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Abstract. Let p be an odd prime. We give a list of certain types of p-groups G
with two generators which satisfy the following two conditions (A) and (B): (A)
[Ker Viopy:[G,G]1=[G:H] for the transfer homomorphism V;_,: G—H/[H, H] of
G to every normal subgroup H with cyclic quotient G/H, and (B) there exists an
automorphism ¢ of G of order 2 such that g¢*! € [G, G] for every g € G. These conditions
are necessary for G to be the Galois group of the second p-class field of an imaginary
quadratic field. The list contains such a group that it may be useful for us to find an
imaginary quadratic field with an interesting property on the capitulation problem.

1. Introduction. We fix an odd prime number p, and consider a finite metabelian
p-group G with two generators which satisfies the following two conditions (A) and (B):

(A) For every normal subgroup H of G with cyclic quotient G/H, the index
[Ker Vgop:[G,G]] for the transfer homomorphism Vi_.y,:G—H/[H, H]
coincides with the index [G:H];

(B) There exists an automorphism ¢ of G of order 2 such that g®*?! belongs to [G, G]
for every geG.

It is known as Hilbert’s Theorem 94 that the former index in (A) is a multiple of the
latter (cf. Suzuki [Su] for the general case); therefore, the condition (A) claims the
extreme for the normal subgroups H of the kind. If G is abelian, then it satisfies (A) if
and only if it is a cyclic group. It is also easy to see that G is not a metacyclic group
if it satisfies the condition (B). On his list in [Ja], roughly and boldly speaking, James
gave bout 500 types of p-groups of order up to p®; however, we find only 8 of them
with two generators satisfy both of (A) and (B).

In this paper we determine all of such groups of the following form with either
one of the three conditions, (1) m=n=2, (2) u=1<v, and (3) u=v=2 (Theorems 1-3
in Section 7, respectively):
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G=<a,b,c;y,c ;| 1<i<m,1<j<n),
[a,b]=c, Leial=civ1 s [Cl,j’ b]=cl,j+1 5
[ci+1‘19b]=[cl,j+1aa]=[ci,1, C1,j]=1 s

Cm+1,1=Crns1=1,
e @i " ris
a”=[lety, bor=[]cly,
ij ij

4ijprij€Z, (i—1)j—-1=0,

pH—th) pmin{u,v-t(D} _
Cii  =Cy,j =1,

p<v, 1<i<m,1<j<n,

where t(i) is the maximal integer which satisfies the inequality,
pt(i)Si<p'(i)+1

They consist of 13 families; 3 of them are classified with the condition (1), 7 with (2),
and 3 with (3). As for the groups on the list of James, all of them belong to the first
class of ours. It may be remarkable that we have either m=2 or n=2 under the condi-
tions (A) and (B) (Proposition 10 in Section 6).

In Section 2, we explain the arithmetic background.

In Section 3, we give some basic lemmas.

In Section 4, we see some fundamental structures of metabelian p-groups with two
generators.

Section 5 is devoted to calculations of transfers of our groups to three types of
subgroups. From the results, we extract some necessary conditions for (A) to be satis-
fied, and show it in Section 6. Our'three main theorems are given in the big Section 7.

In the final Section 8, we show a proposition on the capitulation problem in
imaginary quadratic number fields.

2.  Arithmetic background. Let F be an imaginary quadratic number field, F the
Hilbert p-class field of F, and F the second p-calss field of F; hence F is the maximal
unramified abelian p-extension of F, and F is that of F. We denote the Galois groups,
Gal(F/F) and Gal(F/F), simply by G and by 4, respectively; A4 is isomorphic to G/[G, G].
By class field theory, the Artin maps give isomorphisms of 4 and of [G, G], respectively,
onto the p-primary parts, CI”(F) and CI”(F), of the ideal class group CI(F) of F and
that of F. Let K be an unramified abelian p-extension of F and H the corresponding
subgroup of G; then H/[H, H] is isomorphic to the p-primary part C1?(K) of the ideal
class group CI(K) of K by the Artin map for K. We have a natural homomorphism

Jxr: CI(F)—>CI(K)
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defined by regarding ideals of F naturally as those of K. By the Artin maps of F and
of K this is transformed to the homomorphism

V6-n: G/[G, G1-H/[H, H]

which is naturally induced from the transfer V_y of G to H (cf., e.g., Miyake [Mi2]);
therefore the order of the kernel of jk, coincides with the index [Ker V.4 :[G, G]].
Hence we see that G = Gal(F/F) satisfies the condition (A) given in the preceding section,
by the following proposition.

PROPOSITION 1. Let K be an unramified cyclic extension of odd degree of an
imaginary quandratic field F. Then the order of the capitulation kernel, |Ker jg |, is
equal to the degree [K . F].

ProOF. Since K/F is unramified and cyclic, we have
| Keij/F |=[K:F][Ep: NI(/F(EK)]

where Ep and Ey are, respectively, the unit groups of F and of K, and Ny, is the norm
map (cf., e.g., Schmithals [Sch]). We have Ep = { + 1} because Fis an imaginary quadratic
field; (note that the field of the third or the fourth roots of 1 has the class number 1).
Therefore we have [Ep: Ny (Eg)] =1 because [K: F] is odd by the assumption. q.e.d.

Next let us see that our group G=Gal(ﬁ/F) satisfies the condition (B) given in the
preceding section. Take an element p of order 2 in Gal(ﬁ/Q); this induces the non-trivial
automorphism of F. The inner automorphism of Gal(f”/Q) defined by p induces an
automorphism ¢ of G=Gal(F/F) and an action of p on 4=Gal(F/F). We also have a
natural action of p on CIPX(F). The Artin isomorphism of CI’F) onto A4 is then
compatible with these actions of p. Hence we have the desired result by the following
proposition due to Suzuki.

PROPOSITION 2. Let F be a quadratic extension of an algebraic number field F, of
finite degree, and denote the non-trivial automorphism of F|/F, by p. Let ¢ be an element
of the ideal class group CI(F) of F, and suppose that its order is relatively prime to the

class number hg, of Fy. Then we have ¢®=c™'.

PrOOF. It is clear that ¢'*# belongs to jrr (CI(F)) and has the order relatively
prime to hp, =|Cl(F,)|; therefore, it must be equal to 1. Hence we have ¢?=c™'.

q.e.d.

