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PARAMETER SHIFT IN NORMAL GENERALIZED
HYPERGEOMETRIC SYSTEMS
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Abstract. We treat the problem of shifting parameters of the generalized hyper-
geometric systems defined by Gelfand when their associated toric varieties are normal.
In this context we define and determine the Bernstein-Sato polynomials for the natural
morphisms of shifting parameters. We also give some examples.

Let A={x,,...,xyy=Z" be a finite subset with certain properties. In [G],
[GGZ], [GZK1], [GZK?2], [GKZ] and so on, Gelfand and his collaborators defined
and studied generalized hypergeometric systems M, associated to 4 with parameter a.
Aomoto defined and studied a broader class of systems (cf. [A1]-[A4]). Generalized
hypergeometric systems of this kind were also defined in [KKM] and [H], where they
were named canonical systems. For 1<j<N, there exists a natural morphism
Sy Moy, > M,, which corresponds to the differentiation of solutions. In this paper,
we treat the problem of determining when f,, becomes isomorphic under the condition
that a certain associated affine toric variety is normal.

In §1 and §2, we define the system M, and the natural morphism f, , and give a
necessary condition (Theorem 2.3) for the morphism f,; to be an isomorphism. In §3,
we introduce an assumption, which we call the normality and keep throughout this
paper. In §4, §5, and §6, we define an ideal B(y;) of the b-functions for the morphism
fy,» and obtain a sufficient condition in terms of the b-functions (Corollary 5.4) for the
morphism f, to be isomorphic. The ideal B(y;) turns out to be singly generated by a
certain polynomial (Theorem 6.4). In §7, some example are given.

The author would like to thank Professors Ryoshi Hotta and Masa-Nori Ishida
for helpful conversation.

1. Generalized hypergeometric systems. First of all, we recall the definition of
generalized hypergeometric systems following Gelfand et al. (cf. [GGZ]). Suppose
we are given N integral vectors x;=(X1j,..., Xa)€Z" (j=1,..., N) satisfying two
conditions:.

(1) The vectors x4, ..., xy generate the lattice Z".
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(2) All the vectors y; lie on some affine hyperplane Y i ex;=1in R", where
c,eZ.

We denote by L the subgroup in Z" consisting of those a=(a;)}-, satisfying
Z;’=1 a;;=0. Let (vy, ..., vy) be a coordinate system on V'=C". Let W= W, denote
the Weyl algebra on V, i.e.,

W= WV=C[Ul’“"vN’Dl""’DN:]
where D;=0/0v; for j=1,..., N. We put for ae L
O.= [1 b#-J] D~

aj>0 a_,-<0
For a parameter a=(a,,...,a, € C" we define a generalized hypergeometric sys-
tem M, on V as a W-module to be W modulo the left W-module generated by
Z;Ll xif;— (1<i<n) and [, (a€l), ie.,

M¢:=W/<Z W(Z xijoj—a,.>+ Y W[I,,) :

i=1 j=1 aeL

Here 0;=v;D; for j=1,..., N, and Z“L W], denotes the left W-submodule of W
consisting of all sums ) ,_, w,[], with w,€ W such that only finitely many w, are not
zero. We denote by O the Newton polyhedron, i.e., Q is the convex hull in R” of the
points ¥, ..., xy, by A the semigroup Z,ox1+ " +Z,oxn, and by R the semigroup
ring C[A] regarded as a Z"-graded ring in an obvious way.

2. Saturated subsets. We now define saturated subsets of {1,..., N}, which
later turn out to correspond to faces of the polyhedron Q. Here the empty set (J is
regarded as a face of the polyhedron Q. One might refer to [D] or [O] for the theory
of toric varieties. '

DErINITION.  Let 7 be a subset of {1,..., N}. We call I a saturated subset when
for any ae L either In{i|a;#0} = or there exist i, je I such that ;>0 and a;<0.

