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Abstract. The unit tangent bundle of a Riemannian manifold is one of popular
examples of contact manifolds. It has the standard CR structure which is not integrable
in general. We study the recently defined gauge invariant of type (1,3) of the CR structure
and show that the invariant vanishes, if and only if the Riemannian manifold is of
constant curvature —1.

Introduction. Popular examples of contact manifolds are the odd-dimensional
spheres and the unit tangent bundles of Riemannian manifolds. These examples have
the standard contact Riemannian structures and their associated CR structures.

A contact Riemannian structure satisfying the integrability condition Q=0
corresponds to a strongly pseudo-convex integrable CR structure. There are rich results
in the study of strongly pseudo-convex integrable CR structures. If one wants to
generalize the Chern-Moser-Tanaka invariant of (1,3)-type of CR structures to a
(1,3)-type invariant of gauge transformations of contact Riemannian structures, it
seems to be necessary that one fixes a linear connection (Tanno [12]) or a nowhere
vanishing m-form on the contact manifold M, where dim M =m (cf. §3).

In §4 we give the expression for our (1,3)-type invariant B of the standard contact
Riemannian structure on the unit tangent bundle of a Riemannian manifold.

THEOREM A. Let (M, g) be a Riemannian manifold of dimension m>3 and (T* M,
n, g*) be its unit tangent bundle with the standard contact Riemannian structure (n, g*).

Then the gauge invariant B of (1,3)-type of (T'M, n, g*) vanishes, if and only if (M, g)
is of constant curvature —1.

It is worth noticing that if (M, g), m>3, is of constant curvature — 1 then the CR
structure associated with the contact Riemannian structure (n, g*) on the unit tangent
bundle T M is integrable and yet the natural almost complex structure of the ambient
space, i.e., the tangent bundle 7'M, is not integrable.

Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and
Culture, Japan.

1991 Mathematics Subject Classification. Primary 53C20; Secondary 53C15.



536 S. TANNO

1. A contact form and its associated Riemannian metrics. A 1-form 7 on a
manifold M of dimension m=2n+1 is called a contact form if it satisfies # A (dn)"#0
everywhere on M. The equivalence class of contact forms containing # is denoted
by {n}, which is called a contact structure. The pair (M, {r}) is called a contact manifold.
By P we denote the subbundle of the tangent bundle TM of M defined by n=0, and
at the same time the 2xn-dimensional distribution on M, which is called the contact
distribution associated with the contact structure.

By a contact manifold (M, ) we mean a contact manifold (M, {n}) with a fixed
contact form 5. Since dn is of rank 2n, there is a unique vector field ¢ such that n(&)=1
and L.=0, where L; denotes the Lie derivation by ¢. ¢ is called the associated vector
field. It is known that there exist a Riemannian metric g and a (1,1)-tensor field ¢
satisfying ¢£=0, n-$=0, g(X, &)=n(X) for Xe T .M, and

) pp=—I+n®<,  dn(X, Y)=29(X, ¢Y),
)] 9(X, Y)=g(¢X, ¢Y)+n(X)n(Y)

for X, Ye T M, xe M. g is called an associated Riemannian metric. Although g and ¢
are not unique for #, the pair g and ¢ are canonically related. The pair (7, g) is called
a contact Riemannian structure. The restriction ¢ =¢ | P of ¢ to P defines an almost
complex structure to P. So (1, g) is equivalent to (1, ¢) or (1, $), where ¢ is an almost
complex structure for P such that §(X, Y) (= —(1/2)dn(X, ¢Y)), X, Y€ P, defines an
almost Hermitian structure for P. The pair (, ¢) is called the CR structure associated
with the contact Riemannian structure (1, g). A contact Riemannian structure (y, g) is
a strongly pseudo-convex integrable CR structure, if it satisfies the integrability condition
Q0 =0, where Q is a (1,2)-tensor field on M defined by

©) X, Y)=(Vy®)(X)+(Vym)(pX)E+n(X)PVy¢

for X, Ye T .M (cf. [10]). A natural question is stated as follows:

Which metric is most proper among Riemannian metrics associated with n?
One method of finding conditions of nice Riemannian metrics is to study variational
problems and their critical points. Blair [3], [4], Chern and Hamilton [5], and Tanno
[10] studied variational problems on contact manifolds. Let (M, ) be a compact contact
manifold. Then an associated Reimannian metric g is critical with respect to the Dirichlet
energy functional E(g)={,, | Lsg ||?dM if and only if

An associated Riemannian metric g satisfying (4) is called E-critical. One may consider

that a contact Riemannian structure (1, g) belongs to a nice class if g is E-critical.