_ Ifthe p-class group C1'”(F) of an imaginary quadratic field Fis cyclic, then we have
F=F because a cyclic group does not possess any non-abelian central extensions. If
CIP(F) is of type (p*, p*), 1 <pu<v, however, F is actually bigger than F.

PROPOSITION 3. Let F be an imaginary quadratic field and suppose that C1P(F) is
of type (p*,p*), 1<u<v. Then F has an unramified Galois extension whose group is
isomorphic to D={a, b, c; ),
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[a,b]=cy,1, [a, 01,1]=[b,01,1]=ap“=bpv=c‘1,:‘1=l .

The proposition is an easy consequence of Nomura [No, Th.1]. In fact, apply the
theorem to our case step by step starting from E=D/{c% ), and then E=D/<c‘1’f1>,
and so on. Here we omit the detail. Also cf. [Mi3, Theorem 1 and its proof in Section 3].

The group D of the proposition, however, does not satisfy the condition (A).
I~1
Therefore Gal(F/F) must be a non-trivial extension of it. This paper grew out of the
author’s search for some candidates for Gal(ﬁ/F).

3. Basic lemmas. To examine whether the condition (A) is satisfied or not, it is
not necessary to study all of the subgroups of the kind.

LEMMA 1. Let G be a finite group and H a normal subgroup of it. Suppose that
G/H is cyclic and that we have

[Ker V4_py:[G, G]1=[G: H].
Then for every subgroup N which contains H, we also have
[Ker Vson:[G, G]]=[G:N].
ProOF (by Suzuki). It is well known that we have an equality,
[Ker Vg_p:[G, G11=[G: H]-[(H/[H, H])®:Im V. 4],

if G/H is cyclic in general. (E.g. check the formula for ¢ in the case H=A4 in Miyake
[Mil, p. 88], and apply [Mil, Lemma 5, p. 89].) Hence we also have

[Ker Vgon:[G,G11=[G:N]-[(N/[N,N))¢:Im V4_,] .
We are given
(H/[H, H))°=ImV5.y
by the assumption on H of the lemma, and must show
(N[N, N1 =Im V_y .

For simplicity, we may assume [H, H] =1 by replacing G with G/[H, H] if necessary.
Take an element g of G such that G=<{g)-H, and put d=[G:N]. Then we see

N={g">-H
and
[N,N]=H""1.
Since <{g*>+[N, N]/[N, N] is contained in (N/[N, N])¢, we have
(N/[N, N1)°=(g*>-[N, NJ/IN, N1)-(H/IN, N1)° .



p-GROUPS WITH TWO GENERATORS 447

Hence it is sufficient to show
(H/[N,N]))°cIm Vg_y

because the coset g?-[N, N] is equal to V;_x(g) and belongs to Im V;_ 5. Let x be an
element of H such that the coset x+[N, N] belongs to (H/[N, N])¢. Since

x9"'e[N,N]=H*""1,

there exists an element y of H such that
x9°1 =yg"— 1 zy(y"‘ T+gd=2+ -+ 1)g-1)
Then x-y~@*""+9°7 2+ *+1) pelongs to HC. Hence there is an element z of G such that
X'y_(gd_ T4gd-24. 1) _ VG_.H(Z)
because of the assumption, H®=1Im V_ . Since y belongs to N, we have
p G-H
Vooun(y)=yo T2+ *1.[N, N]

by the definition of the transfer homomorphism. For simplicity, put u=g% and
e=[N:H]. Then we have

VG—)H(Z)z(VG—-N(Z)’[N, N])u2~l+ue—2+.,,+1 ’
and hence, in H/[N, N1,
VG—»H(Z)-[N, N]= VG_.N(Z“e_l+“E_Z+"‘+1)

(cf. [Mil, Proposition 3] with the inner automorphism ¢ of G defined by v/, 1 <<
e—1). Thus we have obtained

X [N,N]=Vg py-z* "t helm Vg, y .
The proof is completed.

In this paper we frequently use the following well-known lemma. A proof of it is
found in Blackburn [BI].

LEMMA 2. Let x, y and z be elements of a metabelian group. We have
[z x]1, y1=[lz, y], x] and [ yz, x]=[y, x]-[z, x] if z commutes with [x, y]. Put

71=[Z’x]a ))i=[‘yi—1>x]s i=2a3,"-7
and suppose that z commutes with each of y;, i=1,2,.... Then we have

()

-1

. . i i S J
(xz)j=xj.zx1 4 xJ “"'“=x"z"y1(2)"'yj

and
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For the condition (B) of Section 1 to be satisfied, we have a useful necessary
condition. Let G = {a, b) be a finite metabelian p-group with two generators, and put

[a,b]=cy,,

[eijpal=civrj> Leipbl=cijirs
for i,j=1,2,3,.... The first statement of the preceding lemma assures that these c; ;
are well defined. Put

Cij={cyp|u=ii+1,i+2,...,0=j,j+1,j+2,...)
and |
Cij=Lcu|u=i,i+1,i+2,...,v=j,j+1,j+2,..., and (4, v)#(i, j)>

fori,j=1,2,3,.... These are abelian normal subgroups of G.

LEMMA 3. Let the notation and the assumptions be as above and suppose that G
satisfies the condition (B). Then for i,j=1,2,3,..., we have

cfi=ci;  mod Cj .
Proor. We proceed by mathematical induction on i+j. First of all, note that

¢;;=11if i+j is larger than the class of G. Let x and y be the elements of [G, G]=C, ,
such that a®=a"'x and b*=5b"'y. Then we easily see

c‘f,l :[a(/l, b‘P]:[a—lx’ b_ly]
=[a" L b7 ] [x, b7 ][y~ a™']
=[a "% b7'] modC,.

Since [a™ !, b~ ']=bac, ja~'b"'=c, *[c,,,a” 'b~ '], we have the congruence relation
of the lemma for ¢, ;. By definition, we have

ety =Lt a®]=[c?; a 'x]=[c?;,a '],

i,j> i,J°
and
C:"fj+1= [C:!:j’ b?]= [ngs b~ 1}’] =[C$j, b_l] .

The desired relations for cf,, ; and cf;,, now easily follow from the induction hypo-
theses and the next lemma.

