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Abstract. Let g(4) be a symmetrizable generalized Kac-Moody algebra with § its
Cartan subalgebra and n_ the sum of all its negative root spaces. In this paper, we
prove the generalization of Kostant’s homology formula under a certain condition on
the matrix 4. This formula completely determines the h-module structure of the homology
of n_ in the irreducible highest weight g(4)-module L(A) with an arbitrary dominant
integral weight A.

Introduction. Let A=(a;;);<; j<, be a real nxn matrix satisfying the following
conditions:

(C1) either a;=2 or a;<0;

(C2) a;;<0if i#j, and a;;€ Z if a;=2;

(C3) a;;=0 implies a;=0.

Let g(A) be the generalized Kac-Moody algebra (GKM algebra), over the complex
number field C, associated to the above matrix 4. When a;=2 for all i, 4 is nothing
but a generalized Cartan matrix and g(4) a Kac-Moody algebra. GKM algebras were
first introduced and studied by Borcherds [2]. The present author studied them as
regular subalgebras or folding subalgebras of a Kac-Moody algebra (cf. [11], [12]).
Here, we present some homological feature of the class of GKM algebras.

We have the root space decomposition: g(4)=h @ Zfi 49, Where b is the Cartan
subalgebra of g(A4), 4 the root system of (g(A4), h), and g, the root space attached to
aed. Let 4, be the set of all positive roots, IT={o;}!_, =h* all simple roots, and
MY ={a)}}-,<b all simple coroots. Put n,:=3) _ g, Then, n, are both sub-
algebras of g(4), and g(A)=n_®Hhdn,.

For i with a;;=2, we define the fundamental reflection r; on the dual space h* of
h. Let W be the Weyl group generated by r;’s with a;;=2. Now, for Aebh*, we denote
by L(A) the irreducible highest weight g(4)-module with highest weight 1, and by C(4)
the irreducible (one-dimensional) h-module with weight 1. Then, for each Aebh* and
JjeZ.o, Hjn_, L(A)) (the j-th homology of n_ with coefficients in L(A)) and
Hl(n,, L(A)) (the j-th cohomology of n, with coefficients in L(A)) become h-modules
in the standard way. Here, we remark that our cohomology Hi(n,, L(A)) of n, is
slightly different from the usual Lie algebra cohomology H’(n,, L(A)), whereas the
homology H;(n_, L(A)) of n_ is the usual Lie algebra homology (see Section 2 for the
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definition of H/(n,, L(A))). In this paper, we determine the structure of H;(n_, L(A4))
and H}(n,, L(A)) as h-modules in the case where A is a dominant integral weight and
A is a symmetrizable real matrix satisfying (C2), (C3), and the following (C1):

(C1) either a;=2 or a;=0.
Actually, we have the following theorem.

THEOREM. Let Aeb* be dominant integral. Let & be the set of all sums of distinct
pairwise perpendicular elements from II'™:={a;€Il|a;<0} and ¥ (A) the set of all
elements of & perpendicular to A. Then, as Y-modules (j=0),

Hi(n,, L) =H;(n_, L(A)= Y° Y CwA+p—P)—p).
PeF(A) weW, L(w)=j—ht(B)
Here, p is a fixed element of h* such that {p,a;>=(1/2)-a; (1<i<n), {(w) (we W) is
the length of w, and, for Be &, ht(B)=m if P is a sum of m elements from IT™.

When a;;=2 for every i, the set #(A) consists of only one element 0 eh*, and so
the above theorem is “Kostant’s homology and cohomology formula” for symmetrizable
Kac-Moody algebras, which was proved by Garland and Lepowsky in [3] and [7].
Note that when g(A) is a finite-dimensional complex semi-simple Lie algebra, the above
formula is nothing but Kostant’s classical result in [6].

We prove our theorem by imitating the method of Liu in [8] for Kac-Moody
algebras, which is essentially similar to those in Aribaud [1] and Garland-Lepowsky
[31.

This paper is organized as follows. In Section 1, we will review the theory of GKM
algebras, rewriting some parts of [4] for Kac-Moody algebras. In Section 2, we recall
the notion of homology and cohomology of Lie algebras n, with coefficients in L(A).
In Section 3, we explain briefly some results of Liu [8] for Kac-Moody algebras, which
is also true for GKM algebras with no modifications. In Section 4, we will establish
our main result stated above in the principle of Aribaud and Liu, using the celebrated
Weyl-Kac-Borcherds character formula. In Section 5, as an application of our main
theorem, we give a simple proof of a presentation by generators and relations of GKM
algebras, following the way of Mathieu [9].