2. Gauge transformations of contact Riemannian structure. If one changes # to
fi=on in {n} for a positive function ¢, then one may hope that the choice of an associated
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Riemannian metric § should be determined in a natural way. This is done by assuming
¢ | P=¢| P. Namely we have

O E=/o)E+0), (=(1)20)pgrada, F=¢+(1/20)1® (grado—Co-&),
6 g=og—o(n@w+w@®m+alc—1+{1m®n,

where w is dual to { with respect to g. § and g are conformal with respect to P. We

call (1, 9)—(#, §) a gauge transformation of contact Riemannian structure. A natural
problem is stated as follows:

What are gauge invariants and what are their properties in contact geometry?
Using the generalized Tanaka-Webster scalar curvature ST of contact Riemannian
structure, a scalar gauge invariant K, , of contact Riemannian structure (1, g) is defined
on a compact contact manifold (Tanno [10]). This invariant is a natural generalization
of the Jerison-Lee invariant for strongly pseudo-convex integrable CR manifolds ([7]).

3. A gauge invariant of (1,3)-type. Let R and p denote the Riemannian curvature
tensor and the Ricci tensor of a contact Riemannian manifold (M, 7, g). Let p be a (0,2)-
tensor field defined by 2p=L.g. Define p* and p* by g(X, p*Y)=p(X, Y) and g(X, p*Y)=
p(X, Y). Since the action of ¢, O, p* and V,p* to ¢ is trivial, by the same notations ¢,
0, p* and V,p*, we mean also their restrictions to P. Now we denote the restriction
of R and p* to P with respect to g by R and p*, i.e., Re'(P ® P*3) and p*eI'(P @ P*).

By a P-related frame we mean a frame {e;} = {e,, o =¢; 1 <u<2n} such that e, P.
The indices u, v, w, x, y, and z run from 1 to 2n. We define Ue I'(P? ® P*?) by

(N U2 =2[Q2/m+3)[—0UQ3w+ Q%)oY — Q2+ 05.) +9..(Q5w + Q1)) o™

=005+ Q09" 1+ 02,05+ 6.:.00,9"" + 01,07

+ (1/2)(Q l)wz - Q;w)gwud)xy + ¢'z)Q';cy + ¢§Q ;y - ( 1 /2)¢WQ ;’zgxw]xy s
where [ - - -],, denotes the skew symmetric part of [ - - -] with respect to x, y.

Let w be a nowhere vanishing m-form on M and fix it. Let dM(g) denote the volume
element of (M, 1, g), i.e., dM(g)=((—1)"/2"n")n A (dn)". We define 1 by dM(g)= +¢*w
and Oel'(P*) by (X)=XA for XeP. By XA Y we denote the operator defined by
(XAYVZ=g(Y,Z)X—g(X, Z)Y. Now we define Be '(P ® P**) by
(8) (m+3)B(X, V)Z=(m+3)RX, V)Z—(XAY)F*Z—p (XA VNZ+ (XA Y)p*PZ

—[p(X, $Y)—p(Y, $X)16Z + ¢p*(X A Y)PZ
—(1/2)dn(X, Y)(¢p* +p*$)Z+[ST/(m+1)—41(X A Y)Z
+[ST/m+1)+m—1][—d(X A Y)PZ+dn(X, Y)$Z]
+(m=3)[p (XA Y)PZ—p(X A Y)p*Z]

+6[(X A Y)P*PZ—pp*(X A Y)Z]+(m+3)p (X A Y)p*Z
(XA Y)VepHZ—(Vep )X A YVZ+(Vep )X A Y)PZ
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+@X A Y)YV pHPZ—((m+3)/(m+1)UX, Y, Z; 0)

for X, Y, Ze P, where U(X, Y, Z; 0)=(0,U;;,X*Y’Z). This B is essentially the same
as the one defined in [12]. The only difference is 6, where this 0 satisfies the same
relation 8, — 60, =2(n+ 1)a, for o =e?* as in [12]. We restate Theorem A of [12].

THEOREM. Let (M, 1, g) be a contact Riemannian manifold of dimension m=2n+1
and let o be a fixed nowhere vanishing m-form on M. Then Be I'(P ® P*3) defined by
(8) is a gauge invariant of type (1,3) of the contact Riemannian structure. Furthermore:

(i) If B=0, then the CR structure (, ¢) associated with (y, g) is integrable.

(ii)) If Q=0, then B reduces to the Chern-Moser-Tanaka invariant.

Note that the condition (4) is written as V.p*=2p*¢. So, if (4) is satisfied on
(M, n, g), then B of (M, n, g) takes somewhat simpler form.

