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Abstract. Under some conditions we classify hypersurfaces in a Euclidean space

which admit isometric deformations preserving mean curvature.

1. Introduction. The isometric deformations of surfaces in a 3-dimensional space

form preserving mean curvature (which are called //-deformations) have been studied

by a number of mathematicians. Bonnet [2] showed over a century ago that all the

surfaces with constant mean curvature in a Euclidean 3-space except planes or spheres

are locally //-deformable. Referring to this problem in the case of surfaces with

non-constant mean curvature, the work done by Cartan [3] is authoritative and Chern

[4] gave an interesting characterization for their existence.

Recently, Colares and Kenmotsu [5] classified //-deformable surfaces with constant

Gaussian curvature in a Euclidean 3-space. Umehara [9] proved that a compact surface

in a 3-dimensional space form is locally //-deformable if and only if it has constant

mean curvature.

In this paper, we study such a deformation of hypersurfaces in Rn (as a direct

generalization of that of a surface in R3).

DEFINITION. Let / : Mn c; Rn + 1 be an isometric immersion as a hypersurface of

an ^-dimensional Riemannian manifold and H the mean curvature of / .

An H-deformatίon of the immersion / is a continuous mapping F: ( —ε, ε) x λfn-+

Rn + 1 (ε>0) such that

(1.1) ft: = F(t, •) for any fixed te( — ε,ε) is an isometric immersion whose mean

curvature is equal to //,

(1.2) fo = f

An //-deformation is said to be trivial if for each t e (— ε, ε), there exists a motion

Tt of Rn + 1 such that ft=Tt° f f is said to be H-deformable if there exists a non-trivial

//-deformation. / is said to be locally H-deformable if for each point of Mn there exists

a neighborhood U such that f\υ is //-deformable.

First we mention the following well-known theorem:

THEOREM A (Beez [1], Killing [7]). A hypersurface M is rigid in Rn + 1 if the type
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number is greater than 2 at every point [where the type number is the rank of the shape

operator as a linear transformation of the tangent spaces of M).

Consequently, such a hypersurface as that in Theorem A cannot admit a non-trivial

//-deformation. From such a point of view, we deal only with hypersurfaces with type

number < 2 .

Our main result is the following.

THEOREM. Let f: Mn ĉ  Rn+1 be an isometric immersion with type number 2 which

has distinct non-zero principal curvatures. If f is locally H-deformable, then f is one of

the following:

(a) a minimal immersion

(b) an open piece of a cylinder M2 x Rn~2, where M2 is a locally H-deformable

surface in R3

(c) an open piece of a cylinder CNxRn~3, where N is a locally H-deformable

surface in S3 and CN is a cone over N in R*

(d) a hypersurface mixed with that of (a), (b) and (c).

Moreover, we assume the real analyticity of f and Mn. Then f is H-deformable if

and only if f is (a) or (b) or (c).

The author acknowledges the helpful lectures and comments given by Professor

Katsuei Kenmotsu. Thanks are due to Professors Koichi Ogiue, Takao Sasai and

Yoshihiro Ohnita for valuable suggestions.

2. Preliminaries. We use the moving frame method.

Assume that Mn is immersed as a hypersurface in Rn + 1 with constant type number

d (0<d<ή) and that its non-zero principal curvatures are distinct. Let A denote the

shape operator. From now on we shall use the following convention on the ranges of

indices:

\<A,B, C, -"<n

d+l<p,q,r, - <n .

Choose a local orthonormal frame field {eί9..., ed, ed+ ί9..., en} of M in such a way

that el9..., en are principal vectors and their principal curvatures are kί9..., kd, 0 , . . . , 0

respectively (kxk2- "kdφ0, k^ks for iφf). Let {θ\ ..., θn} be the dual frame field of

{eA}. The Levi-Civita connection of M is denoted by V and the connection form of V

is denoted by

ω = = ( ω β ) with respect to {eA} .