I would like to express my heartfelt thanks to Professor Takeshi Hirai for his
constant encouragement. I am also grateful to Professor Olivier Mathieu for the valuable
discussions which made me aware of the importance of Kostant’s formula. I would
also like to thank Professor Seok-Jin Kang for sending me some preprints.

1. Preliminaries for generalized Kac-Moody algebras. In this section, we fix
notation and recall fundamental results about generalized Kac-Moody algebras which
will be needed in the succeeding sections. For detailed accounts, see [2] and [4].

1.1 Generalized Kac-Moody algebras. LetneZ., ,, and 4=(a;;), <; j<, be a real
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n x n matrix satisfying the conditions (Cl1), (C2), and (C3) in the Introduction. Such a
matrix is called a GGCM. A realization of a GGCM 4 is a triple (§, IT={o;}}-;,
Y ={a;}?_,), where b is a complex vector space, satisfying the following:

(R1) IIis alinearly independent subset of h* : = Hom(h, C), and IT" is a linearly

independent subset of b;
(R2) <aj, o’ )=a;; (1<i,j<n), where (-, +) denotes the duality pairing between
b and b*;

(R3) dim¢ h=2n—rank 4.
We denote by §(4) the Lie algebra generated by the above vector space ) and 2n symbols
e;,f; (1 <i<n) under the following relations:

(Fl)  [es, f;1=0;,0 (1<i, j<n),

(F2) [hH]=0 (h, W €b),

(F3) { [h, e;]1=<a, he;

[h, fil=—<ou, ) f;

Let g(4):=§(A4)/r, where t is the largest proper ideal of §(4) intersecting b trivially.
We call this Lie algebra g(A) the generalized Kac-Moody algebra (GKM algebra for
short) associated to the GGCM A. The subalgebra b of g(A4) is called the Cartan
subalgebra. We call IT={a;}7_, the simple root system and IT" ={o;"}{_, the simple
coroot system. The elements e;, f; (1 <i<n) are called the Chevalley generators.

We have the root space decomposition of g(A) with respect to b:

g d)=pa® Y° g,
aeh* \ {0}

(1<i<n, heb).

where g,:={xeg(4) | [h, x]=<a, h)x for all heb} (xeh*). Note that g, =Ce;, g_, =
Cf; (1<i<n), and mult a: =dim¢ g, is finite (x€bh*). An element aebh* \ {0} is called
a root if g,#{0}, and g, is called the root space attached to a. A root « is said to be
positive (resp. negative) if aeQ, := ZL]Z so%; (resp. —ae@,). We denote by 4
the root system of (g(A4), h) and A4, (resp. 4_) the set of all positive (resp. negative)
roots. Then, we have A=4_u 4, (disjoint union), 4_= —A4,. Therefore, we have
the triangular decomposition: g(4)=n_®h@n,, with n,:= Z,EA+ Gtar

Now, let 1T (resp. IT™) be the subset {a;eIT|a;=2 (resp. a;<0)} of I1, and W
(= GL(H*)) the Weyl group generated by the fundamental reflections r; defined by
w eI ry(A)=4—4, o Yo; (Aeh*). And let C¥:={Aeb}|{(4, 0 »>0if a;=2} be the
fundamental chamber, where b, is a realization of A4 over the real number field R such
that h=C ® ghg. Then, we have the following as in the case of Kac-Moody algebras.

PropPOSITION 1.1 (cf. [4]). (a) For AeCY, the group W,:={we W|w(l)=/1} is
generated by r;’s such that r,e W,.

(b) Let X:=J,.ww(C") be the Tits cone. Then, C" is a fundamental domain for
the action of W on X.

From now on, we take and fix an element peb* such that {p,«’>=(1/2)-a;
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(1<i<n).Forwe W, define @,,:={xe 4, |w '(x)e4_}, and denote by /(w) the smallest
number m such that w=r; r;, - r; (@, %,, - .., &, € I1°). Then, we have the following

2

as in the case of Kac-Moody algebras.

ProroSITION 1.2 (cf. [4]). (a) The number of elements in ®,, is equal to £(w) for
weW.
®) p—w(p)=) .00 for weW.

1.2. Symmetrizable GKM algebras. A GGCM 4=(a;;);<i j<n is said to be
symmetrizable if there exist an invertible diagonal matrix D=diag(e,, ,, ..., &,) and
a symmetric matrix B=(b;;);<; j<, such that 4=DB. In this case, we may assume
that ¢;>0 (1 <i<n) and that b;;e R (1 <i, j<n). In this subsection, we assume that the
GGCM 4 is symmetrizable, and take (and fix) the above decomposition of A. Let
(h, I ={o;}7-,, T¥ ={a; }?_,) be arealization of 4, and fix a subspace )" complementary
tol:=Y"_, CaY in . Define a symmetric bilinear form (- | <) on b by

(B1) (' |h)={ay;, hYe;  (heb, 1<i<n),

(B2) (H|h")=0 ", h"el”).