LEMMA 4. The notation and the assumptions being as above, we have
0 a0
-1 1) -1 -1y,
aciia t=[] i3V, and be,p™'= T[] G805
u=0 u=0

hence, in particular, we have
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[C a- ]CC1+11 and [Clp 1]CC1]+1

i,jo

Proor. The first equality is easily obtained if we study the conjugate of the right
hand side by a. The second will be also clear in a similar way. The rest follows from
these two equalities at once.

4. Metabelian p-groups with two generators. Let G={a, b) be a finite metabelian
p-group with two generators, and let the notation be as in the preceding section. We
consider the case of

4.1) C,,=1, ie ¢ ;=1 if i>2 and j>2,

and take such m and n that c, ,#1, cl,,,';él and c¢,4+1,1=C1,+1=1. We suppose,
furthemore, that G/[G, G] is of type (p*, p*), 1 <u<v, ie.

4.2) —H e, b”"=H ey,
i,j
4ij rij€Z, 1<i<m, 1<j<n.
Throughout this paper, we assume

4.3) g1.1=r,1=0, ie a”, b"eC|,=G,=[[G,G],G],

because of Lemma 3 for G to satisfy (B). Since a?” (resp. b7”) commutes with a (resp. b),
we must have

(4.4) [[2 i+11=1 and H cljer=1.
For an element c; ; of C, ; =G,=[G, G] and for a positive integer k, we denote

time.cd) o)

l+1j :+k 1,j°

and

M ._c(l) (3) ...H

l]+1 11+k 1°

It is clear that we have

[cEkJ]’ a] C[ﬁl_ 1,j 5
[CP‘J]’ b]—cEk,]+1 (=c{“,j+1);
[c(k} a]=C§'21j (=C{"+ 1,j);

[cfd, b1=clss

(4.5)

(4.6)

Since b~ 'ab=ac, ,, we have by Lemma 2
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“1gp*p — P  clpH)
b™a?b=a?"c?),

and hence by (4.2) and (4.3)

4.7) =TI et
j=

Similarly with a~'ba=bc{ ], we also have

(4.8) =11 ey

and

In particular, we have
chi=ct=1.

PrOOF. By (4.7), we see [c7, a]=1. Hence we have the first assertion by using
(4.5) successively. It is apparent that we have the second in a similar way. By definition,
we see c'!=c2 =1. To obtain c2%, =1, transform c{}} by forming the commutator
with b successively n— 1 times; then by (4.5) and (4.7), we have cll”, M= c%,=1. The proof
is completed.

PROPOSITION 5. Let p® be the exponent of c; ;.
(1) If u=v, we have

oo = 2 L)

e,-,lsu+[m_l}, 2<i<m,
r—1
n—j .
p—1

Q) If u<v, we have

R P e R SRt |
ey <minqu+maxq| —— |, v+ s, V+maxqu+| ——|, >
p—1 p—1 p—1 p—1

m—i .
ei,lslu+[ ]9 2S1Sma
p—1
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e ;<u, n—1<j<n.
Here [r] for re Q is the largest integer which does not exceed r.

Proor. First we show e, <p+[(m—i)/(p—1)], 2<i<m, by mathematical
induction on m—i. The case of m—i=0 has been shown by the preceding proposition.
Suppose 2 <i<m and that the statement is true for all m—k, i <k <m. By the preceding
proposition, we also have

c[ —010«321' ~117=1.
To complete the induction process, it is enough to show that

m—i m=(+k=1)
< . ) p[,, 1] is divisible by p“+[ ]
for every k, i<k <m. This will be seen by the next lemma.
pl‘
LemMa 5. (1) If p°|k, then l’”_e|< X )
2

I:m—z]z[m—(l+k—l)]+kp_e.p —IZ[m_(l+k_l)]+
p—1 p—1 p—1 p—1

Proor. For k, 2<k<p*, we have

<p“>=< p* ),p“—(k—l)
k k-1 ko

Hence (1) is easily shown by induction on k. As for (2), we have an equality,

m—i=m—(i+k—1)+kp ¢ —1)+kp~¢-(pc—1);
since kp~¢+(p°—1)/(p—1) is a positive integer, (2) follows from this at once. q.e.d.

Now let us go back to the proof of Proposition 5. If u=v, the third statement of
(1) is shown in the same way as the second was done above. Then the first immediately
follows from these, (4.7) and (4.8). If u<v, we have c&, =c%,=1 by Proposition 4.
Furthermore we also have ¢4, _; =1 in the same way as we did for %, = 1. With these
and the second statement of Proposition 4, we easily obtain all of (2) by a careful
modification of the proof above to (1). Here we omit the detail.

From now on, we impose much stronger conditions on the orders of c; ; given in
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Section 1 than what we saw in Proposition 5; namely, we suppose the following
additional relations

pmin{u,v—t()) 1
]

4.9 P 0=ct" 1<i<m, 1<j<n,

where t(i) is the maximal integer which satisfies the condition, p"® <i<p'®*!. These
are so chosen, beside the condition C, , =1, that we have

(4.10) cfi=cfi=1

and hence, automatically, all of the relations in Propositions 4 and 5, and that we have
small groups which seem easy to be handled. In particular, it follows from (4.7) and
(4.8) together with (4.4) that

(4.11) l_l ?'+111—'Hc;+11—1
i=2
and
n n
(4.12) H511+1—H‘31,+1=1
j=2 ji=2
PROPOSITION 6. If either q,, or r, . is not congruent to 0 modulo p, then we
have m<2, ie. c3y=c4,="""=1. Similarly, if either q, , or ry , is not congruent to
0 modulo p, we have n<2, i.e. c; 3=cy 4=""=1.

PrROOF. Assume, on the contrary, that either g, , or r,, is not congruent to
0 modulo p and m>2. Then we have

i =cpi=1
by forming commutators of the first or the second term of (4.11) successively m—3

times with a. Hence we should have ¢, ; =1 in contradiction to the choice of m. The
latter half of the proposition is shown in a similar way.

5. Calculation of transfers. There are three types of minimal ones among those
normal subgroups H of G whose quotient groups G/H are cyclic:
Type 1: H=<ah)-[G,G], (s,p)=1;
Type 2: H=<a*b)-[G,G], s=s'p¢, (s,p=1, 1<e<yu;
Type 3: H=<ab*):[G,G], s=sp¢, (s’,p)=1, 1<e<v.
PROPOSITION 7. The images of the transfer homomorphism
Vgon: G-H/[H, H]

are given in the following list.
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Type 1: Vg.gl@=a”-[H,H], Vg,uyb)=b"[H, H];
Type 2: Vg.yla)=a™-[H, H],

V-ulb)=b"" H Ck(k) ‘[H,H].

