)φ(-\,0)modp.

By a parallel argument, we obtain

PROPOSITION 12. Suppose that m = 2. Then we have

for every H of Type 2 if and only if we are in one of the following three cases:

(6-vii) μ<v and {q2Λ, r 2 f l ) # ( 0 , 0) mod/?;

(6-viii) either μ = v andp>3, or, μ = v>\ andp = 3, and {q2Λ, r 2 f i )#(0, 0) mod/?;

(6-ix) μ = v=l,p = 3, and (q2tl, r 2 > 1 )#(0, 1) mod/?.

The proof is omitted.

7. Groups with the conditions (A) and (B).

7.1. Simply summing up the results in the preceding section, we have a necessary

and sufficient condition for (A) when m = n = 2.

THEOREM 1. Suppose m = n = 2. Then the condition (A) is satisfied if and only if

we are in one of the following five cases:

(I) μ<v and rlt2-(q2tίΐrίt2-qlt2 r2Λ)φ0 modp;

(II) e i t h e r μ = v a n d / ? > 3 , or, μ = v > l a n d /? = 3 , a n d q2,ι'r12 — q12

9r2 x φ 0

mod/?;

(III) μ = v = 1, p = 3, and either one of (IΠ-l)-(ΠI-3):

(IΠ-1) q2yrul-qia-r2Λφ0, (q2Λ, r 2 f l ) # ( 0 , 1) am/ teu,rli2)#(-l,0) mod/?;

(IΠ-2) ( ί 2 t l , r 2 i l ) = (0,0) mod/? α«rf ( ί l § 2 , r l f 2 ) # ( 0 , 0) nor ( - 1 , 0) mod/?;

(ΠI-3) ( ί l t 2 , r l t 2 ) = (0, 0) mod/? and (q2Λ, r 2 f l ) # ( 0 , 0) «or (0, 1) mod/?.

Furthermore, the condition (B) w ΛZSΌ satisfied in every one of these cases.

PROOF. All except the last assertion of the theorem easily follow from Propositions

9-12; we omit the detail. To see the last assertion, put

a — a , o — o , c l f l — c l f l c l f \ c ί t 2 , c 2 ) 1 - c 2 ) 1 , c ι , 2 ~ c i , 2 >

it is easy to see that these new generators of the group under consideration satisfy all

and the same relations as the original ones α, b, c1Λ, c2Λ and c12 do. Hence we have

a desired automorphism φ by assigning xφ to each member x of the last system of

generators. The proof is completed.

REMARK. In (III) of the theorem, we see anti-symmetry which is caused by the

relation, [b, a~] = [α, b~\ ~1.

PROPOSITION 13. Let the assumptions be as in Theorem 1, and suppose that one of

the conditions (I)—(III) is satisfied. Then for any subgroup N which contains [G, G], the

transfer homomorphism VG_>N: G-*N/[N, AT] is not trivial unless N coincides with [G, G].
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PROOF. First let us consider the case (I). For a subgroup of the form

it is easy to see [JV, ΛΓ] = < c ^ " *> because/?" </?v~ *. Let us take / / = (abs) [G, G]; then

we have λ = v for this //, and hence

as we saw just above Proposition 11. Since cia belongs to the center of G, we have

Therefore VG^H is not trivial because r 1 > 2 # 0 mod/? by assumption. For N=

<β p μ" 1> [G, G], we can similarly see VG^N(b)φ\ by using

For 7V= (bpV~ ιy [G, G], we have [iV, N ] = <c£2~'> = 1. Take /ί = <fe> [G, G]; then we

see

by Proposition 7. Hence by the same reason as above, we have

Since A Ί , 2 ^ 0 mod/>, we see V

Next we consider the cases (II) and (III). If μ = v= 1, then our proposition is ob-

vious because G/N is cyclic unless Λ^=[G, G]. Suppose μ=v> 1; we are in the case of

(II). For

we have [JV, JV] = < c £ ~ ' - c ^ " ' > ,

( α n p μ " I [W, ΛΓ]

and

by using J^=<αZ)s> [G, G] of Type 1. Since we have

we see that
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(sm<Ϊ2,i+<li,2> S'r2Λ + rίt2)φ(090) mod/7.