Then, the bilinear form (- l -) is non-degenerate on [, so we have a linear isomorphism
v: h—b* defined by (v(h), hy»=(h|h,) (h, h, €b), and the induced bilinear form on b*,
which is denoted by the same symbol (- | -). Note that this induced bilinear form (- | °)
on h* is W-invariant (cf. [4]).

As is well-known, we can extend this bilinear form (- ] -) on b to a non-degenerate
symmetric invariant bilinear form on the GKM algebra g(A4). This bilinear form (- | )
on g(A4) (or b*) is called a standard invariant bilinear form.

1.3. Highest weight modules over generalized Kac-Moody algebras. Let g(A)
be the GKM algebra associated to a GGCM 4, and h the Cartan subalgebra of g(4).
We say an h-module V to be h-diagonalizable if V admits a weight space decomposition
V= Z?eb* V, where V,:={ve V| h(v)=<4, h)v for all heh} (Aebh*). In this case, let
P(V):={Aeb*|V,#{0}} denote the set of all weights of V.

For Aeb* weset D(A):={A—B|BeQ.=3"_, Z,,x}. Now, let O be the category
of all h-diagonalizable modules ¥ with finite-dimensional weight spaces, such that there
exist a finite number of elements 4,, 4,, ..., A,ebh* satisfying 2(V)< (J;_, D(4;). Note
that any submodule and quotient module of a module from the category @ are also in
0, and that a direct sum and a tensor product of a finite number of modules from ¢
are again in €.

For each Aeb*, there exists a unique irreducible highest weight module L(1) with
highest weight A, which is defined as a unique irreducible quotient of the Verma module
M(2):=U(g(A))/J(4). Here, U(g(A)) is the universal enveloping algebra of g(4), and
J(2) is the left ideal of U(g(A4)) generated by n, u{h—<4, h)1|heh}.

An b-diagonalizable g(4)-module V is said to be integrable if the Chevalley
generators e; and f; are locally nilpotent on ¥ when a;;=2. Note that, for any integrable
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module V over the GKM algebra g(4), dim¢ V,,,, =dim, V, (ueb*, we W), and that
L(4) is integrable if and only if {4, 0’ Y€ Z, , for every i with a;;=2, as in the case of
Kac-Moody algebras (cf. [4]). Now, we set P, :={1eb*|<{A, o’ >eZ,, if a;=2, and
{4, >>0 for all ;}. Then, we have the following.

ProOPOSITION 1.3 (cf. [4]). Let V be an integrable g(A)-module. Assume that there
exists a A€ P, such that P(V)< D(A). Then, any weight ,.€ P(V) is W-equivalent to a
weight pe 2(V)nP,.

Further, when the GGCM 4 is symmetrizable, we have the following.

PrOPOSITION 1.4 ([4]). Let g(A) be the GKM algebra associated to a symmetrizable
GGCM 4, (- | *) a standard invariant bilinear form on g(A). Let A€ P ,, and A, u€ #(L(AN)).
Then, (A l A)—(AIM)ZO and the equality holds if and only if A=pe W- A.

1.4. Character formulas. Let g(4) be a GKM algebra. In this subsection, we
introduce the formal character of modules from the category ©. First, we define a certain
algebra & over C. The elements of & are series of the form Y e C26(4), where ¢;€C
and ¢, =0 for 4 outside the union of a finite number of sets of the form D(u) (zebh*).
Then & becomes a commutative associative algebra if we define its multiplication by
e(A)-e(u)=e(A+pn) (4, ueh*). The elements e(A) are called formal exponentials. They
are linearly independent and are in one-to-one correspondence with the elements Aebh*.

Second, we define the action of the Weyl group W on the elements of &. W acts
on the complex vector space & of all (possibly infinite) linear combinations of formal
exponentials by: w(e(4)) =e(w(4)) (Aeh*, we W). & contains & as a subspace. Note that
& itself is not stable under the action of W.

Now, let ¥ be a module from @ and let V= Z?E p« Vi be its weight space
decomposition. We define the formal character of ¥ by ch V:= )’ léb.(dimc V))e(A)eé.

From now on, we assume that the GGCM 4 is symmetrizable. Let & be the set
of all sums of distinct pairwise perpendicular elements from IT'™. Here, A, u (€h*) are
perpendicular means that (1| x)=0, where (- | *) is a standard invariant bilinear form.
Note that {0} u IT"™ is contained in & by definition. For each fe &, we put &(f)=(—1)"
if B is a sum of m elements from IT™. Then, we have the following character formula.

