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Abstract. In this paper, we apply a global bifurcation theorem of Alexander-Yorke
type to investigate the global continua of periodic solutions of a scalar neutral functional
differential equation arising from the study of lossless transmission lines. It will be shown
that the considered equation has a slowly oscillating periodic solution and several rapidly
oscillating periodic solutions. It will also be demonstrated that this seemingly simple
equation raises several unanswered questions.

1. Introduction. In a series of papers [29], [30], [31], Jones proved that Wright's
equation

(1.1) *M=-α*(ί-l)[l+x(f)]

has nontrivial periodic solutions for α>π/2. Since then, considerable research has been
devoted to the question of the existence and qualitative behaviors of periodic solutions
for some classes of scalar autonomous retarded functional differential equations. Main
technical tools to obtain existence of nontrivial periodic solutions have been (i) some
fixed point index and fixed point theorems for cone mappings as well as mappings of
a convex set into itself with an ejective fixed point as an extreme point of the convex
set (see, [5], [6], [7], [18], [19], [32], [46], [47]); (ii) an extension to retarded equations
of the well-known global bifurcation theorem of Alexander-Yorke [1] for periodic
solutions obtained by Chow, Ize, Mallet-Paret, Nussbaum and Yorke (see, [8], [9],
[10], [27], [28], [48], [49], [50]); and (iii) Kaplan-Yorke's method to yield periodic
solutions for a scalar retarded equation from an associated system of ordinary differential
equations (see, [8], [34]). For details, we refer to [25], [41], [42] and references therein.

Little progress has been made on the existence of nontrivial periodic solutions of
autonomous neutral functional differential equations. Although local Hopf bifurcation
has been considered by Hale [23], [24], Oliveria [26], [54], and Staffans [61], and the
existence of nontrivial periodic solutions to certain classes of difference-differential
equations has been studied by Bray ton [3], [4], Nussbaum [47] and Preisenberger

* This research was supported by Natural Sciences and Engineering Research Council of Canada.

1991 Mathematics Subject Classification. Primary 34K40; Secondary 34K15.

Key Words. Global bifurcation, periodic solution, multiplicity, neutral equation, transmission line,
equivariant degree.



68 j. wu

[56], the aforementioned main technical tools to obtain existence of periodic solutions
have neither been sufficiently generalized to general neutral equations, nor been applied

to broad classes of specific examples.
This lack of results on existence of periodic solutions should be filled in. Though

neutral equations are more difficult to motivate (as Hale pointed out in his book [25]),
more and more neutral equations arise naturally in electrodynamics, economics and
mathematical biology. For example, basing on his investigation on laboratory
populations of Daphnia magna, Smith [59] argued that the per capita growth rate in
the classical logistic single-species population equation

(1-2) x(f) = rx(θΓl-^-l
L -K. J

where r is the intrinsic growth rate of the species x and K is the environment capacity
for x, should be replaced by r[l — (x(t) + px(t))/K]. Furthermore, if we think of x as a
species grazing upon vegetation, which takes time τ to recover, then we will be led to
the following neutral-delay logistic equation

See [16], [37], [55] and references therein. Recently, it has been observed that the
following neutral equation

(1-4) A[x(ί)_^(x(ί_τ))]= _/,Wί)) + /2Wί_τ)) 9

at

where g and h are continuous functions, describes the mass transmission process in
certain compartmental systems where each compart produces or swallows materials (see
[17], [63]). Classical examples of neutral equations include also those arising in the
study of two or more simple oscillatory systems with some interconnections between
them, and in particular, in the study of lossless transmission line problems. For details,
we refer to [3], [4], [25], [38] and references therein.

In this paper, we provide some general technical tools which can be used to obtain

existence of periodic solutions for neutral equations and illustrate the use of these ideas
for a specific example arising from the lossless transmission line problem. More
precisely, we will present an extension to neutral equations of Alexander-Yorke's global
bifurcation theorem, and then apply such an extension to investigate the global continua

of periodic solutions bifurcating from stationary points of the following difference-
differential equation of neutral type

d
(1.5) — [x(ί) - qx(t - r)] = - ax(t) - bqx(t -r)- g[x(t) - qx(t - r)] ,

at
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where ge(0, 1), a,b9r>0 are constants and g is a continuously differentiable function.
It will be shown that there exists a monotone increasing sequence {qn} c=(0, 1) such that
for qe(qn, 1), the system (1.5) has a slowly oscillating periodic solution and n— 1 rapidly
oscillating periodic solutions. It will also be demonstrated that this seemingly simple
equation raises a number of unanswered questions.