This shows that VG^N is not trivial. When TV is equal to either <Λpμ"1> [G, G] or
(bpμ~ι}-[G, G], we easily check it in a similar way, and complete the proof.

7.2. The case of μ= 1: In this paragraph, we assume μ= 1.

LEMMA 8. For pe,e>\, we have

and

PROOF. Since/? divides I I for each k, \<k<pe, we have 4 p

\ k )
definition. Hence we see the first equality. The second is also clear by definition.

First suppose m>2 and n = 2. Since we have Propositions 9 and 11, it is enough
to study VG-+H for H of Type 2. There exists only one such subgroup because μ= 1,
namely, #=<6> [G, G]; we have [//, # ] = <c1>2>,

and

by Lemma 6 and Proposition 7. Here we should assume

(7.1) to2.i>r2.i) = (0,0) mod/?,

because of Proposition 9, (6-ii). Actually we must have

(7.2) ?u= r u=°>

and (7.1) is included in this because of our assumption, m>2. We see (7.2) from the
relations

m rn

Li+l,l 1 1 c f + l , l *
i = 2 i = 2

of (4.11) by the same argument as in the proof of Proposition 6. Note also that we
must have m<p—\ automatically from the assumption (4.9) on the order of cUy
Therefore we obtain
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and

Vβ^b'"-ι) = crχ c-p:\-ylH, ff]

here cp_ίΛ = 1 if m<p— 1; note that 3<m<p—\ only if/?>3. It is now clear that we

have (IV) and (VI) of the following theorem.

THEOREM 2. Suppose μ=\ and either m>2 or n>2. Then the condition (A) is

satisfied if and only if we are in one of the following seven cases:

(IV) μ = v=l,/?>5, 3<m<p-\, n = 2 and

m-l ,

^ θ )

(V) iu = v=l,/?>5, m = 2, 3<n<p-\ and

(02,i> ^2,i)#(0,0) mod^, tei^r^J^ί-^^^O) mod/?;

(VI) μ=l<v,/?>5, 3<m</?-l, « = 2 and

ai,i=ri,i=0' \<i<m-\ ,

(0m,i'rm,i)#(°'°) mod/7, r 1 § 2 # 0 mod/7;

(VII) μ=\<v, p>3, m = 2, 3<n<p and

0,0) mod/?, r l i Π #0 mod/?;

(VIII) μ=\<v,p>3,m = 2,n=p+l and

r 2 > 1 =0 mod/?, ^ 2 ,Γ r i ,n#^ mod/?;

(IX) μ=l<v,/?>3, m = 2,/?+l<«</? v -l, nφpe+\for \<e<v ifv>3, and

^2,Γri,n#0 mod/?;

(X) μ=l<v,/?>3, m = 2, n=pv-\ and

r 2 5 ! # 0 mod/?.

Furthermore, in every one of these cases, the condition (B) is also satisfied if and only if

both of m and n are even integers.
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PROOF. The two cases (IV) and (VI) have been shown. Suppose now m = 2 and

n>2. Then for the reason which is parallel to that for (7.2), we have

(7.3) qlj = r ι J = 0, \<j<n-\.

Since we have Propositions 9 and 12, it is sufficient to study VG^H for H of Type 3, i.e.

//=<^S> [G,G], s = s'pe, (s',p)=\, \<e<v.