We call B’ defined by B;‘;y—— B, +(1/(m+1))0,U%, the main part of the invariant
B. Now we put B, =g,,B,. Then we have the following:

()] B,..,= —B, B, —B,

uzyx b uzxy Zuxy °
(10) (m + 3)(Buzxy xyuz) ¢szyu ¢yz xu ¢quyz + ¢yu Xz
where we have put
(11) ny:pxw¢y+pyw¢:’_4(n_l)pxy+2vépxwd);v .

Z is symmetric with respect to x, y. By Remark (i) of [12] we see that if Q=0 then
—0 and in particular B,,,,= B/,,, holds.

uzxy xyuz

REMARK (i). If m=3, then we have B=0. In fact, m=3 implies that Q =0 holds
(and hence U=0) and that R is expressed in terms of p, g and S. In simplifying B’ we
use the following, (i): ST=S—p(¢, £)+4n (cf. (8.2) of [10]), (ii): the trace of p* (also
V. p*) vanishes (cf. [10]) and (iii): p(¢, &)= 2n—|| p |2 (cf. Blair [2]), where || p|*=
[(1/2)Ls¢ ||*. By calculating the component B, with respect to an orthonormal
basis {e,,e,=¢e,, £}, we have B'=0 for n=1.

4. The tangent bundle and unit tangent bundle. Let (M, g) be an m-dimensional
Riemannian manifold and let TM denote its tangent bundle with projection n. For a
local coordinate neighborhood (U, x%) in M, (n U, x',v") is a local coordinate
neighborhood in TM, where v=(x, v)=(v'0/0x)en~ ' U. A vector field W on TM or
tangent vector W at a point of TM is denoted by W=(W‘ W™, where

=W'9/ox'+ W™*9/ov'. For a vector field X on M or a tangent vector X at a point
of M its horizontal lift X¥ is defined by X" =(X*, —I'},v*X”), where (I'};) denotes the
coefficients of the Riemannian connection V. The vertical lift X* of X is given by XV =
(0, X*). Then we have the following: [X", YY]=0, [X¥, Y"]=(V,Y)",

(12) [XH, YH]=[X, Y] —(R(X, Y)v)¥ .
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A natural almost complex structure tensor J of TM is defined by JX¥=X" and
JXY=—X". Jis integrable if and only if (M, g) is locally flat (Dombrowski [6]).
The Sasaki metric § of TM is defined by
gxXH, YM=g(X,Y)-n, §X*,Y"H=0, §X",Y")=gX,Y)n.

JgJZ, IW)=3G(Z, W) is easily verified, and (TM, g, J) is an almost Hermitian manifold.
The Riemannian connection V of § is given by the following (cf. Sasaki [9]):
(13) Vi Y= (Vi V) —(12)(R(X, Y)0)¥,

VYV = (V4 Y) —(12)(R(Y, 0)X)" ,

Vo YE= —(1/2)(R(X, v)Y)¥, Vy¥YV=0.
The geodesic flow vector &, =v'(9/0x") on TM satisfies V, &, =0. TM admits a natural
1-form n=(1/2)no=(1/2)g;v’dx’, which defines the standard contact structure on 7" M.
We have 2dy(Z, W)=g(Z, JW) for any Z, We T,TM. This means that (TM, g, J) is
an almost Kéhlerian manifold, which is Kéhlerian if and only if (M, g) is locally flat.

The unit tangent bundle 7' M of M is a submanifold of TM defined by g,v'v' =1
and so n=1'0/0v'=v'(0/0x")” is a unit normal. By (13), etc., we obtain

(14 Vxnn=€7xﬂ<u‘<i.>y)=o, Vern=Xx",
oxt

and hence the Weingarten map A is characterized by AX#=0, A6, =0and AX" = — X",
where v.L Xe T M.

By Z'T we denote the tangent part of Z' to T*M for Z'e T,TM, and by g* we
denote the (1/4)-times the induced metric on T*M form § on TM. We define ¢ and ¢ by

(15) E=280=—2In, ¢W=(W)', WeT,T'M.

Then ¢2= —I+n ® & n(&)=1, n(Z)=g*(&, Z) and 29*(Z, $W)=dn(Z, W) hold. So,
(1, g*)=(¢, £, n, g*) defines a contact Riemannian structure on 7'M, which we call the
standard contact Reimannian structure on 7' M.

REMARK (ii). The second fundamental form 4 of T'M in TM is degenerate.

However, the hybrid part (1/2)[A(X, Y)+h(JJX,JY)] of h restricted to P is non-
degenerate.