THEOREM 1.1 ([2] and [4]). Let AeP,, and let #(A) be the set of all elements
of & perpendicular to A. We put

Spi=e(d+p) Y eBe(—=P), Ri= [] (1—e(=a)™"e,

BeF(A) aed+

where multa=dim¢ g, (x€ 4 ,). Then,

e(p)-R-ch L(A)= Y, (det w)-w(S ).

weW

CorOLLARY 1.1 ([2] and [4]). We put S:=e(p)* )., o &(B)e(—P). Then,
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e(p): [1 (1 —e(—apy™te= Zw(det w) w(S) .
aed we
ReMARrRK 1.1. In the original statement of Theorem 1.1 (resp. Corollary 1.1),
which is Theorem 11.13.3 (resp. Corollary 11.13.2) in [4], S, (resp. S) is defined to

be e(A+p)- Y, s EBe(B) (resp. e(p) Y scs E(B)e(B)). However, these are obviously
wrong, and the corrected version is given above.

2. Homology and cohomology of n, with coefficients in L(1). Let g(A4) be the
GKM algebra associated to a GGCM 4, L(4) the irreducible highest weight g(A4)-module
with highest weight 1eb*. Let g(4)=n_ @ ) ® n, be the triangular decomposition of
g(A). In this section, we review the notion of homology of n_ and cohomology of n.
with coefficients in L(4). We denote by A n. the exterior algebra of n., and by A/n,
the space of the j-th homogeneous elements in An, (j>0). So we have An,=

?; ARLS ‘ .

The vector space CJ(n,, L(1)) of j-cochains is defined by C!(n,, L(1)):=
Homg( /\j n,, L(4)) (j=0). Here, for bh-diagonalizable modules V= Z‘?Eb* V, and
W= Zib* W, with finite-dimensional weight spaces, we put

Homy(V, W):={f eHom(V, W)| f(V,)=0 for all but finitely many weights
pebh* of V}.

Then, Homg(V, W) becomes an h-module in the standard way (see [8]). The
coboundary operator d’: Ci(n,, L(1))=Ci*Y(n,, L(4)) is defined by
) j*1 ) i
(A )X A AXGAXG )= 2 (=D (f e A ARA AXjy1)
i=1

+ Yo (=D XJAXLA AR AT AR A AX ),
1<r<t<j+1

where Xy, ..., X;1€n,, f€ Cin,, L(4)), and the symbol %; indicates a term to be
omitted. It is easy to verify (cf. [5] for example) that {C}(n,, L(4)), d’};, _, is a cochain
complex, where C. '(n,, L(4)):={0}. The corresponding cohomology is called the j-th
cohomology of n, with coefficients in L(4), and is denoted by Hi(n,, L(4)) (j=0).
Note that the coboundary operator d/: Ci(n,, L(1))—C}*'(n,, L(A)) commutes with
the action of b, so that Hi(n,, L(A)) is also an h-module (j>0).

For the homology, we define the vector space C;(n_, L(4)) of j-chains to be
/\j n_ ®c L(4), which is an -module in the usual sense (j>0). The boundary operator
d;: Ci(n_, L(A))>C;_;(n_, L(4)) is defined by

J .
dj()’1/\"'/\y1'®”)3= VZI('“I)'(}H/\"'AﬁiA"'AYj)®Yi(U)

+ ) (=D yIAYIA A A AD A AY) @,

1<r<t<j
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where y,, ..., y;en_,ve L(A). The homology of this chain complex is the usual Lie
algebra homology with coefficients in L(4), which we denote by H;(n_, L(4)) (j=>0)
(see [3]). As in the case of cohomology, the homology H(n_, L(4)) is an h-module in
the standard way (j>0).

REMARK 2.1. Thecohomology H)(n,, L(2)) of n, defined in this section is slightly
different from the usual Lie algebra cohomology H’(n ., L(%)), since we have employed
Hom{( /\j n,, L(A)) instead of Hom( /\j n,, L(A)) as the space of j-cochains (j>0) (see
[3] and [8]).

3. The results of Liu. In this section, we explain briefly the results of Liu [8]
about h-modules H;(n_, L(4)) and Hi(n,, L(1)) for Kac-Moody algebras, and present
the analogs for GKM algebras. His proof is applicable to GKM algebras with no
modifications. For details, see [8] and also the appendix of [3].

3.1. The duality theorem between homology and cohomology. Let g(4) be the
GKM algebra associated to a GGCM A4, L(A) the irreducible highest weight g(4)-module
with an arbitrary highest weight 1€ h*. Note that L(1), /\j n_ (j>0) are in the category
0. Since O is closed under the operation of taking tensor products and quotients,
( /\jn_) ®c L(4), and so H;(n_, L(4)) (j=0) are also in the category (. Therefore,
H;(n_, L(A)) is a direct sum of its irreducible components C(u)’s (1 €bh*) as h-modules,
and for each ueb*, C(u) occurs only finitely many times as irreducible components.
Here, C(u) is the (one-dimensional) irreducible h-module with weight ueb*.