We can regard R as the quotient of C[D,,...,Dy] by the C[D,,...,D,]-
submodule generated by [, (ae L). Let R, (1€ A) denote the subspace of R generated
N

by the image of D7~ - - Dy~ with b;e Z,, (1<j<N) satisfying A=) "_ b;x;. Then we
have

R=C[D,, ...,DN]/ Y C[Dy,...,Dy]0.= DR,.
ael AeA
Here Y _, C[D;, ..., Dy][J, denotes the ideal of C[D,,..., Dy] consisting of all
sums )., p,[], with p,e C[Dy, ..., Dy] such that only finitely many p, are not zero.
Clearly the images of D?'--- Dt~ and D}'- - - D}~ in R coincide iij.Ll bjxj=2j.v=l bixj.
Hence the subspace R, of R is one-dimensional. Elements in R, are said to be
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A-homogeneous, and the ideals generated by A-homogeneous elements are also said to
be A-homogeneous. For a saturated subset /, we denote by P(I) the A-homogeneous

ideal of R generated by all D; for ie I, where we use the same letter D, for its image
in R.

LemMA 2.1. {P(I)|I is saturated} is the set of A-homogeneous prime ideals of R.

ProOF. We first prove that P(J) is prime. Since dim R;=1 for all Ae 4, it is
enough to show that m, e P(I) if m; ¢ P(I) and m= mlm2 € P(I) for two monomials m,,
m,. Set m, —H . D, mz—l_[, . D and m= Z +—, D). Then we have H D=
H  Derited, and there exists ie ] such that b; 20. Slnce I is saturated and b; >0
there exists i’el such that c¢,; +c,;>0. Since m, ¢ P(I), we have ¢, =0. Thus we
obtain c¢,; >0 and m, € P(I).

We next assume P to be a A-homogeneous prime ideal. Denote I(P):=
{1<i<N|D;eP}. Since dimR,=1 for all 1eA, the A-homogeneous ideal P is
generated by some monomials. Moreover, since P is prime, we see that P is generated
by {D; IieI(P)} For ieI(P) and aeL such that a;>0, we see that ]—[a >oDjieP.
Since [, .oD7"=[1,,<oD; % and P is prime, there exists k such that @, <0 and
D,eP. We have thus proved I(P) to be saturated. |

Let I' be a face of Q. We denote by P(I') the ideal of R generated by all D; for
xi¢T.

Lemma 2.2 (cf. [1]). {P(I" )IF is a face of Q} is the set of A-homogeneous prime
ideals of R.

As a result, for a saturated subset I, the x; (j¢I) span a face of Q. Conversely,
for a face I, I(I')={1<j<N lxj¢1" } is a saturated subset. In particular, the set of
nonempty minimal saturated subsets bijectively corresponds to the set of faces of
codimension one. For a face I' of Q of codimension one we denote by Fi the linear
form for the hyperplane spanned by I' such that the coefficients of Fj are integers,
that their greatest common divisor is one, and that F(x) >0 for any ye A.

DErINITION. We call a point /=(/4, ..., [y)e(Z.,)" a quotient point associated
to a saturated subset / when /={j|/;#0} and for any ae L either In{i|a;#0}=( or

there exist 7, je I such that 0</;<q; and 0> —/;>a;.

For = Z} L bx; such that each b; is a nonnegative integer, we denote by D* the

operatorn , D}i. Since (Z} Xii0i— ,)DX—DX(Z] L Xiffi— o — 27_1 b;x:j), we have
a natural morphlsm fy: M,_,—M, by multiplying D* from the right.