2. A global bifurcation theorem for neutral equations. Let r > 0 be a given constant.

We denote by X the Banach space of continuous functions from [ — r, 0] into Rn with
the sup norm

||0||= sup \φ(θ)\, φeX.
-r<θ<0

In what follows, if xeC([-r, oo); Rn) and f>0, then xteXis defined by xj(θ) = x(t + θ)
for 0e[-r, 0].

We consider the following one-parameter family of neutral equations

(2.1) - [x(ί)-£(α, x,)] = F(α, xt) ,at

where B and F are twice continuously differentiable mappings from R x X into Rn, F
is completely continuous and B satisfies the following Lipschitz condition

(2.2) \B(Qί9φ)-B(κ,ψ)\<k\\φ-ψ\\

for φ, ψεX, aeR and for some constant fce[0, 1).
Clearly, we can identify the subspace X0 of X consisting of constant mappings with

Rn. Let F=F\R*XO and B = B\RXXQ. A point (α0, x0)eRxRn is said to be a stationary

point of (2.1) if F(α0, X0)
 = 0 A stationary point (α0, x0) is nonsingular if the mapping

Q, ;c0): R
n^Rn is an isomorphism.

To a given stationary point (α0, x0) of (2.1), we associate a characteristic equation

(2.3)

where for any given complex number A, J(β0tJCo)(A) is an n x « complex matrix defined by

Δ(Λo^(λ) = λ[_I-DφB(^ x0)(eλ )] -

and

for (θ, r)e[ — r, 0] x C". Here and in what follows, XQ denotes the constant mapping
from [-r, 0] or R to Rn with the value x0εR".

A solution λ0 to the characteristic equation (2.3) is called a characteristic value of
the stationary point (α0, *0). Evidently, a stationary point (α0, x0) is nonsingular if and
only if 0 is not a characteristic value of (α0, x0). A nonsingular stationary point (α0, x0)
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is a center if it has a pure imaginary characteristic value. If (α0, x0) is the only center
in some neighborhood of (α0, ;c0)e R x Rn, we say that (α0, x0) is an isolated center.

For a given isolated center (α0, x0) of (2.1), by the implicit function theorem there
exists <50>0 and a differentiate mapping r\ [α0 — δ0, a0 + δo]-*Rn such that (α, r(α)) is
a stationary point for each α and r(α0) = ;c0. Define

(2.4) ΔΛ(λ) = A(aΛΛ))(λ), α e [α0 -δθ9 α0 + <50]

Since (α0, x0) is an isolated center of (2.1), there exist β0>0, & = &(α0, β0)>0 and

c = c(α0, β0)>0 such that

( i ) : det 4^(00) = 0;
(ii): i fO<|α-α 0 |<<5 0 , then /Λn{λeC; det Jα(λ) = 0} = 0;
(iii): detAao±δo(λ)^Q for λ = μ + ιv, (μ, v)edΩ, where Ω = (0, b)x(β0-c, β0

R2.
Then we can define the so-called crossing number of (α0, xθ9 /?0) as

_J ), Ω)-degβ(det AΛo+δo( ), Ω)

where degβ denotes the classical Brouwer degree. By definition, the crossing number
y(α0, x0, β0) counts the number of characteristic values (with multiplicity) escaping from
the region Ω as α crosses α0 from the left to the right.

THEOREM 2.1. If there exists an isolated center (α0, x0)eR x Rn of (2.1) such that

y(α0,x0,j?0)/0, then
(i) (α0, XQ) is a bifurcation point, i.e. there exists a sequence {(απ, xn, βn)} such

that απ-»α0, βn^>βo, xn(t)~-*xo uniformly for teR as «-^oo, where xn(t) is a
nonconstant periodic solution of the equation (2.1) withperiod2π/βn and a. = απ;

(ii) the minimal period of xn(t) is convergent to the set

9 Ί
±imβ0 are characteristic values 0/(α0, x0)> .

In particular, if ±imβ0 are not characteristic value 0/(α0, x0)for any integer

m> 1, then 2π/βn is the minimal period of xn(t) and 2π//Jn->2π//?0 as «->oo.