Now, we have the following, due to Liu.

ProPOSITION 3.1 (cf. [8]). HJ(n., L(%)) is isomorphic to H;(n_, L(1)) as h-modules
for any j (j=0).

Owing to this proposition, it is enough for us to consider H;(n_, L(4)) (j=0).

3.2. A necessity condition for weights of H;(n_, L(Z)). Here, we assume that

the GGCM 4 is symmetrizable. Let (- | +) be a standard invariant bilinear form. Then,
we have the following.

PrOPOSITION 3.2 (cf. [8]). Every irreducible component of H;(n_, L(2)) is of the
form C(u) (eb*), with (u+p|u+p)=A+p|i+p).

ReMARK 3.1. In the above proposition, the highest weight A of L(4) can be
arbitrary, not necessarily belonging to P,.

4. Kostant’s formula for GKM algebras. 1In this section, we prove our Theorem,
which is “Kostant’s formula” for GKM algebras.

4.1. Determination of weights of H;(n_, L(%)). Let g(4) be the GKM algebra
associated to a symmetrizable GGCM A4 =(a;)); <; j<» and P, ={1eb*|{d, a7 YeZ,,
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if a;=2, and {4, o )»>0 for all i}. Recall that pebh* is a fixed element such that
{p,a’>=(1/2)a; (1<i<n), & is the set of all sums of distinct pairwise perpendicular
elements from IT'™, and (1) is the set of all elements of & perpendicular to Aeb*.
Since & is a finite subset of h*, we put & ={B;}7_,. Note that {0} UIT™ is a subset
of &#.

From now on, we assume that the GGCM A =(a;;), <; j<n satisfies the following
condition (C1):

(C1) either a;=2 or a;=0 (1<i<n).
Since f;€ % is a sum of simple imaginary roots, {f;, @ >e Z_, for i with q;=2 (by
(C2)), and {B;, & »<0 for all i. So, by the condition (C1), p—pieP, (1<j<?), for
{p, o’ >=0 if a;=0. Therefore, from Theorem 1.1, we have character formulas for
L(p—B;) (1<j<?) as follows:

elp) Rech Lip—f;)= 3. (detw)w(S,-y,),

where R=[],.,, (1—e(—a))™"* and
SP—ﬂjze(zp_ﬁj)' Z &(B:)e(—B;) (1<j<?).

1<i<¢,(B:|B)=0

Lemma 4.1. e(p)-ch(An_)=ch(Y §_,_, L(p—B)).
Proor. First, by Corollary 1.1, we have

e(p): [T (1—e(—ap™"== Zw(det w) w(S) ,

aed ¢

where S=e(p): Y'7_ &(B;)e(— B;). Therefore, we get

e2p): I] (1—e(=2a)™"*= 3 (detw)-w(3),
aed+ weW

where S’:=e(2p)-Zf=1£(ﬂ,-)e(—2[3,-), since y,+ -+ +y,=teb* implies 2y, + -+ +

2y,=2t€eb*, for y;e 4, (1<i<r). On the other hand, we have

e(p)-ch(/\n_)=e(p>-ch<Z@/\fn_)=e(p)- [T (1+e(—ap™e

jz0 aed+

[T (—e(=28)™" e2p)- [T (1e(~2pms
— J2€4d+ _ acd s
e(P) l—[ (1 _e(_a))mulm €(,0)'R

aed 4

Here, we note that (1—e(—a))™'= ), e(—ka) for aed,.
Therefore, by Theorem 1.1, we have only to show the following:



GENERALIZED KAC-MOODY ALGEBRAS 575

Ciam. Y, (detw)-w(S)=Y_ % . (detw)-w(S,_,).

PrOOF OF THE CLAIM. By Proposition 1.1 (cf. the proof of Proposition 4.2), we
have only to show that §=Y"7_, S, _,, or
2

Z e(Be(—2B0) = Z Z 8(Bi)e(—ﬁi“ﬂj)-

k=1 1<js¢ 1<i<¢,(B:|f;)=0
Since (B;| B;)=0 for all i (1<i<?) by (C1), the above equality is nothing but
0= 2 S(Bi)e(—ﬁi—ﬂj) .
1<i#j<¢,(B:|B;)=0
Moreover, the right hand side is equal to
® 2 e(B)e(—Bi—B;) -
1<i#j<¢,(Bi|B)=0
e(Bi)eBj)=1