Then the shape operator A can be written as
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(2.1) A =

\ 0 /

Let Ω=(Ωg) be the curvature form of M. Then the Gauss equation implies

(2.2) Ω'-kikjθ*ΛΘ* , Ω'q = 0, ΩJ = 0

and the Codazzi equation is given by

(2-3) ΦeAA)eB = {VeBA)eΛ.

LEMMA 2.1. Under the above assumption, the Codazzi equation (2.3) is equivalent

to the following equations.

(2.4)

eikj = {ki-kj)ωj{ej) for iφj

ej) for lφi,j

for iφj

From the last three equations of (2.4), we have

(2.5) ωι

p= -^ψ- 0'+ Σ ^η^ ω%e^ .

Furthermore, it follows from (2.5) and the structure equation dθA= — Σ<x>i AΘB that

V * / ZmJ j £—J / i-^ I ,/V P'

(2.7) dθ'=Σ^r-a>iJίelffl
iΛθJ-Σ<oζΛθ<.

i<j k(kj q

Thus we have proved the following lemma.

LEMMA 2.2. (a) The distribution V° defined by Θ1= =θd = 0 is completely

integrable.

(b) The distribution V1 defined by θd + 1 = =θn = 0 is completely integrable if

and only if(ki — kj)ωi

j(ep) = 0 holds for all i, j , p.
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REMARK. It is easy to see that the integral manifolds of the distribution V° are
totally geodesic submanifolds in Rn+1. So we can choose ed+1, ...,en in such a way
that Vepeq = 0, i.e., a>p(eq) = 0 holds. From now on we assume that ep's are chosen in
that way.

3. //-deformability of hypersurfaces of constant type number 2. We shall apply
formulas obtained in the previous section to the case d=2.

Let / : Mn ĉ  Rn + 1 be an immersed hypersurface with type number 2 and H the
mean curvature. Assume that the two non-zero principal curvatures are distinct at every
point.

Suppose that / is locally //-deformable. Then there exists a simply-connected
neighborhood U for an arbitrary point x0 in Mn and an isometric immersion
/ ' : ί/c; Rn+1 with mean curvature H such that f'φf on U. In other words, there
exists a symmetric (1, l)-tensor field A' on U satisfying the Gauss equation, the Codazzi
equation and tr A'= nH, because of the fundamental theorem for hypersurfaces. The
type number of / ' is also equal to 2. This follows from the fact that the null space of
the shape operator does not depend on the immersion in this case, because of the
following theorem.

THEOREM B ([8, Theorem 6.1]). For an isometric immersion Mn c+ Rn+1, if the
type number >2 at a point x, then kerAx = {Xe TXM;R(X, Y) = 0 for all YeTxM}9

where R denotes the curvature tensor of M.

Consider two orthonormal frame fields {eA} and {e'A} on U which consist of princi-
pal vectors of / and /', respectively, and let kί9 k2, 0,..., 0 (resp. k\, kf

2, 0,..., 0) be
principal curvatures with respect to / (resp. / '). From the Gauss equations and
tτA = tvA\ we have k1k2 = k'1k'29 k1 + k2 = k'ί+k'29 so we may assume ^ = ^ 1 , ^ 2 = ̂ 2.
Then from the above consideration,

ker Ax = ker A'x at every x e U,

i.e.,

fci U e2 \χ} = {e'i U e21*} a t e v e r Y x E u >

{*3\x> > en\x] = {e'aU * * * ' e'«\x} a t e V e Γ y XE U '

where { } denotes the subspace of TXM spanned by . Thus the frame {eA}
corresponds to {e'A} by an SO(2) x SO(n — 2)-valued function. Therefore A' can be writ-
ten as
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- i A i o

Af =

\

for some SΌ(2)-valued function P. Putting

cos ξ sin ξ

— sin ζ cos ζ

we have

o)

with respect to {eA}

ξeC°{U),

k^X + cosτ) + λ;2(l—cosτ) (k1—k2)smτ

(kί—k2)sinτ kγ(\ — cosτ) + £2(l +cosτ)

\

where τ = 2ξ.