THEOREM 2.2. Suppose that all stationary points 0/(2.1) are nonsingular and all

centers of (2.1) are isolated. Let S denote the closure of the set

A = {(y, α, p)G EC(R; Rn) x R x R + ; y is a nonconstant periodic solution of

(2.1) with period p]

in the topology of BC(#; Rn)x R x R + , where BC(#; Rn) denotes the Banach space of
bounded and continuous functions from R to Rn endowed with the sup norm. //(α0, X0) i s

an isolated center of (2.1) such that y(α0, x0, /i0)^0, then for the connected component

C(α0, xθ9 2π/j80) of(xθ9 α0, 2π/β0) in S, we have either
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(i) C(α0, x0, 2π/βQ) is unbounded; or
(ii) there are a finite number of isolated centers (αί? xt) e R x Rn and constants ft > 0,

/=0, 1, . . ., q, such that

M^τJ-°
Moreover, if (y, α, p) e C(α0, *0, 2π/β0) and y is a constant mapping, then

(y, α, p) = (xi9 α,, 2π/j80) /or some i e {0, 1,...,/?}.

Theorem 2.1 represents an extension to neutral equations of the local Hopf
bifurcation theorem of KrasonseΓskii type ([33]). The proof for (i) of Theorem 2.1 was
given in [36] by using the S^-equi variant degree of [11], the complementary function

method of [27], [28] and an equivariant vision of the bijection theorem of [44], [45],
[51]. A proof for (ii) of Theorem 2.1 will be given later in this section. Theorem 2.2
provides an extension to neutral equations of the global bifurcation theorem of
Alexander- Yorke or Rabinowitz type ([1], [57]). The proof was given in [36]. This
result should also be obtained by using the general theory of [2]. For a detailed
comparison of this global bifurcation theorem with some existing old ideas, we refer
to [12], [36].

To prove (ii) of Theorem 2.1, we need the following result concerning positive
lower bounds for the period of some periodic solutions.

LEMMA 2.3 (cf. [36]). Suppose that S<^X and there exist constants L>0 and fce[0, 1)
such that

\F(a,φ)-F(a,ψ)\<L\\φ-ψ\\

and

for aεR and φ, ψeS. Ifx(t) is a non-constant periodic solution of (2.1) with perio
and xtεSforte R, then p > 4(1 - k)/L.

The following result provides an analog for neutral equations of Corollary 3.2 in

[43].

LEMMA 2.4. Suppose that there exists a sequence of real numbers {απ} *= 1 such that
(i) for each n, (2.1) with α = αn has a non-constant periodic solution xn(t) with

minimal period Tn > 0;
(ii) limn _ 3, απ = α0 e R, limw _ „ Tn = T0 < oo and limn _ „ xn(t) = x0eRn, uniformly

for teR.

Then (α0, x0) is a stationary solution of (2.V) and ±i2π/T0 are characteristic values of
(2.1) with α = α0.
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PROOF. We first show that Γ0>0. Since F is continuously differentiable, there
exists ε0 > 0 such that

\\DF(*,φ)-DF(*,xQ)\\<l

if \\φ-x0\\<ε0 and |α-α0 |<ε0. Consequently, \F(oL9φ)-F(Λ9φ)\^L0\\φ-\l/\\ if

\\φ-x0\\<εQ9 | |^-*oll<βo and |α-α0 |<ε0, where L0 = \DF(u9x0)\ + l. Therefore,
under the assumption (ii), we can apply Lemma 2.3 to conclude Γn>4(l— k)/L0 for
sufficiently large «, from which it follows that Γ0>4(1 —k)/L0.