Take an integer t such that t-sf= 1 mod/?. Then we have

and

IH, / ί ] = <c'2>1 c[% c

Then by Lemma 8 and its proof, we easily see

[//,if] = <c ί

2 ) 1 c 1 ^ + 1 , c 1 J | 7

Hence by Proposition 7 and (7.3), we obtain

= a>x- f ί (c 1 Λ _ 1 )^ ) [H,H] = c4

2

where pλ = [G\H~\, Λ, = min{l +e, v}; note that (4.9) gives n<pv — 1. Since Λ,= l if and

only if v = μ = 1, we always have c~s

pe

q+Ί'pλ x' = 1. Therefore

F G . H ( α ) = cί

1', " p Λ - 1 c1,pΛ_1 [ H , H ] ,

Suppose v = μ = 1. Then cγ pe+ι = 1. Hence we easily obtain (V) by Propositions 9 and

12. Next suppose v > μ = 1. Then we always have λ > 2 and hence cj 1 ;" '^ x = 1. For e = v

we have λ = v and clpe + 1 = 1; therefore VG^H is not trivial if and only if either n =pv— 1

or rx „ ^ 0 mod p. For e < v — 1, we have λ = e+l andpe + 1 <pλ— 1 hence c1 >p* _ x belongs

to [H,H~] by Lemma 8, and VG^H(a)=l in this case. If n=pv— 1, therefore, c l f I I also

belongs to [H, H ] ; hence VG^H is not trivial if and only if r2Λ ψ 0 mod/7; this gives (X).

Suppose n<pγ— 1 and rlnφ0 mod/7. Then it is easy to see that we have VG^H{bpλ>~λ)φ 1

for every s' and for every λ with e < v — 1 if and only if either one of the following three

conditions holds: (1) 3<n<p+l; (2) « = / ? + l and r 2 > 1 =0mod/7; (3) n>p+l,

nφpe+\,2<e<v-\, and r2Λ#0mod/7. These correspond to (VII), (VIII) and (IX),

respectively.

Finally let us study the existence of a claimed automorphism. We have two relations
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By Lemma 3, therefore, it is easy to see that the condition for the existence stated in
the theorem is necessary; note that p is odd and that the condition may be automatically
satisfied like in the cases (VIII) and (X). It may be seen by a straightforward way that
a good automorphism φ is well defined by

k = 2

Clk

if the condition is satisfied. The detail is omitted.

REMARK. The cases (IV) and (V) obviously give pairs of isomorphic groups.

7.3. The case of μ = v = 2: In this paragraph, we assume μ = v = 2. Because of the
anti-symmetry, we only consider the case, m > 3 and n = 2. First of all, we have m <p 2 — 1
by our assumption (4.9) on the orders of cuj.

THEOREM 3. Suppose μ = v = 2, m>2 and n = 2. Then the condition (A) is satisfied
if and only if we are in one of the following three cases:

(XI) μ = v = 2, p>5, 3<m<p—l, n — 2 and

0m.r''i,2-0i,2-'Im,i#O mod/?

(XII) μ = v = 2, p<m<2{p-\\ n = 2 and

tfu = r u = 0 > \<i<m-\ ,

qmΛφ0 mod/7, falf2, r l f 2)#(0,0) modjr;

(XIII) μ = v = 2, 2/7-1 <m<p2-\, n = 2 and

0m.Γ tfi.2 # 0 mod/7.
Furthermore, in every one of these cases, the condition (B) w βfa6) satisfied if and only if
m is an even integer.

PROOF. Because of Propositions 9 and 11, we need only to study the subgroups
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iϊ=<flJ6> [G,G], s = s'p, (s',p)=l,

and

#=<6> [G,G]

of Type 2. For the former H, take an integer t such that t-s' = 1 mod/?. Then we have

#=<ύW> [G,G]

and

For the latter, [H, H] = <c1>2>.