P
Type 3 Vou@)=a™ [ %), 11,
k=

Vo-nb)=b""-[H,H]
where p*=[G:H], A=min{u+e, v}.
Proor. Type 1: We have
G=<a)+-H=<b)-H, and [G:H]=p*".

Hence by the definition of transfers, we obtain the desired results at once.
Type 2: We have G={a)'H and [G:H]=p*. Hence we see Vg, yla)=
a?[H, H]. Since a*be H, we have

Veul@ah)=(ab)y™ ' +ev" 2+ +l.rg HY .

In G/[H, H], the coset of a*h commutes with each member of [G, G]/[H, H]. Therefore
we may apply Lemma 2 to the right hand side of this equality with x=a and z=a"b,
and obtain

Ven(at) =@ty [T (cer.) %) [H, H]
k=2

because [ah, a]=[b, a]l=c7 |
LemMMA 6. If H is of Type 2, we have
[Ha H]=<C[ZS]1 cl 2 CE]D Cl,j|3SiSm, 3S]Sn> >
moreover, for k>1,
_kt+1
(1) ba*bt=a*-(c¥)*(c¥) " 2) mod[H, H;
—(k _of kY (kt1
@ (@bf=a () @ty G C3N bt modrH, H1
Here we read<1f>=0 if k<i.
i

PrOOF. It is clear that [H, H] is generated by [c; ;, a°b] and [c, ; a*b], 1 <i<m,
1<j<n. Since C,,=1, we easily see [c,,,ah]=c%)-c,,, and [c;;, a*b]=c!], ,,
2<i<m,by Lemma 2, and also [c, j, a’h] =c, ;. ,, 2<j<n. Next we show (1). Since ¢, ;,
3<j<n, belongs to [H, H], we have
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bab~'=acy jc, ,=aci ()" mod[H, H].
Therefore
ba*b~'=ac) ' (c5) ™ mod[H, H],
because [c5, a]=c§), e[H, H]. Then
_(k
ba*b ™ =a*(ch) Hel) (D)~
_qk+1
= a8 (2 mod[H, H],

because [c¥)), a*]1=(c§),)* mod[H, H] by the last statement of Lemma 2. Finally (2)

will easily be shown by induction on k to utilize (1) because we have
(@b =a*-b(a*b)b~ b,
[, b~ ]=cr5=(cY)* mod[H, H]

Now we resume the calculation of the transfer for H of Type 2. By (2) of this
lemma, we see

and

The detail is omitted.

(a*by* =a*™-b* mod[H,H],
because p* divides all of
® © © N u
(5): 7)== o7 %)
2 3 3 2 3
in our case of s=s'p®, e>1. Therefore we have
pH _(D*
Vonlat)=a?-b"- [] (cp-.0)” )-[H, H].
k=2

Since Vg yla)=a? -[H, H] as we have already seen, we obtain what the proposition
claims for H of Type 2.
Type 3: We have G=<b)>-H and (b>n H=(b"") in this case.

LEMMA 7. If H is of Type 3, we have
[H,H]={cy, "¢ c;y,c|3<i<m,3<j<n);

moreover, for k>1,
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(1) a'b*a=b* () (¥ 3 mod[H, H];
@ (abF=d b () Dc) (3 modrH, H].

Proor. The proof may be carried out in a way similar to that of Lemma 6. It is
almost trivial to determine the commutator. As for (1), we have a™'ba=bc;] by
definition, -and hence a~!b%a=b°-(c{;)"!. Since [c¥{),b]=c¥, and [c¥,, b]=
c¥3€e[H, H], we have [c{,, b*]=(c%,) mod[H, H] by the last statement of Lemma 2.
Then we obtain (1) immediately again by Lemma 2. The second and the third factors
at the right hand side of the congruence relation of (2) belong to H, and so does ab°.
Hence they commute with each other in H/[H, H]. The induction argument, therefore,
easily proves (2) by making use of (1).

Now in the same way as we did first for Type 2, we obtain

Vo-u(b)=b""[H, H]

and
Vnlab®)=(ab®yr" ' +¥7 4411 H]
p* A A
=@ [T (era- %) ()2 [H, H]
A P p
=@ [T (e )-[H, H]T,
k=2
because
[abs, b]:b—s[a, b]bs=cl’1 'c{ls?z N
[01,1’0(:,}2, bl=c,, mod[H,H],
and

Since p* divides

A A A
(30 )+ ()}
3 2 3
we now have the desired results for H of Type 3 by (2) of Lemma 7. The proof is
completed.
ProposiTON 8. (1) If H is of Type 2, then
p* _(p* u _(pH
n (ck-1,1) ()= 1_[ (cpa—1,1) (”d);
k=2 d=1

moreover, the p-th powers of these products are equal to 1.
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(2) If His of Type 3, then

pA

the p-th powers of these products are equal to 1.

Proor. (1): If k is not a power of p, then we have t(k—1)=t(k) by definition; for
k=p?, t(k—1)=t(k)— 1. Therefore (1) follows from (1) of Lemma 5. As for (2), we see

A
p* divide (1; ) if k<p*~**! again by (1) of Lemma 5; furthermore if u=v, we have

the conclusion for the same reason as that for (1) above.

6. Necessary conditions for (A). First we consider subgroups of Type 1.
ProposITION 9. If H is of Type 1, then
[H,H]={c% "¢y, Ci1,C1;|3<i<m,3<j<n) .
Hence we have
[Ker V4o py:[G,G]]=[G:H]

for every H of Type 1 if and only if we are in one of the following three cases:
(6-1) G2.1°71,2—9q1,2°72,1 70 mod p; hence 1 <m,n<2;
(6-ii) (92,1, 72,1)=0 and (9 5, r1,2) #0 mod p; hence 1 <n<2;
(6-iil) (92,1, 72,1)#0 and (9, 2, r1,2)=0 mod p; hence 1 <m<2.