As for V3¢ and Vi¢ we have the following (cf. Tashiro [13], Blair [1]).
- [ 0 \H
(16) Viul=V XH<2v'<F> ) = —(R(X, v))¥,
X

(17 VicE=—2¢X" —(RX, o), Xlv,
(18) (V) Y=V yu YV —JVyu YE = —(1)2)(R(X, v) Y)H |
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19 (Vi)Y' =(1/DLURX, »)V)"]",  Ylo,
(20) (Vi) Y =(1/2[(RX, ) V)" T"=29(Y"X",  Xlov,
2] (Vi) Y =(1/DRX, ) +(1/95(X7, Y¢, X, Ylo.

ProposiTION 4.1.  For dim M=m>3, the CR structure (1, (5) on T*M associated
with the standard contact Riemannian structure (n,g*) is integrable, if and only if
(M, g) is of constant curvature.

Proor. For X, Ye T, M such that X, Y Lv, by the definition (3) of Q and (16)—(21)
we obtain the following:

o(X",Y")=—0(X",Y")= —(1/2)[R(Y, v) X — g(R(Y, v) X, v)v]",
Q(XH, YV) = Q(Xys YH) = (1/2)[R( Y, U)X— g(R( Ya U)X’ U)U]V .
Therefore, Q=0 is equivalent to the relation R(X, Y)ZLlv for any X, Y, Z1lv. This

means that R(X, Y)Z is a linear combination of X, Y and Z, and hence (M, g) is
of constant curvature, if the dimension m>3 (cf. Ogiue [8]). q.e.d.

REMARK (iii). Proposition 4.1 shows that the unit tangent bundle T'M of a
Riemannian manifold (M, g), m>3, of non-zero constant curvature is an interesting
example of integrable CR manifolds, in the sense that the almost complex structure J
of the ambient space TM is not integrable.

REMARK (iv). The associated vector field & of the standard contact Riemannian
structure (1, g*) on T'M is a Killing vector field if and only if (M, g) is of constant
curvature 1 (Tashiro [13]).

In the following we denote by m'=n+1 the dimension of M. It is convenient to
use the following basis of T, ,, 7'M at a point (x, v) of T*M:

{éus éOs lsuszn}={é =ef9 én+a=e;/’ é0=£0=vH; 1Sot_<_n} ’
where {e,, eg=e, ., =0} is a basis of T, M at x such that g(e,, v) 0. We use the following
ranges of indices:
1<a,B,4,...<n, 1<ab,r,s,...<n+1, 1<u,v,...<2n, a=n+a.

ProposITION 4.2 (cf. Yampol’skii [14]). The Riemannian curvature tensor R*, the
Ricci tensor p* and the scalar curvature S* of (T*M, g* =(1/4)§) are given by
R*gab Rizy+ (1/8)(Ri50RGp— RigoRGsc— 2RE00 RS ab) »
*p=(1/2V.Rés ,
R*yab_ ~(1/2)0(VaREy0—ViR0y0) ,
R*yab yab+(1/4)(R0as iyO RObs R:,0) 5
R¥5=—(1/QV.RYyo,  R¥op=(1/2)R}s+(1/4)RE R0 ,
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R¥p=(1/)R%y—~(1/RoRo . R*p=0,
R*f&ﬁ= Rcda[i +(1/4)(Ré g0 — RgﬂORiao) > R*cI&B= 0,
R*;&F=0 > R*;[&B:é:gﬂy_éﬁgav >
Pie=Poc—(1/2)R°¢ s Rsorc »
pr5=01/2)(Vopp,—V,Pp0) 5
p ;)7 =(m'—2)gg,+(1/ 4)R7 5R50, »
S*=4S+4(m' —1)(m' —2)— R*",R,,,0 -
REMARK (v). Proposition 4.2 implies that if (M, g) is a 2-dimensional flat

Riemannian manifold then its unit tangent bundle (T* M, 5, g*) is a 3-dimensional flat
contact Riemannian manifold.