THEOREM 2.3. For joe{l,..., N}, the morphism ijo is not isomorphic if there
exist a face T of codimension d and a quotient point | associated to I(I') such that I’
does not contain y;,, and Fr, (@)=Y, 1 -io G— DFr, () for k=1, ..., d, where I'=
I';n---nlyand the codimension of each I'; is one.
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PrROOF. Suppose that there exist a face '=I';n---nI; and a quotient point /
associated to I(I')3j, such that Fr, (@)=}, ;- iulli— DFr(x) for k=1,...,d. Let
J be the complement of I(I). Let C'V={(v)|ieI(I)}, C'={(v))|jeJ} and L;:=
{aeL|a;=0 for all ie I(I')}. Consider the quotient

M’=Coker(flj0)/< Y, WyDi+ ) WV(Gj—(lj—l))>

JjeI(I) —{jo} Jjel(I)—{jo}

n N
=WV/<WVDJ-0+.ZIW,,(.leiﬂj—ai>+ Y, WDk
i= ji=

jel(I)—{jo}

+ X WV(ej_(lj_l))+ZWVDa>

JjeI(I') = {jo} aeLy

Jjel(I') —{jo}

n N
= WV/( WyDj, + .21 WV( _Zl %05~ ﬂ:) + Y WDy
i= j=

+ ) Wv(9j—(1j—1))+ZWvEla>

Jjel(I') = {jo} aeLy
= WcJ/( Y Wes z‘](%iﬂj“ﬁi)"‘ Y WcJDa>® Wctm/
i=1 je aeLy c

<WC,(DD,.0+ Y WaoDb+ ¥ WC,(r,(oj—(lj—l))>,

jel(I') —{jo} jel(I) —{jo}

where Bi=°‘i“2jenr)—{jo) (/j— 1)y We have Fr,(f)=0 for any k and the module

WCJ/<§:1 Wes ZJ(XijGj“ﬁi)‘*‘ Z WcJDa>

aELJ

is a generalized hypergeometric system on C’ with respect to x; (jeJ).
Furthermore, the module

Wcl(r)/< WC'U')Djo + Z Wcl(r)D;j + Z Wcl(r)(ej_ (lj— 1)))

jel(I') —{jo} jel(I)—{jo}

=Weaumn l—[ Dzj = C[”i' ie (]

jeIl(I) —{jo}

is not zero. We thus deduce that M’, hence accordingly Coker( flio) is not zero. [ ]

3. Normality assumption. For a Z"-graded R-module M we define a subset
AM)<=Z" by A(M):={AeZ"|M,#0}, when M= ,_,.M,. Since we have

R.ox1+ +R20XN=O{X€R"|F1~(X)ZO} s
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where I' runs through the faces of codimension one, the following is the normality
condition, i.e., the condition for the ring R to be normal (see, e.g., [S1]).

NORMALITY CONDITION.
Q{xeR"|Fr(x)20} nZ"=4,

where I' runs through the faces of codimension one.
From now on, we always assume the normality.

LEMMA 3.1. Let y,€A, and let (D*°) be the ideal of R generated by D*°.
Then we have

A((D¥)=2Z"n O{x €R"|Fr(0) = Fr(x0)} -

PrROOF. Suppose that ye Z" and F(y)>F(x,) for any I' of codimension one.
Let ¥ :=yx—yxo€Z". Then we have F(y)=0 for any I'. By the normality we see that
x' € A. Therefore y € xo + A= A((D¥)). The other inclusion is clear. [ ]

4. Decomposition of ideals. Let (I, x,) be a pair of a face I" of codimension one
and y,€ A. To such a pair (I, x,) we associate an ideal D(I', o) of R defined as the
one generated by all [, ., D’ such that Fr(xo) <}, . o b;Fr(x))-

PrOPOSITION 4.1. We have the following decomposition of the ideal (D*°):
(D*)= OD(F » Xo) -

PrOOF. Since D* belongs to D(I', x,) for any pair (I, x,), it is clear that (D*°) is
contained in the intersection () D(I, xo). In order to show the other inclusion, it is
enough to verify that the intersection () A(D(I', xo)) is a subset of A((D*)). Suppose
that ye Z" does not belong to A((D*°)). By Lemma 3.1 there exists a face I' of
codimension one such that Fr(x) <Fr(xo). By the definition of the ideal D(I’, x,) we
see that y does not belong to A(D(I', xo)). [ ]

Let I' denote the left ideal of W generated by all [J, (aeL), I'(x,) the one
generated by I' and D*°, and I'(I, x,) the one generated by I’ and all Hb,zo D} such
that ijzoFr(Xj)ZFI‘(XO)' For a left ideal J of W we denote by J the graded ideal
with respect to the order filtration in W.