Now, we assume that {l<i<n|a;<0}={1,2, --,m} (1<m<n) for notational
simplicity. Then, () is equal to ), g Cpe(— B), where B runs through all elements of the
form

204, + 1 oy )ty o oy

lp+1 lp+q?

where (x; |®;)=0 (1<r,s<p+q), 1<i#ii<m (1<r#s<p+q), 0<p, 1<q, and
p+q<m. Note that g#0 and ¢ must be even, since the sum in (§) is for 1 <i#j</
such that &(B;)-e(f;)=1. We calculate cze€ Z for such f’s and want to show that ¢;=0

12
for all B. Actually, ¢, is equal to (—1)7- Zf;o(—l)'-[ _t], where ¢=2¢ and [2?] is
i i

the binomial coefficient, because ;€% is a sum of distinct elements from IT™ and
&(B;)=(—1)"if B;is a sum of m elements. Hence c;=(—1)P-(1— 1)?*=0 (note that t#0
as seen above). Thus, the claim has been proved.

This completes the proof of Lemma 4.1. O
From Lemma 4.1, it follows that, for every Aebh*,
e(p)-ch((An-) ®¢L(A))=ch << lgjiL(P—ﬁ ,~)) ®c L(/l)> :
Hence, from the above, we can deduce that
peP(An-) ®cL(4) <=>u+peg’(< I;ZL(p—B,-)) ®CL(A)) :
and the multiplicities for u and u+ p coincide with each other.

LEMMA 4.2. Let A€P.. If, for some i (i>0), u is a weight of(/\in_) ®c L(A) and
satisfies (u+p | u+p)=A+p | A+p), then
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(1) there exist a B;e & with (A | B;))=0 and a we W, such that {(w)+ht(B;)=i and
p=w(A+p—B;)—p; .

(2) the multiplicity of p in (\'n_) ®¢ L(A) is equal to one.
Here, ht(B;)=m if B; is a sum of m distinct elements from IT™ for Bje ¥ (1<j<?).

ProoF. From the above consideration, u+p is a weight of () 5 j<e Llp—
B;) ®¢ L(A) with the same multiplicity as u in (An_) ®¢L(A). We remark that
PUL L2 L0—B) ®c L) =P(LT ;  (L(p—B)) ®c L)) =U]_, 2(L(p~
Bj) ®c L(A)).

Now, suppose that u+peP(L(p— ;) ®¢ L(A)) for some j (1 <j<). Since p—B;
and A are elements of P, L(p—f;), L(A), and so L(p — B;) ® ¢ L(A) are integrable (see
Section 1). So, there exists a we W such that w(u+p)e P, nP(L(p—p;) ®¢ L(A)) by
Proposition 1.3. We put w(u+p)=A4+p—B;—¢ with peQ,. Then, since (-|-) is
W-invariant, we have

(A+p| A+p)=(u+p|u+p)=W(u+p)| W(u+p)=(A+p—Bi—¢| A+p—Bi—¢)
=(A+p|A+p)=2(A+p|B)+(B;| B)—(A+p—B;| @)= (A+p—B;— 0| @)
=(A+p|A+p)—2A|B)—(A+p—B;|@)—(A+p—B;— | 9)

(note that (p | Bj):Oz(ﬂj|ﬁj) by (C1)). Therefore, 2(A | Bj)+(4 +p—ﬁ,-| Q)+ (A+p—
Bi—o | ¢)=0. Now, since Ww(u+p)=A+p—B;—peP, and peQ,, we have (41+p—
B;—@|9)=0. Since 4, p—p;eP,, and peQ,, we have (A+p—p;|9)=0. So,
(A]|B)=A+p—B;|@)=(A+p—B;— | ¢)=0, since A P,.

We would like to show that ¢=0. For this purpose, put o= Y7_, k;a;, k;e Z .
Note that (p | oci)=(1/2)'(ai|oci)>0 for all ;e IT™, and that (Bj|qo)$0 since f; is a sum
of elements from IT™. Hence, (A4 + p— B;| ) =0 implies that (4 |p)=(p| @) =(B;| ) =0.
Further, k;=0 if a;e IT*. On the other hand, since W(u+p)=A+p—f;— ¢ is a weight
of L(p—B;) ®¢ L(A), we have A+p—B;—p=(p—B;—¢,)+(A—¢,), where p—f;—
@€ P(L(p—B;)) and A — ¢, e P(L(A)) with ¢,, p,€ Q. So, we have o =, + ¢,. Since
(Bj‘(P)=(A ‘ ¢)=0, we get (ﬁj|(ﬂ1)=(/1 | ¢,)=0. Then, (P_le P“Bj)_(P_Bj|P_ﬁj_
®,)=0 since (p|a;)=0 if o;e ™. Moreover, (4| A)—(A|A—¢,)=0. Therefore, we
deduce from Proposition 1.4 that ¢, =¢,=0, hence ¢ =0.