LEMMA 9. (I) We also have

(7.4) ^ 1 = r . 1 =

ι« /Λe present case;

(2) If3<m<p—l, then we have

(3) If p<m<p2 — \, then ciΛ, i>2p—\, belongs to

for p>3, moreover, we have

PROOF. If 3<m<p— 1, the orders of c u , 1 <i<m, are same, and equal to p2.
Therefore the argument for (7.2) given in the preceding paragraph shows our (7.4). If
m>p—\, it is clear that we have at least

<2i,i=ri,i=Q mod/?, \<i<m— 1,

in place of (7.4); hence by (4.11) we also have

'nc?ri.i='n^i.i = i;

then by forming commutators of these products with a successively, we obtain cq

p

2^\ χ =
1; since the order of cp^1 Λ is p2 by assumption, we must have q2 Λ=0modp2 and,
equivalently in this case, q2Λ =0; repeating the process, we finally attain (7.4). The proof
of the assertion (2) will be easy enough to be omitted. If p< i<m, we have cfΛ = l and
hence

r[p] _ rP , r
Cp-I,ί—Cp-1Λ C2(p-l),l
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and

r[p] —r r[p] —r

This shows (3). q.e.d.

Let us resume the proof of Theorem 3. By Proposition 7, we have

^ ^ β l s / s ^ ' c' ί mod[tf, iί],

and

First we consider the simpler case, //=<&>-[G, G]; [H,H] = <c l f 2>. If m</?-l , then

Im VG^H is a subgroup of a cyclic group <cmfl> [/f, # ] / [ # , H] of order /?2; hence we

have

if and only if

because^lj ) by Lemma 5, (1). If p—\ <m<p2 — 1, then Im VG^H is contained in
\ P /

a direct product of two cyclic groups of order p; since VG^H{b) is a non-trivial element

which does not lie in <cTOfl> [H, H], we see that

if and only if qml φθ mod/7.

Next we consider the case of //=<αpZ?ί> [G, G] with

Since the orders of c u , i>p, are at most/?, c[

2

p\ is also of order p; in particular, we have

hence the order of cia'[fl, # ] in H/[H, i ί ] is equal to p. If 3<m<p— 1, then we see

by (2) of Lemma 9 that the order of cm !*[//, H~\ in H/[H, //] is equal to p; since

\(P2\p\\ andp>3, we have
\ P )
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in this case; hence

[Ker KG^H:[

if and only if

<lmΛmri.2-<li,2 rmΛφ0 mod/7.

If /? — 1 <m<p2 — 1, we see by (3) of Lemma 9 that cp2-1Λ is contained in [//,//].
Suppose /?> 3. Then also by (3) of Lemma 9, we see

2 '

if m<2(p— 1) because ( \ p~ι = \ mod/?, and

if m > 2(p — 1); therefore

if and only if either
(i) p-\<m<2(p-\)andqmΛ'rU2-qU2 (rmΛ+δma{p_ί))φ0modp, or

(ii) 2(/?—l)<w</72 —1 and #! 2^0 mod/?.

Finally suppose/?—1 <m<p2 — \ and/? = 3. If m<2(p— 1) = 4, we have

because c{

2

p\=cp

2Λ'CArΛ. If 4<m<p2— 1=8, we have

Therefore

[ K e r K G _ H : [ G , G ] ] = [ G : i ί ] for every //,

if and only if VG^H is surjective for every H\ this is the case if and only if either
(i) 3<m<4and qmΛ (rU2± \)-qU2'(rmΛ + δmA)ψ0 mod/?, or

(ii) 4<m<p2— 1 =8 and #i, 2 #0 mod/?.
One may now easily obtain the three cases (XI)-(XIΠ) of the theorem by summing
up our results here together with Propositions 9 and 11.

As for the last assertion of the theorem on the condition (B), one can demonstrate
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it in the same way as we did in the final portion of the proof of Theorem 2. The proof

is completed.

REMARK. It is an easy exercise left to the reader to show the existence of all of

the groups on the lists of Theorems 1-3.