Next, we show that the following linear equation

(2.5) — ly(t)-DB(*Q, x0)yA=DF(uθ9 x0)ytat

has a periodic solution. For τe(0, 1), define

yn(t) satisfies the following equation

(2.6) -£- lyJit)-DB(*09 Xo)yt-δln(t)l
at

where

δin(t) = ε^lB(*n, xnt+τTn)-B(ccn, xnt)-

Noting that | j n (/)l<l for teR, we have

\δln(t)\< \ \DB(*n9 znt(θ)-DB(<*0,
Jo

\δ2n(t)\ Γ
Jo

as «->oo uniformly for teR, where

znt(θ) = θxnt + (l-θ)xnt+τTn, θe[0, 1],

For any given />/', integrating (2.1) from t' to ί, we get

*„(') - xn(t') = ̂ (απ, xnt) - B(an, xnt.) + F(α
Jί'

from which and the Lipschitz condition (2.2) it follows that
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for sufficiently large n. Consequently,

ίJo

l—k

06[o, i]

for sufficiently large n. On the other hand,

I DB(xn, zn,(θ)) - DB(^, jc0) I <

provided that n is sufficiently large. So

ain, znt,(θ))-]dθyn/

Γ
Jo α"'Z"''

for sufficiently large n.
We now integrate (2.6) from t' to / to obtain

1 —lrΓ *

from which it follows that

(2.7)

where

\\y«-y« \

max \yn(t)-yn(t')\<M(t-t') ,
t>t'

ιχ/- 0

Therefore, {jπ}^°=ι has a convergent subsequence, denoted again by yn for simplicity.
Let yτ(t) = \imn_>aoyn(t). Then yτ(t) is a periodic solution of (2.5) with a period Γ0. Since
the maximal value of | yn(t)\ is one and the average value of each yn is 0, the same is
true for yτ. So yτ is a non-constant periodic solution.

Denote by Tτ the minimal period of yτ(t). Then T0 = kTτ for some positive integer
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k. If k= 1, then we are done. If not, we wish to find a collection of solutions of (2.5)
having Γ0 as the least common multiple of their minimal periods. To do so, we first
show that τΓ0 is not an integer multiple of Tτ. Indeed, if τΓ0 is an integer multiple of
Γτ, then yn(t + kτT0)=yn(t) implies that

a contradiction to the fact that yτ(t) is non-constant.
Since for every rational τ e (0, 1), there is a period solution yτ of (2.5) whose minimal

period divides Γ0, but does not divide τΓ0, we may choose some collection {z/}*=o °f
solutions of (2.5) such that Γ0 is the smallest number which is a multiple of their minimal

periods. It then follows that for almost any choice of real numbers {c/JJ^o* Σ*=o cfj(t)
is a periodic solution of (2.5) with the minimal period Γ0. This completes the proof.

Before giving the proof of Theorem 2.1, we should emphasize that the idea in the
above argument is due to Mallet-Paret and Yorke [43]. We only make some technical
modifications on their proof in order to obtain an analog, for neutral equations, of
Corollary 3.2 in [43].

Now we are in the position to give:

PROOF OF (ii) OF THEOREM 2.1. Let Tn denote the minimal period of xn(t). Then
there exists positive integer mn such that 2π/βn = mnTn. Since Tn < 2π/βn-+2π/βQ as w-> oo .

{Tn}n = ι nas a convergent subsequence {Γnj£°=1. Let Γ0 = limk_00 Tnk. By Lemma 2.4,
±/2π/Γ0 are characteristic values of (α0, x0). On the other hand, since 2π//?Mk->2π/j50,
Tnk-+T0 as λ;->oo, mnk is identical to a constant m for sufficiently large k. Consequently,
2π/j30 = raΓ0. Thus, Tnk^2π/mβ0 and ±imβ0 are characteristic values of (α0, x0). This

completes the proof.

3. Existence of multiple periodic solutions. Consider the following nonlinear
difference-differential equation of neutral type:

d
(3.1) — ίx(t)-qx(t-r) ]=-ax(t)-bqx(t-r)-glx(t)-qx(t-rK ,

at

where α, fc, r > 0 and q e (0, 1) are given constants, g : R^R is a continuously differentiate
function satisfying the following condition

(3.2) in

Equation (3.1) arises from the problem of lossless transmission lines. Usually, the
electric networks in a lossless transmission line can be described by a system of linear
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hyperbolic partial differential equations subject to certain nonlinear boundary
conditions, where the connection by a travelling wave through the partial differential
equations can be replaced by connections with delays. Therefore, a series of
transformations can relate such a system of partial differential equations to a neutral
equation of the type (3.1). For details, we refer to [3], [4], [25], [38], [39], [58] and
references therein.