Thus, we get w(u+p)=A+p—p;. So, we have shown that u=w(A+p—p;)—p
with w:=(#)"'. It is clear that the multiplicity of u+p in L(p— ;) ® ¢ L(A) is 1, since
this g(A4)-module is integrable (see Section 1). Moreover, from the above argument, we
see that ;€ & is uniquely determined (see the proof of Proposition 4.2 below). Therefore,
the multiplicity of u in (An_) ®¢ L(A) is 1.

Now, by Proposition 1.2, w(p)—p=— 3., a, where &, ={acd, |lw™ Y (w)ed_}.
Therefore, p=w(A+p—p;)—p=w(A)—w(B;)— (prw ). We express f; as f;=a; +
o+ +a, , where m=ht(f;), o, e II'™ (1<k<m), and i, #i, (1 <r#t<m). Remark that
w(a,)edL \ P, (1<k<m) and that w(A)eP(L(A)), since 4 and P(L(A)) are both
W-stable (see Section 1 and [4]). We take non-zero root vectors Ey€g_ ) (1<k<m),
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E,eg_, (xe®,), and a non-zero weight vector ve L(A),,4. Then, 0#(E A - - AE,) A
(A.e o, E) ®ve(An_) ® ¢ L(A) is a weight vector of weight u. Because y is a weight
of (An_) ®¢ L(A)= Z?zo ((/\" n_) ®c¢ L(A)) with multiplicity 1, and pe g‘((/\i n_)®c¢
L(A)) by assumption, we deduce that m+ #(P,) =i, where #(®,,) denotes the cardinality
of @,. So, by Proposition 1.2, we have i=ht(f;)+£(w). O

By Proposition 3.2 and Lemma 4.2, we have the following.

PrOPOSITION 4.1. Let AeP,. If C(u) (Leh¥®) is an irreducible component of
H;(n_, L(A)) (i=0), then

(1) pu=w(A+p—B;)—p, for some B;€ &L with (A | B;)=0, and some we W, such
that £(w)+ht(B;) =1,

(2) H;(n_, L(A)) has only one copy of C(u) in itself.

4.2. A sufficiency condition for weights of H;(n_, L(4)). We assume that the

GGCM 4 is symmetrizable and satisfies the condition (C1). Then we have the following
sufficiency condition for weights of H,(n_, L(A)).

PROPOSITION 4.2. Let A€ P, and fix i€ Z, ,. Then, for each e & with (A { B)=
0 and each we W such that ((wW)+ht(B)=i, p:=w(A+p—PB)—p is a weight of
Hi(n_, L(A)).

PrOOF. By Theorem 1.1, we have
R-e(p)-ch L(A)= ). (detw)-w(S,),
weW
where R=1],.,. (1—e(—a))™"*and

Si=e(A+p)* Z e(Be(—By) -

1<k<¢,(A|B)=0

Recall that the boundary operator d;: ( /\j n_) ®cL(A)—( /\j_ln_) ®c L(A) com-
mutes with the action of b (j>0). Then, by the Euler-Poincaré formula (cf. [3]), we
have

2 (=1y-ch(H(n_, LA) = Y (=1)*ch(A'n_) ®c L(4))

j=0 j=o0

=< Yy (—1)f-ch/\fn_>-ch L(A)=< I (1—e(—a))"‘“““> -ch L(A)

Jj=0 aed 4

=R-ch L(A)=e(—p)* ZW (det w)-w(S,)

= > (det w)-e(Be(w(A+p—Bi) —p)

weW 1<k<¢,(4]|fr)=0
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=2 Y (1) e(uw(A+p— ) —p) -
weW 1<k</,(A]p)=0

Now, we show that w(A+p—B,)—p differs if w or B, differs. Suppose that
wi(A+p—B,)—p=wy(A+p—B)—p for w,, w,e W, and B,, f,€ <. Then, wy 'w (A +
p—PB)=A+p—p, Since A+p—B,, A+p—B,eC", we get A+p—f,=A+p—p, by
Proposition 1.1(b). So, B, = f,. Therefore, we have w; 'w,(A+p—B,)=A+ p—p,. Then,
since {p, a; =1 and {B,, o' > <0 for all i with a;=2, it follows that w; 'w; =1 from
Proposition 1.1(a). So, we have w, =w,.

From the above argument and Proposition 4.1, the Proposition now follows. [

From Propositions 3.1, 4.1, and 4.2, we get the following theorem, which is our
final goal.