ProOF. If (s, p)=1, then {c*)={c) for each ce C; ; =[G, G]. Therefore it is easy
to see by induction on m—i,i=1,2, ..., m, that

B k=i i+1,...,m)={c,  |k=i i+ i, e, m
for 1 <i<m. Hence the first assertion of the proposition is clear because
cSlhi=cy, modlc,,|k=3,4,...,m).
Then by Proposition 7, we have
Vo-ul@)=aP-[H, H]=ci-cyiy-[H, H]=c%{ *"*[H,H],
and
Veud” “)=b""-[H,H]=c}\ c}';-[H,H]=c}/*"*-[H,H].
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Since {c,;>N[H, H]=1 and |{c, ;) |=p*, we see
[Ker V4o [G,G]]1=[G:H]
for every H of Type 1 if and only if
(92,1—5°91,2,72,1—5°71 5)#(0,0) modp

forevery s, (s, p)=1; evidently, this happens if and only if either the two vectors (¢, 4, 75 ;)
and (g, ,, ry,,) are linearly independent over Z/pZ or one of them is equal to (0, 0) and
the other is not. In the former case, neither one of the vectors is equal to (0, 0); by
Proposition 6, therefore, we have 1 <m, n<2. This shows (6-i) of the proposition. The
rest is now also obvious.

PROPOSITION 10. If the condition (A) is satisfied, then we have either m=2 or n=2.

PROOF. Suppose that 7 is equal to 1, and take an H of Type 3. Then by Lemma
7, we have

[H, H]={c;,|2<i<m);

therefore by Propositions 7 and 8 together with (4.3), we see that V;_,:G—H/[H, H]
is trivial, i.e. Ker V5_5=G. Hence (A) is not satisfied. If m=1, we similarly see that
V- y is trivial for every H of Type 2. The proposition now immediately follows from
the preceding one.

Now suppose that =2 and that H is of Type 3. In this case we have
[H, H]=<{c3,1°¢Y 2, €in ‘ 3<i<m)
by Lemma 7 because ¢, =c% ,. Since p?—1=2 if and only if p=3 and d=1, and since

u
p* divides (‘1)3 ) if p#£3, we obtain

Ve-nla)= 511’12_“'(“’2_s'qz")ﬂl’“(%“)' [H,H]
and
VG—»H(bpv—A)'_-Crll,'zz “Srt[H, H]

by Propositions 7 and 8; here J, , is Kronecker’s 6. Note also that u<4 if p<v. Since
p divides s in this case, simple observations show us the following proposition.

PropoSITION 11. Suppose that n=2. Then we have
[Ker Vs.y:[G, G11=[G:H]=p*

for every H of Type 3 if and only if we are in one of the following three cases:
(6-iv) u<v andr; ,#0 mod p;
(6-v) either p=v and p>3, or, u=v>1 and p=3, and (q, », ;) # (0, 0) mod p;
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(6-vi) p=v=1, p=3, and (g, ,,r12)F(—1,0) modp.

By a parallel argument, we obtain

PROPOSITION 12. Suppose that m=2. Then we have
[Ker V4oy:[G, G]]=[G:H]=p"

for every H of Type 2 if and only if we are in one of the following three cases:
(6-vii)  pu<v and(qy,1,r2,1)#(0, 0) modp;
(6-viii) either u=v and p>3, or, u=v>1 and p=3, and (4, 4, r2,1) #(0, 0) mod p;
(6-<ix) u=v=1, p=3, and (q9;,;, 5,1)#(0, 1) mod p.

The proof is omitted.

7. Groups with the conditions (A) and (B).
7.1.  Simply summing up the results in the preceding section, we have a necessary
and sufficient condition for (A) when m=n=2.

THEOREM 1. Suppose m=n=2. Then the condition (A) is satisfied if and only if
we are in one of the following five cases:

0y u<vandry,°(q2,1:71,2—41,2°r2,1)#0 mod p;

(II) either p=v and p>3, or, p=v>1 and p=3, and q, ,*r1,—q;2°72,1 #Z0

mod p;

(1II1) u=v=1, p=3, and either one of (I1I-1)—(III-3):

(I-1)  g2,1°71,2—91,2°72,1 %0, (92,1, 72,1 #(0, 1) and (q,,5, 11 ) #(—1,0) modp;

(I11-2) (43,1, 72.1)=(0,0) modp and (¢, 5, r1 ;) #(0, 0) nor (—1,0) mod p;

(III-3) (gy1,2,71,2)=(0,0) mod p and (q, 5, r5,1)#(0, 0) nor (0, 1) mod p.
Furthermore, the condition (B) is also satisfied in every one of these cases.

ProOF. All except the last assertion of the theorem easily follow from Propositions
9-12; we omit the detail. To see the last assertion, put

-1

— -1 _ oa—1, -1 -1 1.
a®=a"’, b*=b"", cf1=¢1,1"C21"C1,2 5 C‘f,lf":,h cf2=c132;

it is easy to see that these new generators of the group under consideration satisfy all
and the same relations as the original ones a, b, c; ;, ¢, ; and ¢, , do. Hence we have
a desired automorphism ¢ by assigning x® to each member x of the last system of
generators. The proof is completed.

REMARK. In (III) of the theorem, we see anti-symmetry which is caused by the
relation, [b, a]=[a, b] 1.

PROPOSITION 13. Let the assumptions be as in Theorem 1, and suppose that one of
the conditions (I)—~(II1) is satisfied. Then for any subgroup N which contains [G, G], the
transfer homomorphism Vg _,: G—N/[N, N1 is not trivial unless N coincides with [G, G].
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PrROOF. First let us consider the case (I). For a subgroup of the form
N={(ab’¥" " ">:[G,G], s=sp™*, (s,p=1,

itis easy tosee [N, N]= <c’2""1_ ') because p* <p*~!. Let us take H=<{ab*)+[G, G]; then
we have A=v for this H, and hence

Ve-ub)=ct3 """ [H, H]
as we saw just above Proposition 11. Since ¢, , belongs to the center of G, we have
Von0)=Vyi(Von®)=(Von®)™ '[N, N]=c, ™[N, N1.

Therefore V.4 is not trivial because r,; ,#0 modp by assumption. For N=
{a?"'>:[G, G], we can similarly see V;_y(b)#1 by using

H={ab*y:[G,G], s=sp* **', (s,p=1.
For N=<{b? " ">+[G, G], we have [N, N]= c’:,z "S=1. Take H=<b)>*[G, G]; then we
see
“ (%)
Veu(®)=0"+(c;,,) ‘3’:[H, H]
by Proposition 7. Hence by the same reason as above, we have
Vonb)=chry "t echy [N, N].