LeEMMA 4.2. (1) Let J be a left ideal of W generated by homogeneous operators
P,,...,P,in C[D,, ..., Dy]. Then the graded ideal J is generated by P, ..., P in the
graded ring W, where P; is the image of P;in W for any j.

(2) Let J and J' be two left. ideals of the algebra W. Suppose that J=J' and
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J=J'. Then J coincides with J'.
The proof is straightforward.

PROPOSITION 4.3.  We have the following decomposition of the left ideal I'(y,):
I'(x0)= DII(F, Xo) -

Proor. Clearly I'(xo) is contained in ()rI'(I', xo). We thus have (I'(xo)) <
(NrI' (T, x0) =T, x0) )- By Proposition 4.1 and Lemma 4.2 (1), we see that
(I'(xo)) =NyI'(I', x0)") in W. We thus conclude that I'(xo)=()I'(I', xo) from
Lemma 4.2 (2). [ ]

We denote by W[s] the noncommutative ring C[sy, ..., s,]® W, where each s; is
an indeterminate central element. Let / be the left ideal of W[s] generated by
Zjv Xijfi—si i=1,...,n) and [, (ae L). We denote by M[s] the quotient W[s]/I.
Let I(x,) be the left ideal of W[s] generated by I and D*°, and I(I, yx,) the
one generated by / and all [],,oD} such that ), _,b;Fr(x)=>Fr(xo). To P=
Y . P.s‘e W[s], where P.e W and c=(cy, ..., c,)€(Z zo)” is a multi-index, we associate

the element P':= ZCPC(ZJ.=1 X100 (Z;Ll Ini0;)"EW.
PrROPOSITION 4.4. We have the following decomposition of the left ideal I(y,):

I(x0)= FF]I(F s Xo) -

Proor. Clearly I(y,) is contained in ();I(I', xo). Suppose that P belongs to

nrl(r, XO) Slnce we have [Z =1 X.ﬂp Hb >0Db] ( Zb >0 Jx'l)l_[b >0Db and
[Z, Xl Oad=(— Za >0 Jx,l)[]a, PeI(I, y,) implies that P’ e I'(T, Xo) for any T.
We thus see that P’ belongs to I'(yo) and accordingly P to I(x,). [ |

5. b-functions. Let B(y,) be the kernel of the natural morphism C[s]—
Ws]1/I(x,). We call a nonzero element of B(x,) a b-fun(;tion of M[s] with respect

to xo.

ProrosiTION 5.1.  For a polynomial b(s)e B(x,) there exists an operator Qe W
such that b(s)=QD*° in M[s].

The proof is clear. In the situation of Proposition 5.1, we have b(ax)=QD*° in M,
for any ae C".

LEMMA 5.2. Ford, eeZ., and any 1 <j<N, we have in W

. B min{d,e} d k—1
pg="3" (4 (I e o
k=0 \ k/\s=o
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and
min{d,e} d k—1 e—k—1 e—1
> ( ><H(e—r)>< I1 (9,-—q)>=n(0j+d——r).
k=0 \ k/\r=0 a=0 r=0

The proof is omitted.

PROPOSITION 5.3. Let d,,...,dyeZ.,, Qe W, and PeC[0,,...,0y]. Suppose
that we have in M[s]

QDY+ -DiN=P(0,, ..., 0y).
Then we have in M[s]
Dit---DINQ=P(0,+d,, ..., Ox+dy) .