ProposiTION 4.3. p=(1/2)L.g* and V}p on (T'M, n, g*) are given by
Pab=P&E=POZI=0 > Paﬁ=(1/4)(gap_R20ﬁ) ,
Vipoa=Vipo:=0,  Vip,g=—(1/2)VoR0;,
V= —VEpap=(1/2)(— Rdop+ R%.0R5080) -
Proor. The first two follow from (16) and (17). For example, the second is
2p(XH, YY) =g*(Vial, YV) +g* (X", Vi 0)
= —g*((R(X, v)v)", Y")+g*(X", 2Y" —(R(Y, v)v)")
= —(1/4)g(R(X, v)v, Y)+(1/4)g(X, 2Y — R(Y, v)v) .
To verify the other, first we use (13), etc., to get
VEXH=2V X" =2V, X)" + (R(X, v)v)" ,
VEXY =2V, XV =2(V,X)" —(R(X, v)v)"
and, for example, we use the following:
VEp(XH, YY) =(1/2)&[9(X, Y)—v"0"g(X, R(Y, 0,)0)]
=(1/2)[V,(g(X, Y))—v*"V (g(X, R(Y, 0,)0))]
—(1/2)(=T0"v%(0/0v")(v*v*) - g(X, R(Y, 0,)35) -
The remaining part consists of similar direct calculations. g.e.d.

PROPOSITION 4.4. The generalized Tanaka-Webster scalar curvature ST of the unit
tangent bundle (T*M, n, g*) is given by ST=4S+4n*—4pyo— R*4R 00
PrOOF. By (8.2) of [10] and p*(&, &)=4p*(&y, &o) =4pd, We have
ST=8*—p*(, &)+4n=4S+4n(n—1)— R R,,,0—4poo + 2R%,* o R,y0c0 + 41,

from which the above expression of ST follows. q.e.d.
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PROPOSITION 4.5. Let (T'M, 1, g*) be the unit tangent bundle of a Riemannian
manifold. Then the main part of the gauge invariant B of (1,3)-type is given by the following:
(22) 2(n+2)B'5=2(n+2)R} 5+ [ST/8(n+1)+21(6%95,— 659,

+((n+2)/2)(R%,0RY 08y RﬁaoR Gay—2R},0R 0ap)
+064F,,—62Fy, +g,,Fi—gp,Ft,
23) 4(n+ 2)B’ =21 +2)V,Rbp+02G 5 — 063G u+ 9, G s — 95,G* + 05(G oy — Gyy)
(24) 2(n+2)B% ¢ = 2(n+ 2)Ryaﬂ +((n+2)/2)(R.o 870 — ROﬂa 20)
+[ST/8(n+1)+ 210295, — 059uy) + O4F 1y — 02F g, + gy F s — g5, F2
(25 2(n+2)B',p=(n+2)[R:5—(1/2)R4oRS, 0+ 05R%, + 059,51
+[ST/8(n+1)—n1(82g5,+ Guy0f +29.502)
+ (S’IH,,7 + 5’1Ha,, + ng”} + ga,,H¢ - 5§Fay — 5;}Faﬂ — gaﬂF;' - g,,yFi' ,
(26) 4(n+2)Bg=0:Gs,— 065Gyt 9uyGp* —95,Gt +6XGop— Ggy)
(27) 2(n+2)Bp=[S"/8(n+1)+21(6}9p,— 039ay) + 02Hp,— 04 H,, — g H s+ g5, H?
where we have put
Fop=Pag+ Rop—(1/2)R%6% R 0,5 » Fy=g"Fy,
aﬁ = Vopaﬂ - VuPﬁo - VoRgop = VaRaBOa s
Haﬂ = Rgop - (1/4)Rﬂ0aRot0ﬂ .

ProorF. We apply Propositions 4.2 and 4.3 to the expression (8) of B. By (9), (10)
and (11) we see that (22)—(27) give the main part of B. q.e.d.

COROLLARY 4.6. If (M, g) is of constant curvature k, then B of (T'M, n, g*) is
given by

Bw Bl =Bjap=[(k+ D)(n+2)/4(n+1)](0}9,5— 69+ -
Bj,p=[(k+1)/4(n+1)1[269.5—n(339,5 + 539,01 ,
Byaﬂ Bwﬁ 0.

PROOF. By Proposition 4.1 we have Q=0 and B= B'. By Proposition 4.4 we have
ST=4n?(k+1). Furthermore, we have F,;=(n+1)kg,s, G,3=0 and H,z=kg,,. Then,
Corollary 4.6 follows from Propostion 4.5. q.e.d.

PRrROOF OF THEOREM A. First we assume that B=0 holds. Then we have Q=0 and

=0. By Proposition 4.1, (M, g) is of constant curvature k. Now Corollary 4.6 shows

that B=0 implies k= —1 if n>2. Conversely, if (M, g) is of constant curvature k= —
then Corollary 4.6 implies B=0. q.e.d.

REMARK (vi). By Proposition 4.3 the E-critical condition V¥p=2p-¢ is given by
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R 040R 050 =0ap and Vo R®,0,=0. Blair [4] proved that g* of (T*M, 5, g*) is E-critical,
if and only if (M, g) is of constant curvature 1 or —1.
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