Since r, , #0 mod p, we see Vg n(b)#1.

Next we consider the cases (II) and (III). If u=v=1, then our proposition is ob-
vious because G/N is cyclic unless N=[G, G]. Suppose u=v>1; we are in the case of
(II). For

N={(ab¥*"">-[G,G], (s,p)=1,
we have [N, N]=<(c%', *¢55 "),
Vonl@ =V nVsop(@)=(a")" '[N, N]
=cfy el M [N, N] =, TSt [N N
and
Vond)=Va-n(V-u®) ="y ""-[N, N]
=c§'f1—'"2" c"" reaN, N]=c%, Hosraatnad TN N
by using H=<ab*)-[G, G] of Type 1. Since we have
g21°T1,2—91,2'T2,.#0 modp,

we see that
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(—5°q21+q1,2, —5°73,1+71,)#(0,0) modp.

This shows that V_ is not trivial. When N is equal to either <a”* '>‘[G, G] or
(bP " '>+[G, G], we easily check it in a similar way, and complete the proof.

7.2. The case of u=1: In this paragraph, we assume p=1.
LeEMMA 8. For p¢,e>1, we have

k=34, >=Co | k=p*+2,p°+3,...

and

(PP k=3,4,...5=Ccru|k=p°+2,p*+3,...) .

PROOF. Since p divides (l;c > for each k, 1 <k<p®, we have c{{'=c,, ey, by
definition. Hence we see the first equality. The second is also clear by definition.

First suppose m>2 and n=2. Since we have Propositions 9 and 11, it is enough
to study V4. for H of Type 2. There exists only one such subgroup because u=1,
namely, H={b)*[G, G]; we haye [H, H]={c; 5>,

VG*H(a)zap'[Hs H]': H c?,iil'[Ha H] H]
i=2
and
v-1 v L4 —(1’) Pt m rit —pv-1
Ve-ud? )=b"" kﬂz(ck-l_l) k ‘(H HI=]] ¢}y-c,r *[H, H]
= i=2

by Lemma 6 and Proposition 7. Here we should assume
(7.1) (@2.1:72.)=(0,0) modp,
because of Proposition 9, (6-ii). Actually we must have
(7.2) qi1=ri1=0, I<i<m-—1,

and (7.1) is included in this because of our assumption, m>2. We see (7.2) from the
relations

4qi,1 .
Civ11=
2 i

ri,n
¢iia=1

u':g
] :5

2

of (4.11) by the same argument as in the proof of Proposition 6. Note also that we

must have m<p—1 automatically from the assumption (4.9) on the order of c; ;.
Therefore we obtain

Veou@=cim'-[H,H],

m,1
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and
Veon®? )=cmi-c P \[H, H];

m,1 rp—1,1

here c,_; ;=1if m<p—1; note that 3<m<p—1 only if p>3. It is now clear that we
have (IV) and (VI) of the following theorem.

THEOREM 2. Suppose u=1 and either m>2 or n>2. Then the condition (A) is
satisfied if and only if we are in one of the following seven cases:

av) u=v=1,p=>53<m<p—1,n=2and

qi1=ri1=0, I<i<m—1,

(Gm,15 'm,)#E(0, 0 p—y) modp, (gy1,2,71,2)#(0,0) modp;

\)) u=v=1,p=>5 m=2,3<n<p—1 and

q:,;=r1;=0, I1<j<n-—-1,

(92,1> 2,1)#(0,0) modp, (‘Il,mrl,n)ié(“én.p—uo) modp ;

VI) u=l<v,p>53<m<p—1,n=2 and

gi1=r;1=0, I<i<m-1,

(Gm,1> "'m,1)#(0,0) modp, r;,#0 modp;

(VII) u=1<v,p=3, m=2,3<n<p and

q,,;=r1,;=0, 1<j<n-—-1,

(42,1, 72,1)#(0,0) modp, r,,#0 modp;

(VIII) pu=1<v,p=>3, m=2, n=p+1 and

q:,;=r1;=0, 1<j<n-—-1,

r;1=0 modp, ¢,,°r,#0 modp;

IX) wu=l<v,p=3, m=2,p+l<n<p’—1,n#p+1 for l<e<v ifv>3, and

q:;=r1;=0, I<j<n-1,

r21°r .0 modp;

X) pu=l<v,p=>3, m=2, n=p*'—1 and

q1,;=r1;=0, 1<j<n—-1,

r,1;#0 modp.

Furthermore, in every one of these cases, the condition (B) is also satisfied if and only if
both of m and n are even integers.
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PrOOF. The two cases (IV) and (VI) have been shown. Suppose now m=2 and
n>2. Then for the reason which is parallel to that for (7.2), we have

(7.3) q,,;=r1,;=0, I1<j<n-—1.
Since we have Propositions 9 and 12, it is sufficient to study Vg_ g for H of Type 3, i.e.
H=<{ab*>:[G,G], s=s'p®, (s,p)=1, 1<e<v.
Take an integer ¢ such that z-s'=1 mod p. Then we have
H={a'b*")+[G, G]
and

[H,H]= <021 c{’?,clp;)

3<j<n).

Then by Lemma 8 and its proof, we easily see
[H,H]={c51"C1 pet1,C1, |j=pe+2,p"+3, L.