PROOF. Letey,...,e,yeZ, , satisfy Z] L= Zf=1(eN+j+dj)xj. Then we have
in M[s]

e;ji—1

Ueln...vgszti’NH...D;?vaDnix.,.D}ivzvzvrixDix . eNDlevN=I_I H (9
j=1r;=
By Lemma 5.2, we see in M[s]
ej—1
Dlix...D?vNUix...vlevNDtiNn Dezu_l—l l_l (0 +d )
j=1rj=0

Since Q is a linear sum of terms of the form of v§!- - -v§¥ DV *1- - - DY with the relation
N et;=Y - (en+;+d;)y;, we reach the assertion. [ ]

COROLLARY 5.4. Suppose that there exists a polynomial b(s)e B(y,) such that
b(a) #0. Then the morphism f, : M,_, —M, is isomorphic.

Proor. Let x0=2f=1djxj with dieZ,, (j=1,...,N). In this case, there exists
an operator Q € W such that
N
0is..., Y an9j>
1 j=1

N N
Dfl' : 'Dﬁ"Q=b( .Zl le(9j+dj)a cees _Zl an(9j+dj)>=b(s+)(o)
j= i=

Mz

QD*=QD{' - D¥ =b(s)="b(s;, ..., s,)= b<

]

is M[s]. By Proposition 5.3, we see that

in M[s]. Hence we obtain QD*=h(a)#0 in M,, and D*°Q =b(a— xo+ o) =b(2) #0
in M, _, . Therefore the morphism f,  is bijective. [ ]

a—xo

Let B(I', o) be the kernel of the natural morphism C[s]— W[s]/KT, x,). Since
we have I(xo) =\ 1T, xo), we obtain:
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LEMMA 5.5.
B(x0)= BT, 1o) -
r

We remark that B(T, y,)=C[s] for yoeZ. ,I'. Suppose that y, does not belong
to Z,I'. For me Z,, we denote by @(I', m) the ideal of C[0j|xj¢1"] generated by all
[1s,50010;,—1)- - (6;—b;+1) for ijzo b;Fr(x;)>m. Clearly O(I", F(y,)) is contained
in I(T, yo). For y;¢ I there exists an integer ¢;>0 such that ¢;Fp(x;)>m, and thus
0/6;—1)---(0;—c;+1) belongs to O(I',m). Consequently, we see that the zero
set V(O(I',m)) is a finite set contained in (Z,o)"!, and the multiplicity of
C [0j| x;€1'1/O(I, m) at each point of V(O(I", m)) is one. Therefore O(I", m) is a radical
ideal. We define a finite subset Z(I', m) of Z, , by

Z(T, m):={ Y vFx)€eZ, |ve (O, m))} )

xj¢l

PROPOSITION 5.6. The polynomial b(I', y,) € C[s] defined by

b, x0):= ] Fr(9—2

zeZ(I',F r(xo0))
belongs to B(I, y,)-

Proor. We denote by b(0) the polynomial nzez(r’pr(m» (Z“ ¢ rFr(x)0;—2) in
C[0j| xj¢I']. Then we see that b(v) =0 for all ve V(O(I', F(x5))). Since O(I', Fr(x,)) is
a radical ideal, the polynomial b(8) belongs to @(I', F(x,)), in particular, to I(I’, xo).
Since b(I", xo) =b(6) in M[s], we conclude that b(I", x,) € B(I", xo)- ]

COROLLARY 5.7. We define a polynomial b, € C[s] by b, :=[][rb(T, xo)- Then
the polynomial b, belongs to B(xy).

The proof is clear.

COROLLARY 5.8. Let joe{l,..., N}. Assume that for any a€ L and any face I' of
codimension one not containing x;, we have either )., _, a;Fr(x;)=0or 3., . o a;Fr(x;)>
Fr(x;,)- Then the morphism f,, : M,_,, —M, is isomorphic if and only if by, (@) #0.

-

PrOOF. Suppose that bxjo(oc)=0‘ Then there exists a face I' of Q of codimension
one not containing j, with b(I', x;,)(®)=0. Hence there exists ze Z(I',Fr(x;,)) such
that Fr(a)=z. In other words, there exists v=(v));crr € V (O, Fr(y;,))) such that
Fr( @)=Y ;cpry ViFr(xy)- Define v'=(v))j_, € Z" by vj=v;+1 for jeI(I') and v;=0 for
Jj¢I(I'). Under the assumption, the condition ve V(@(I', Fr(x;,))) implies that v’ is a
quotient point associated to I(I'). By Theorem 2.3, the morphism ijo is not
isomorphic.