Under the hypothesis (3.2), 0(0) = 0 and (q, 0) is the only stationary point of

(3.1) for any given <?e(0, 1). In fact, if (q, z) is a stationary point of (3.1), then

g((l— q)z)= — (a + bq)z, and hence g(y) = — (a + bq)y/(l—q), where y = (\— q)z. Since
(a + bq)l(\—q) is increasing in #e(0, 1), if y ̂ 0 then g(y)/y = (a + bq)/(l— q)< — a,
contradicting (3.2).

Let g'(G) = c. Then the linearization of (3.1) at 0 leads to

t ~ r)] = - (a + c)X(t ) - (b - c)qX(t - r) ,
dt

and hence we obtain the following characteristic equation

(3.3)

In order to locate local Hopf bifurcation points, we let λ = iβ in (3.3) and express the
obtained equation in terms of its real and imaginary parts as

— (a + c) cos βr + β sin βr = q(b — c),

. β cos βr + (a + c) sin βr = qβ ,

which is equivalent to

tanβr = β

(3.4)

l-<72

The following result, summarizing the information about characteristic equation
(3.3), is our starting point.

LEMMA 3.1. Suppose that

(3.5)

Then we have the following conclusions:

( i ) The first equation of (3.4) has infinitely many positive solutions 0<βί<β2<
- - - <βn< ''' such that lim,,^ βn= oo, and

(a) if ^J(a + c)(b -c)< π/2r, then 2π/βΐ > 4r and 2π/βn e (2r/n, 2r/(n -l))forn> 2;
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if \](a + c)(b ~C)E(π/2r + mπ/r, π/2r + (m + l)π/r) /or some nonnegative integer
m, /Aew 2π/β1>2r, 2π/βne(2r/n, 2r/(n—l))for n>2;
if J(a + c)(b-c) = π/2r, /A^ 2π/)?Π e (2r/(n + 1), 2φ) for n > 1

if ^J(a + c)(b — c) = π/2r + mπ/r for some positive integer m, //ze« 2π//?1>2r,
2π/j8Π e (2r/n, 2r/(n -l))forn = 2,...,m(ifm>2) and 2π/βn e (2r/(n + 1), 2r/n)
or « > m + 1
±iβn are characteristic values of the stationary point (qn, 0), where

(b)

(c)

(d)

(ϋ)

Moreover, if qφqn, n= 1, 2, . . . , then the stationary point (q, 0) has no pure
imaginary characteristic value;

(iiΐ) Let λn(q) = un(q) + ivn(q) be the root of (3.3) for q close to qn, such that

un(<ln) + iVn(<ln) = iβn. Then (d/dq)un(q)\q=qn>0.

PROOF. The proof for (i) is straight forward as the first equation of (3.4) can be
easily analysed graphically. For example, the following figure provides graphic solutions
for the first equation of (3.4) in the case where

Conclusion (ii) follows immediately from the second equation of (3.4).
To prove (iii), we rewrite (3.3) in terms of its real part and imaginary part to obtain

FIGURE.
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• (un(q) + a + c)e»^' cos(vn(q)r) - vn(q)e""^ ύn(vn(q)r) = q[_un(q) - b + c] ,

. (un(q) + a + φ""«>' sm(vn(q)r) + vn(q)eu^' cos^^r) = qvn(q)

Differentiating both sides of the above system and substituting uπ(qn) + ivn(qn) = iβn, we
get

where

A „ = cos(j?πr) + r(a + c) cos(βnr) - βnr sin(βnr) - qn ,

. Bn = r(a + c) sm(βnr) + sm(βnr) + rβn cos(βnr) .

From the system above (3.4), we have

An = cos(βnr) - rqn(b -c)-qn,

cos(ft,r) = -
(a + c)2 + β2

sin(βHr) = -^-

So

-I" Γ/L

(a + c)2 + β2

qnβn

u'n(qn] = - T Γ 2 C ~ (b ~ C)A"

An =

Bn =

Therefore,

This completes the proof.

We are now in a position to employ Theorem 2.1 to obtain a local Hopf bifurcation
of periodic solutions of small amplitudes. However, in order to obtain information
about the continua of these periodic solutions emanating from the point (0, #„), we
need further information to exclude the existence of nontrivial solutions of certain
periods.

The following result represents an extension to neutral equations of a well known
result for retarded equations due to Chow and Mallet-Paret [8].
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LEMMA 3.2. (3.1) has no nonconstant periodic solution of period 2r/m for any
positive integer m.