Hence by Proposition 7 and (7.3), we obtain

pAl

p* A
Vour@=ar" [ (ere ) )-OH, H1=e " et ey oy [H, H]

L mShqa,pAT quep?T .
=€y pe+1 Cim C1,p2-1 [H,H],

Voulb? )=bP"[H, H]=c-c}n-[H, Hl=c; 520 -cin-[H, H],

where p*=[G:H], A=min{1 +e, v}; note that (4.9) gives n<p”—1. Since =1 if and
only if v=p=1, we always have ¢ :;‘f-l"”"‘= 1. Therefore

Venul@)= 6'1‘"‘p N4 p‘l—l.[H’H]a
Vounlb” )= i -ciin - [H, H]

Suppose v=pu=1. Then ¢, ,.,,=1. Hence we easily obtain (V) by Propos1t10ns 9 and
12. Next suppose v>pu=1. Then we always have A>2 and hence c{';" P7'=1. Fore=v
we have A=v and ¢, ,..,=1; therefore V;_ y is not trivial if and only if either n=p*—1
orr; ,20 modp. Fore<v—1,wehave A=e+1and p°+1<p*—1; hence ¢y,pa—1 belongs
to [H, H] by Lemma 8, and V;_4(@)=1 in this case. If n=p*—1, therefore, ¢, , also
belongs to [H, H]; hence V_, is not trivial if and only if r, ; #0 mod p; this gives (X).
Suppose n<p*—1and r; ,#0 mod p. Then it is easy to see that we have V., 2B #1
for every s’ and for every A with e<v—1 if and only if either one of the following three
conditions holds: (1) 3<n<p+1; (2) n=p+1 and r,;=0modp; (3) n>p+1,
n#p°+1,2<e<v—1, and r, ; #0 mod p. These correspond to (VII), (VIII) and (IX),
respectively.

Finally let us study the existence of a claimed automorphism. We have two relations

p“__ qm,1 q1,n p"_ rm,1 rin
a=c,mtet and b =c el



p-GROUPS WITH TWO GENERATORS 463

By Lemma 3, therefore, it is easy to see that the condition for the existence stated in
the theorem is necessary; note that p is odd and that the condition may be automatically

satisfied like in the cases (VIII) and (X). It may be seen by a straightforward way that
a good automorphism ¢ is well defined by

a®=a" !, bo=b"1,

m n
[/ - . (— 1)+t (—1)k+1
C11=C11 kl_lz Ci,1 H Cik >

k=2
b Kk
. -1 +1
cti=I1 e, 2<i<m,
k=i
n
_ —1)k+1 .
cti=T1ea™", 2<j<n,
k=j

if the condition is satisfied. The detail is omitted.

ReEMARK. The cases (IV) and (V) obviously give pairs of isomorphic groups.

7.3. The case of u=v=2: In this paragraph, we assume u=v=2. Because of the
anti-symmetry, we only consider the case, m> 3 and n=2. First of all, we have m<p?—1
by our assumption (4.9) on the orders of ¢, ;.

THEOREM 3. Suppose p=v=2, m>?2 and n=2. Then the condition (A) is satisfied
if and only if we are in one of the following three cases:

XI) pu=v=2,p=53<m<p—1,n=2and
4i1=ri,1=0, I<i<m-—1,
9m1°T12— 912" Tm1 £0 modp;
XII) wpu=v=2,p<m<2(p—1), n=2 and
gi1=r1=0, I<i<m-—1,
qm,l'(rl,Ziép,li)_ql,Z.(rm,l+6m,2(p—'1))$0 mod p,
Gm1#0 modp, (q1,2,71,2)#(0,0) modp;
XII) p=v=2,2p—1<m<p*—1,n=2 and
gi1=r;=0, I<i<m-1,

Gm1°91,2F0 modp.
Furthermore, in every one of these cases, the condition (B) is also satisfied if and only if
m is an even integer.

PrOOF. Because of Propositions 9 and 11, we need only to study the subgroups
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H=<a’b)*[G,G], s=sp, (s,p)=1,
and
H=<{b)-[G, G]
of Type 2. For the former H, take an integer ¢ such that ¢-s'=1 mod p. Then we have
H={a?b")-[G, G]
and
[H, Hl={c¥} ¢! ,, WP} 3<i<m).
For the latter, [H, H]=<{c ,).
LemMmA 9. (1) We also have
(7.4) gi1=ri1=0, I<ism-1,

in the present case;
() If3<m<p-—1, then we have

(cPl|3<i<my={cP,|3<i<m);
(3) Ifp<m<p?-—1, thenc,, i>2p—1, belongs to
(P 3<i<m);
for p>3, moreover, we have
P11 =Crp-1y1 mod{c¥|3<i<m).

Proor. If 3<m<p—1, the orders of ¢;;, 1 <i<m, are same, and equal to p?.
Therefore the argument for (7.2) given in the preceding paragraph shows our (7.4). If
m>p—1, it is clear that we have at least

gi1=r;;=0 modp, I1<i<m-—1,

in place of (7.4); hence by (4.11) we also have

H c;+11 l_[ c:i+11 1=
q2,1

then by forming commutators of these products with a successively, we obtain ¢, | =
1; since the order of ¢,_, ; is p*> by assumption, we must have ¢, ; =0 modp? and,
equivalently in this case, ¢, ; =0; repeating the process, we finally attain (7.4). The proof
of the assertion (2) will be easy enough to be omitted. If p<i<m, we have ¢?, =1 and
hence

[p] — P .
Cp=117Cp-1,1"C2(p—1),1
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and

clpl

p1—Cap—1,1> C[p]

11—02p1,....

This shows (3). q.ed.
Let us resume the proof of Theorem 3. By Proposition 7, we have
Veopla)=a?= =cpmtecl'y mod[H, H],

and
2 B -7
Voor®)=b7"[1 (1) ()
k=2

rm,1
m,1

First we consider the simpler case, H=<b)*[G, G]; [H, H]={c; ,>. f m<p—1, then
Im Vg_y is a subgroup of a cyclic group <c,, ,>*[H, H]/[H, H] of order p?; hence we
have

'611, (p 1,1

[l

¢ y(5)ee ~L,. mod[H, H].

[Ker Vsp:[G, GI1=[G:H],
if and only if

(qm,l’ rm,l)?_é(09 0) mOdP ’

2
becausep](P > by Lemma 5, (1). If p—1<m<p?—1, then Im V_ is contained in
p

a direct product of two cyclic groups of order p; since Vg_ 4(b) is a non-trivial element
which does not lie in {c,, ,>*[H, H], we see that

[Ker Vg py:[G, GJ1=[G:H]

if and only if ¢, ; #0 mod p.
Next we consider the case of H={a?b")-[G, G] with

[H, H]=<C[2p]1 iz e | 3<i<m).
Since the orders of ¢; ;, i>p, are at most p, ¢} is also of order p; in particular, we have
(Pl 3<ismy=1;

hence the order of ¢, ,*[H, H] in H/[H, H] is equal to p. If 3<m<p—1, then we see
by (2) of Lemma 9 that the order of ¢, ,*[H, H] in H/[H, H] is equal to p; since

p2
p|< ) and p> 3, we have
p

Ve-p@=cpri'+c2[H, H],
Vg-n(b)= Crm' r” [H, H]
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in this case; hence

[KerVgoy:[G,G]]1=[G:H],
if and only if

Im1"T1,2— 91,2 Tm1 £0 modp.