When bxjo(a);éO, the morphism ijo is isomorphic by Corollary 5.4 and Corol-
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lary 5.7. ]

6. The set Z(I', m).
LEMMA 6.1. The set Z(I', m) is contained in {0, 1, ...,m—1}.

PrROOF. We use induction on m. When m=1, it is clear that @(I", 1) contains 6,
for any ie I(I'). We thus see that V(O(I', 1))={(0, ..., 0)} and Z(I', 1)={0}.

Let v=(v; ie I(I')) belong to V(O(I", m)). Suppose that v; #0 for some i, e I(I'). We
define v'e V(O(I", m)) by v;,=0 and v;=v; for all ie I(I)—{io}. If Fr(Q. ;e )iy Dit) =
m—v; Fr(1io)s then Fr(Y . yry - iy Dii + VioXio) = m, and thus 6, (6, — 1) - - (0;,—v;, + 1) x
[ Licray- g 00— 1) - - (6;—b;+ 1) belongs to O(T", m). Hence we obtain | [,y — . 00—
1) (v;—b;+1)=0. We thus see that v'e V(O(I', m—uv,; Fi(x;,))). By the induction
hypothesis, Y, #io ViFr(1;) belongs to {0, 1,..., m—uv; Fr(x;,)—1}. Therefore the sum
Ziel(l") v:Fr(x;) belongs to {0, Fr(iy), viFr(tig) + 1, ..., m—1}. u

LEMMA 6.2. Fix a face I of codimension one. Then there exists ke{l,..., N}
such that Fr(x,)=1.

PrROOF. Since the greatest common divisor of the coefficients of Fy is one, there
exists yeZ" such that Fp(y)=1. If necessary, translate y by an element of
Z'n(Fr=0)n() . (Fr-=>0), and we see that there exists y € A such that F(y)=1. By
the normality assumption, we conclude that there exists ke{l,..., N} such that
Fr(xo=1. ]

LEMMA 6.3.
Z(r,m={0,1,...,m—1}.

PROOF. Suppose that Fr(y)=1 and je{0, 1, ..., m—1}. Define ve(Z, )" by
v,=Jj and v;=0 for all ie (I')—{k}. Then ve V(O(I', m)). Hence j belongs to the set
Z(I', m). [ |

THEOREM 6.4. The ideal B(y,) is singly generated by the polynomial b, .

PrOOF. Let aeC" satisfy Fp(a)¢Z., for any face I'" of codimension one
different from I'. Suppose that Fr(x,)=1. Since Fr(xo—Fr(xo)x)=0, we see that
Xo— Fr(xo)x:, belongs to ZI'. Hence the morphism f, : M,_, —M, is isomorphic if
and only if so is ff*?. Consequently, f, is isomorphic if and only if F(x)#
0,1,..., Fr(xo)—1. [ ]

REMARK (cf. [S2]). When we are given an example explicitly, we can calculate
not only the b-functions but also operators Q in the notation of Proposition 5.1. This
calculation gives us the contiguity relations which generalize the relations of the
following type:
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(c—a)Fla—1, b; c; x)= {x(l —X) di—bx+ c—a}F(a, b; c; x),
Ix
where F is the classical hypergeometric function.

7. Examples. All of the following examples satisfy the normality assumption
(see [S1]). We denote f; (resp. b)) instead of f,, (resp. b, ).

ExaMpLE 1. Let V'=C??, and

P r-1
M= W/ (; W(0;+0,,—x)+ ; W, i—0,,—B)

+W(D, - -D,—D,, - -sz)> .

(1) Let 1<i<p. Then b(a, f)=0yo;+pB) o+ B2) (o +h,-1), and f; is
isomorphic if and only if «;#0, o;+ B, #0, ..., a;+ f,_, #O0.