THeOREM 4.1 (Kostant’s formula). Let g(A) be the GKM algebra associated to a
symmetrizable GGCM A satisfying (C1). Let L(A) be the irreducible highest weight
g(A)-module with highest weight A€ P .. Then,

Hin,, LAY =H(n_, LA)= L° X% CwA+p—P)—p)

BeFL(A) weW, L(w)=j—ht(f)
asbh-modules (j > 0). Here, the sum is a direct sum of inequivalent irreducible h-modules.

CoroLLARY 4.1 (Bott’s formula). Under the same assumption as in Theorem 4.1,
we have

dim¢ Hi(n,, L(A))=dim¢ H;(n_, L(A))
= #({(B, W) e L(A) x W|£(w)+ht(B)=j}) < + o .

ReEMARK 4.1. When 4 is a GCM (i.e., q;;=2 for all i), #(A) consists of only one
element 0 e h*. Hence, in this case, Theorem 4.1 is nothing but the well-known formula
of Kostant for Kac-Moody algebras (cf. [3] and [7]).

REMARK 4.2. In Theorem 4.1 and Corollary 4.1, the assumption that the GGCM
A satisfies (C1) is essential, because the element peh* must belong to P., while
{p, 0 >=(1/2)-a; for all i.

5. A presentation of GKM algebras. In this section, as an application of Theorem
4.1, we get a presentation by generators and relations of the GKM algebra g(4) associated
to a symmetrizable GGCM 4 satisfying (C1). Though such a presentation is already
known for an arbitrary symmetrizable GGCM 4 ([4]), its proof is rather complicated.
Here, using Theorem 4.1, we give a simple cohomological proof by the method of
Mathieu [9].

Let g(A4) be the Lie algebra defined in Section 1, and i, (resp. fi_) the subalgebra
of §(A) generated by e;, 1 <i<n (resp. f;, 1 <i<n). Then, we know the following.
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ProrosiTION 5.1 ([4]). (@) gA)=fi_@Hhdii,.

(b) fi, (resp. i) is freely generated by e;, 1 <i<n (resp. f;, 1 <i<n).

(c) The map determined by e;+— — f,, fi—> —e; (1<i<n), h—~ —h (heb), can be
uniquely extended to an involution & of the Lie algebra §(A).

(d) With respect to ), we have the root space decomposition:

@(A)=( >e §-a>®b®( e g>
. aeQ+ \ {0} aeQ+ \ {0}

where §,:={xed(4)|[h, x]1={a, h)x, for all heb}. Furthermore, §,<fi, for toe
0. \{0}.

() r=rx_@r, (direct sum of ideals), with ri=22Q+ (xnG+,). Moreover,
NJ4,,={0} (1<i<n).

In order to determine r=r_ @ r,, it is enough to consider r_ only, since the result
for ¢, follows by the application of the involution @& of §(4). Then, as a special case
of Mathieu’s general result [10, Chap. XVI, §4, Lemme 116], we have the following.

PrOPOSITION 5.2.  As h-modules,
r_/[fi_,r_J=H,(n_, L(0)).

Now, we assume that the GGCM 4 =(q;;), <; j<» IS Symmetrizable, and satisfies
(C1). From Theorem 4.1, we have

(&) Hy(n_, LO)= Y.° >®  Cwp—P—p)
BeS weW,l(w)=2—ht(B)

as h-modules.

We see that the sum on the right hand side actually runs through the disjoint union
of:

Sy i={(+a, NeF x W|a, q;elT™, a;;=0 (1<i#j<n)},
Syi={(ar)e¥ x W|a;e '™, a;=2 (1<i#j<n)},
S3:={0,rir)ed x Wla;=a;=2 (1<i#j<n)}.

For (¢;+a;, 1)€ S}, the corresponding weight w(p —B)—p is —(a;+a;). For (a;, r;) €S,
and (0,r;r;)€S;, it is —(a;+(1—a;;)a;). Therefore, we can easily deduce from
Propositions 5.1 and 5.2 that the ideal r_ of fi_ is generated by the following elements:

@df)'~f;  (I<i#j<n, a;=2),
[ﬁ’f)] (ISl?éan, aii=ajj=aij=0)'
Hence, we have recovered the following theorem.

THEOREM 5.1([4]). Let A=(a;;); <i, j<nbe asymmetrizable GGCM satisfying (€.
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Then, the GKM algebra §(A) is isomorphic to the Lie algebra given by generators
hu{e;, fi}i=1 and the relations (F1)~(F3) and the following:

(ade)' ~%ie;=0, (ad f})' % f;=0 if a;=2 and i#j;
[e, e;1=0, L[f, f;1=0 if a;=a;=a;=0.
Here, the triple (), IT={o;}?_, 1Y ={o’ }}-,) is a realization of the GGCM 4.
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