LEMMA 3.1. The Codazzi equation

(3.1) (e^ki+i

(3.2) (eί(k1+i

(3.3) ( 1 - c o s τ ) ^

(3.4) it

(3.5)

(3.6)

(3.7)

0

'•• o/

1')^ cα« όe written as follows:

t2}=0

) cos τ = 0
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Furthermore, the equations (3.4)-(3.7) are equivalent to

(3.8) (epk2)k1-{epk1)k2 = 0

(3.9) (kx +k2)ω\(ep) = 0

(3.10) epτ = 0.

PROOF. Apply the formulas (2.4), (2.5) to the case d=2. Then (3.1), (3.2), (3.3)

are obtained from (VeiA
f)e2=(Ve2A')eι and (3.4), (3.5), (3.6), (3.7) from (VeΛ')ep =

(V'epA')ei (/= 1, 2). (VepA')eq = (VeqA')ep holds automatically. The latter part is obvious.

•
Let (*) stand for the equations (3.1H3.3) and (3.8)-(3.1O). Therefore we have:

PROPOSITION 3.2. If f\υ is H-deformable, then there exists τ e C°°(£/) satisfying the

equations (*).

Conversely, if there exists a one-parameter family of functions τt ( T O Ξ 0 ) satisfying

(*), then f\u is H-deformable.

REMARK. It is remarked that a necessary and sufficient condition for the

//-deformability of a surface in a 3-dimensional space form is the existence of a

one-parameter family of functions τt satisfying (3.1) and (3.2).

4. Proof of Theorem. We investigate the hypersurfaces satisfying (*) in this

section. From (3.9), we consider the following three cases:

Case 1. x0 has a neighborhood such that kί-\-k2 = 0 holds, i.e., a piece of minimal

hypersurface.

Case 2. x0 has a neighborhood such that ω ^ Ξ O holds.

Case 3. Neither kx+k2 = 0 nor O J ^ Ξ O holds in any neighborhood of x0, but

(&! +k2)ωl(ep) = Q holds in some neighborhood.

Case 1. Assume that kx + k2 = 0. Then (3.8) holds, and (3.1) and (3.2) hold if and

only if e1τ = e2τ = 0. Thus a necessary and sufficient condition for (*) is τ = constant.

If we put τt = t for example, then τt defines an //-deformation. Therefore minimal

hypersurfaces with type number 2 are locally //-deformable.

Case 2. It is remarked that the distribution V1 generated by eί and e2 is integrable

in this case. It follows from (2.4) and (2.5) that ω\ is generated by θ1 and θ2 and

(4.1) co^-fAθ1 (/=1,2).

On the other hand, from (3.8) we may put
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and

(4.2) ω^-φβ1.

LEMMA 4.1. In Case 2, f(U) is of the form M2 xRn~2 or M3 x R n 3 , or it is mixed

with M2 x Rn~2 and M3 x Rn~3, where M2 and M3 are immersed in R3 and /? 4 , re-

spectively.

PROOF. Assume that φp = 0 for all p. It is easy to see that Ve.e^ e V1 so the integral

manifold of the distribution {eu e2) is totally geodesic in Mn. Let M2 be an integral

manifold of the distribution {el9 e2}. On the other hand, if the Levi-Civita connection

of the ambient space Rn+ x is denoted by D, then De.epe V° holds so that V° is parallel

in Rn + 1. Therefore the integral manifolds of V° are prallel Euclidean subspaces, and

at every point xe Mn. So M2 is contained in R3 and it is obvious that /(£/) = M2 xRn 2 .

Otherwise, x0 is not an interior point of B: = {JC G Mn | φp(x) = 0 for all p]. That is,

x0 G BC or x0 G dB

where Bc and dB denote the complementary set and the boundary set of B, respectively.

Whenever x0 is a point of Bc, we can take a neighborhood where φpφ0 holds. We

also write it as U. We can see that dim A = 1 holds at each point of U if we set

Λ = {the F°-component of VXY; X, YE V1} .