(2) Let 1<i<p-—1. Then b,,(a, B)=(a; +B)z+B) (2, +B), and f,,; is
isomorphic if and only if a; +B;#0, ..., a,+ B;#0.

(3) byy(a, py=0ya," o, and f,, is isomorphic if and only if a; #0, ..., «,#0.

EXAMPLE 2. Let V=C**V'={(v;)|1<i</,0<; <k} and

k ! ! k
M,y= W/( > W( 0ij‘°‘j>+ > W( ) Oij_ﬂi>+ ) W(DijDi'j'“Dij'Di’i)> :
j=1 i=1 i=1 Jj=0 i#i,j#j

1

We put ao=Y;_, B,-—Z'J;l «;. Then b, B)=a;B;, and f;; is isomorphic if and only if
a;#0 and B;#0.

ExaMpPLE 3. Let V=C"""Y2={(v,)|1<i<j<n} (n>4), and

n k—1 n
Ma=W/<Z W<Z 0ik+ z Bkj_ak>+ Z W(DijDkl_Diijl)
k=1 i

=1 j=k+1 1<i<j<k<ls<n

+ Y WDuDp—DyDp)+ Y, W(Di,-Dk,—D.-,D,-k)>.

1<i<j<k<l<n 1<i<j<k<l<n

Then 2"~ by(@) =0, [ [ 5,14 % — %) Sy is isomorphic if and only if a,#0, &, #0
and )., o;—#0 for any k#s, 1.

EXAMPLE 4. Let V=C""*Y2={(v;)|1<i<j<n} (n>2), and

n k n
Ma= W/(kzl W(Zl 9“(+ .Zk ekj_ak>+ Z W(DijDkk_Diijk)
= i= j=

1<i<j<ks<n
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+ ) W(DyDy—Dy;Dy) + > wW(DyDu—D jkDil)> .
1<i<j<k<n 1<i<j<k<l<n

(1) by(a)=0aya,—1), and £, is isomorphic if &, #0, 1, and not isomorphic if e, =0.

2) by(ax)=a, for s<t, and f, (s<1?) is isomorphic if and only if a,, &, #0.

EXAMPLE 5. Let V=C* 2={(v)|i=+1, £2,..., +(n—1)} (n>4) and

n—1 n—1
M,= W/< Y WO, —0_,—a)+ W< Y (0,-+9_,-)—oc,,>+ Y W(D,-D-,-—D,-D_j)>.
i=1 i=1 i*1j

For a subset I of {1,2,...,n—1}, we denote by I' the complement of 1.

(1) 2777 b)) =T1,.0u+ Y e =X i, 0) for s>0. f, (s>0) is isomorphic if
and only if o+, ,0,— ;. % #0 for any I3s.

(2 22" b (@)= H,Bs(rx +Yier =2 %) for s>0. - (s>0) is isomorphic
if and only if « n Y i— Y 1c % #0 for any I3s.

lel

EXAMPLE 6. Let V=C>""'={(v)|—(n—1)<i<(n—1)} (n>2) and

M,= W/(E:l WO,—0_,—a)+ W(( Y 9i>_an>+'§:’ W(D(Z)_DiD_,-)> .

i=1 —(n—1)<i<n-—

As in Example 5, I' denotes the complement of 7in {1,2,...,n—1}.

1) bo@=[],0n+Y, ., =Y., %), and f, is isomorphic if and only if
U+ Y 0i— O e % #0 for any subset 7 of {1,...,n—1}.

Q) b)) =TT it Y s =D icr 0O+ =Y ;2 — 1) for s>0. £, (s>0)
is isomorphic if and only if « +Z;ez =Y iep % #0, 1 for any Ias

(3) b_s(O() nlas(a +21el Ztel ,)((X +ZIEI _Zlel l) for s>0. f—
(s>0) is isomorphic if and only if o, + ), Z,E,a #0, 1 for any I5s.

iel’
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