8. An application to the capitulation problem. Let F be an algebraic number field

of finite degree. As is well known, every ideal of F becomes a principal ideal in the

Hubert class field of F\ in other words, every ideal of F is represented by an actual

number of the class field. In his short notes [Iw] of lively interest, Iwasawa gave infinitely

many examples of totally real F such that there exists a proper subfield of the Hubert

class field of F in which all ideals of F already become principal. It has not yet been

shown, however, that such an imaginary quadratic number field exists. It is natural to

consider the "/?- version" of the problem for each prime/?. In the case of/? = 2, Iwasawa's

method in [Iw] for real quadratic fields may also allow us to obtain the desired examples

of imaginary quadratic fields. As for odd /?, however, it seems necessary to find a new

approach not only for imaginary ones but also even for real ones as far as quadratic

number fields are concerned.

Now let F be an imaginary quadratic number field, F the Hubert /7-class field of

F, and F the second p-class field of F, as in Section 2; put G = Ga\(F/F). Then F is an

example of this sort if

(C) there exists a subgroup N of G which properly contains the commutator

group [G, G] of G and for which the transfer homomorphism

VG^N: G^N/IN, N ] is trivial;

(cf., e.g., [Mi2]). Hence we can group-theoretically examine whether F is a desired

example or not once we are given G = Gal(F/F). Here let us single out from our candidates

for Gal(F/F) given in Theorems 1 and 2 a small group which satisfies this condition (C).

We have already seen by Proposition 13 that the condition holds for none of the

groups of Type (I)—(III) of Theorem 1. When μ = v = l , G/N is always cyclic if N

properly contains [G, G]; hence (C) does not hold because of the condition (A). Therefore

groups of Type (IV) or (V) of Theorem 2 are not what we want. Let us restrict ourselves

to the case μ = l . Then N=(bpV~ιy [G, G] is the only minimal subgroup for which

G/N is not cyclic.

PROPOSITION 14. Let G be one of p-groups on the lists of Theorems 1 and 2. Then

G satisfies the condition (C) if and only if G is of Type (VIII) with v = 2. If this is the

case, G satisfies both of the conditions (A) and (B); G is of order pp + 5, and G/[G9 G] is

of type (p, p2).

PROOF. Take H= <ό> [G, G]. Since H is of Type 2 in the sense of Section 5, we

easily see
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VG^b) = b' c;}ul lH9Hl, or = 6 ' (<:2fl)-(5)-|7f, ff] ,

respectively, in the cases of (VI) and (VII)-(X), by Proposition 7. (Note that cp_1Λ = 1

if m<p—\.) Since ap and either c^-^i or c2Λ lie in the center of the corresponding

group, we have

VG^{a)= VH^N(VG^H(a))= VG_H(aYv-ι [N, ΛΓ] = 1

and similarly

F G ^(6)=O" V [ J V , Λ Π ^ ' c ^ p v , * ] ' o r =c22,i•cV. CΛf,JV]

In the case of (VI), we always have [ΛΓ, Λf ] = 1; hence VG^N(b) Φ1 because rx 2 ψ 0 mod/?.

In the case (VII), we also have the same because [ΛΓ, JV] = 1 and r l π ^ 0 m o d / ? . In the

case (VIII), VG^N is neither trivial for the same reason if v>2; if v = 2, however, we

have [iV, AT] = <c1>π> and r2Λ =0 mod/?; therefore F G ^ N is certainly trivial. In the cases

(IX) and (X), we have r2Λφ0modp; therefore VG_+N(b)φ\. The proof is completed.

COROLLARY. Let F be an imaginary quadratic number field, F the Hilbert p-class

field of F, and F the second p-class field of F. If Gal(F/F) is isomorphic to G of Type

(VIII) with v = 2, then the p-clαss group of F capitulates in a proper intermediate field of

F/F.

Finally we raise two naive problems to close this paper.

PROBLEM 1. Give various types of /?-groups of small orders which satisfy the

conditions (A) and (B).

PROBLEM 2. Do there exist imaginary quadratic number fields F with

G^Gal(F/F) for every small /?-group G satisfying (A) and (B) ?
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