We choose a new frame field {e3,..., en} such that e3 G A. (The observations so far are

applicable with respect to this frame.) Then φ3^0, φ^= =φn = 0 holds. Putting

φ3 = φ9 we see that the connection form ω can be written as

/ 0 ω\ -φθ1 0 ••• 0 \

-ω\ 0 -φθ2 0 ••• 0

φθ1 φθ2 0 ωl ••• ω2

n

0 0 -ωl
(4.3)

\ 0 0 - ω 3

We compute R(eu e2)ep for p>4 using (4.3) directly:

However, R(e1,e2)ep = 0 holds by the Gauss equation. Thus ω 3 = 0 for ω3

p(ex) =

ω3

p(e2) = 0.

Then it is easy to see that the distribution spanned by {eu e2, e3} is integrable and

f(U) is of the form M3 x Rn~3 by the argument analogous to that in the case φ p = 0.
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Assume that x0 is a boundary point of B. If x0 has a neighborhood U such that

UnB is nowhere dense in U, then <p^0 holds and f(U) = M3 x /?"~3. Otherwise, JC0 is

a boundary point of an open portion of M2 xRn~2 and an open portion of M3 x

Rn~3. m

We examine the case φφO in the above lemma. We only consider the case of

3-dimensional hypersurfaces M3. We give necessary formulas. The structure equations

are

(4.4) dθ2=-ω2

ίΛθ1

dθ3 = 0.

From the Gauss equations, we have

(4.5) 0 = (-dφ + (φ)2θ3)Λθ1

0 = (-dφ + (φ)2θ3)Λθ2 .

It is immediately seen that

(4.6) dφ = (φ)2θ3,

i.e.,

= (φ)2 .

Let / be the integral curve of e3 through a point x and t the arc length parameter

of / initiated at x, i.e., e3 = d/dt, 1(0) = x. The integral manifold of the distribution

{eu e2} through l(c) is denoted by Mc.

PROPOSITION 4.2.

(a) φ is constant on each leaf Mc.

(b) Mc is contained in an embedded 3-sphere with curvature \φ(c)\ in R4.

(c) The spheres defined in (b) are concentric for all t.

(d) M3 is a cone.

PROOF, (a) is obvious from (4.6). Let yc be the position vector of Mc in R* and

D the covariant derivative in /?4. Then

φ(c) ) φ(c) φ(c)

This means that the vector yc + φ(c)~ίe3 is parallel along Mc in /?4. Let w be the vector

in RA which is obtained by parallel translation of yc + φ(c)~1e$ to the origin in R4. Then
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holds. This proves (b). For (c) it is sufficient to show that yt + φ(t)~1e3 is parallel along
/ in /?4:

D
φ(t) ) \ φ j φ φ2

If φ is restricted to /, then φ satisfies an ordinary differential equation dφ/dt = φ2

from (4.6). The solution of this equation is

φ(t)=

Put s = t — φ(0)~1. Then φ(s)= —s'1. We may assume that the centers of the spheres
in (c) are the origin in /?4, that is, ys + φ(s)~1e3 = 0. Thus ys = se3. On the other hand,
it can be seen that e3 is parallel along /. So ys = syι. Therefore j s ' s make up a cone
over j i c;53(l) in /?4. •

Case 3. In this case, even if we take any neighborhood for the x0, it contains an
open portion where kγ +k2 = 0 holds and an open portion where ω i(ep) = 0 holds. Thus
the neighborhood of x0 is of the form mixed with that of Case 1 and that of Case 2.

PROOF OF THEOREM. From the remaining condition of (*), we can conclude
that the surfaces appearing in Case 2 are //-deformable surfaces in R3 and 5 3 ,
respectively. •

REMARKS. 1. It can be seen that an //-deformation is a principal curvature
preserving deformation.

2. Concerning minimal hypersurfaces with type number 2, Dajczer and Gromoll
[6] proved that one can construct them by making use of a minimal surface S in Sn

and an eigenfunction of the Laplace-Bertrami operator with eigenvalue 2 on S. In
particular, if we take a fully immersed one as a minimal surface in Sn («>4), then a
minimal hypersurface with type number 2 which is not of the form M2xRn~2 or
CNxRn~3 is obtained.
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