If p—1<m<p?—1, we see by (3) of Lemma 9 that c,._,, is contained in [H, H].
Suppose p>3. Then also by (3) of Lemma 9, we see

Vo-nl@)=cyr' iy [H H],
VG_,H(b)=c:n"“'l'+é'"’z“’”’ Y5+[H, H],

2
if m<2(p—1) because <p )-p“zl mod p, and
p

Vonl@)=c{'y-[H,H],
VG—»H(b)=Cl,'2'Cz(p—l),1'[H,H] s
if m>2(p—1); therefore
[Ker V.p:[G, G1]1=[G:H],
if and only if either
(i) p—1<m<2p—1)and g, °7r1,2—q1,2" (Fm1 +5m,2(p—1))$0 mod p, or
(i) 2(p—1)<m<p?*—1and ¢, ,#0 modp.
Finally suppose p—1<m<p?—1 and p=3. If m<2(p—1)=4, we have
VG—'H( ) C:l,,mll C‘;lzz [Ha H],
V(}—vH(b)_crml ?22 621 [H H]_crml C;‘ZZ-H C4~1‘[H,H],
because ¢} =c +c, ;. f 4<m<p?—1=8, we have
Ve-pl@=c{y [H H],
VG—>H(b) c;lzz 6‘21 [H H]
Therefore
[Ker Vgoy:[G,G]]1=[G:H] for every H,

if and only if V_ 4 is surjective for every H; this is the case if and only if either

(i) 3<m<4andgq, (ri,+t1)—q, ("1 +0,4)#0 modp, or

(i) 4<m<p?—1=8and q, ,#0 modp.
One may now easily obtain the three cases (XI)~(XIII) of the theorem by summing
up our results here together with Propositions 9 and 11.

As for the last assertion of the theorem on the condition (B), one can demonstrate
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it in the same way as we did in the final portion of the proof of Theorem 2. The proof
is completed.

ReMARK. It is an easy exercise left to the reader to show the existence of all of
the groups on the lists of Theorems 1-3.

8. An application to the capitulation problem. Let F be an algebraic number field
of finite degree. As is well known, every ideal of F becomes a principal ideal in the
Hilbert class field of F; in other words, every ideal of F is represented by an actual
number of the class field. In his short notes [Iw] of lively interest, Iwasawa gave infinitely
many examples of totally real F such that there exists a proper subfield of the Hilbert
class field of F in which all ideals of F already become principal. It has not yet been
shown, however, that such an imaginary quadratic number field exists. It is natural to
consider the “p-version” of the problem for each prime p. In the case of p=2, Iwasawa’s
method in [Iw] for real quadratic fields may also allow us to obtain the desired examples
of imaginary quadratic fields. As for odd p, however, it seems necessary to find a new
approach not only for imaginary ones but also even for real ones as far as quadratic
number fields are concerned.

Now let F be an imaginary quadratic number field, F the Hilbert p-class field of
F, and F the second p-class field of F, as in Section 2; put G=Gal(ﬁ/F). Then Fis an
example of this sort if

(C) there exists a subgroup N of G which properly contains the commutator

group [G,G] of G and for which the transfer homomorphism
Vgon:G—N/[N, N] is trivial;
(cf., e.g., [Mi2]). Hence we can group-theoretically examine whether F is a desired
example or not once we are given G = Gal(F/F). Here let us single out from our candidates
for Gal(F/F) given in Theorems 1 and 2 a small group which satisfies this condition (C).

We have already seen by Proposition 13 that the condition holds for none of the
groups of Type (I)-(III) of Theorem 1. When u=v=1, G/N is always cyclic if N
properly contains [G, G]; hence (C) does not hold because of the condition (A). Therefore
groups of Type (IV) or (V) of Theorem 2 are not what we want. Let us restrict ourselves
to the case u=1. Then N=(b?" '>+[G, G] is the only minimal subgroup for which
G/N is not cyclic.

PROPOSITION 14. Let G be one of p-groups on the lists of Theorems 1 and 2. Then
G satisfies the condition (C) if and only if G is of Type (VIII) with v=2. If this is the
case, G satisfies both of the conditions (A) and (B); G is of order p?*>, and G/[G, G] is
of type (p, p?).

Proor. Take H=<b)-[G, G]. Since H is of Type 2 in the sense of Section 5, we
easily see

VG—'H(a)‘_’ap.[H’ H] s
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VourB)=b-c;ty ,-[H, H], or =b"-(c, ) 3)-[H, H],

respectively, in the cases of (VI) and (VII)«(X), by Proposition 7. (Note that ¢c,_; ; =1
if m<p—1.) Since a”? and either ¢,_, ; or ¢, lie in the center of the corresponding
group, we have

Vonl@)=Vyn(Von(@)=Vsnl@” "[N,N]=1
and similarly
Von)=b"":[N,N]=c ' c7-[N,N], or =c7/-c'"[N,N].

In the case of (VI), we always have [N, N]=1; hence V_ y(b)# 1 because r, , #0 mod p.
In the case (VII), we also have the same because [N, N]=1 and r, ,#0 mod p. In the
case (VIII), V4. y is neither trivial for the same reason if v>2; if v=2, however, we
have [N, N]={c, ,»> and r, ; =0 mod p; therefore V_y is certainly trivial. In the cases
(IX) and (X), we have r, ; #0 mod p; therefore V_,5(b)# 1. The proof is completed.

COROLLARY. Let F be an imaginary quadratic number field, F the Hilbert p-class
field of F, and F the second p-class field of F. If Gal(ﬁ/F) is isomorphic to G of Type
(VIII) with v=2, then the p-class group of F capitulates in a proper intermediate field of
FJF.

Finally we raise two naive problems to close this paper.

PrOBLEM 1. Give various types of p-groups of small orders which satisfy the
conditions (A) and (B).

PrOBLEM 2. Do there exist imaginary quadratic number fields F with
GgGal(I?/F) for every small p-group G satisfying (A) and (B) ?
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