PROOF. Clearly, it suffices to prove that (3.1) has no nonconstant periodic solution
of period 2r. By way of contradiction, we assume that there is a nonconstant periodic
solution x(t) of period 2r. Let y(t) = x(t — r). Then (x(t), y(t)) satisfies the following system
of ordinary differential equations

4- W ) - W(t )] = F(q,x(t ), y(t)) ,
at

dt

where

F(q, x,y)=-ax- bqy - g(x - qy) .

Set

u(t ) - x(ί) - qy(t) , v(t) = y(t) - qx(t) ,

that is,

We can show that (u(t\ v(t)) satisfies the following system of ordinary differential
equations

(3.6)

where

The diagonal A = {(u, v)eR2\ u = v}^R is invariant for (3.6) due to the symmetry of u
and v in (3.6). Moreover, any vector field on A cannot have nonconstant periodic

solutions. So (u(t\ v(t))φA for all /. Without loss of generality, we may assume that
u(t)<v(t) for all teR. This implies that u(t — r) < v(t — r) for tεR. However, we have

v(t -r) = y(t -r)- qx(t -r) = x(t - 2r) - qx(t -r) = x(t)- qy(t) = u(t)

and

u(t -r) = x(t - r) - qy(t -r) = x(t - r) - qx(t - 2r) = y(t)- qx(t) = v ( t ) .

This contradicts the assumption u(t)<v(t) for teR, and thus the proof is complete.
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REMARK 3.3. The same argument can be applied to exclude the existence of

nontrivial periodic solutions of period 2r for the following neutral equation

(3.7) 4- W ) - q*(t ~ r)] = h(x(t -NS), x(t - N2r) , . . . , x(ί - Nkr)) ,
at

where h : Rk-^R is a continuously differentiable function, and Nt are integers for

/ = ! , . . . , k. In this case,

G(q, u, v) = fc(/i(M, v), f2(u, v),..., Λ(M, i;)) ,

ί (u + qv)/(l -q2) if Λ^ is even ,
jU'V ~{(v + qu)/(l-q2) if ty is odd,

andy = 1, . . . , k. The general idea that periodic solutions of retarded equations of period

2r satisfy an associated system of ordinary differential equations has been employed

before, see [8], [34] and references therein.

We now consider the existence of a priori bounds for periodic solutions of (3.1).

LEMMA 3.4. Suppose that \imz^±00g(z)/z=ao. Then for any (5e(0, 1) there exists

M= M(δ) > 0 such that ifx(t) is a periodic solution of (3. 1) with q e (0, δ\ then \ x(t) \ < M(δ)

for teR.

PROOF. Since limz^ ± „ g(z)/z = oo, for any δ e (0, 1) there exists M— M(δ) > 0 such

that if \z\>(l-δ)M(δ), then

(3.8) a .
z l—δ

Suppose that x is a periodic solution of (3.1). Let y(t) = x(t) — qx(t — r) for teR. Then

we can easily prove that x(t) = ̂ ^LQqly(t — ir) for teR. So by (3.1), y(t) satisfies the
following scalar retarded equation with unbounded delay

00

y(t)= -ay(t)-g(y(t))-(a + b) Σ.qly(t-ir) .
ί = l

Let τeR be given so thaty2(τ) = maxseRy2(s) and assume that y is not identical to zero.

Then 2j>(τ)Xτ) = 0. Therefore

From IXτ-ιr)|<|Xτ)|, it follows that

ι l-q l-δ

So by the choice of M(<5), |Xτ)|^(l-<5)Λf(δ). Hence, for ίεR,
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1-5
M(δ)<M(δ).

\-q

This completes the proof.

REMARK 3.5. The technique employed in the above proof, to associate a neutral
equation with a retarded equation of unbounded delay in the consideration of stability
and boundedness of solutions to the neutral equation, is motivated by the work of
Staffans [60] and has been used before in [21], [22]. Moreover, a result in a forthcoming
paper by Haddcok, Krisztin, Terjeki and Wu [20] can also be applied to obtain a priori

bounds for periodic solutions of (3.1).

Now we are in a position to state our main result.

THEOREM 3.6. Suppose limz_±00 g(z)/z= oo, (3.2) and (3.5) are satisfied. Let qn be

as given in (ii) of Lemma 3.1. Then for any n>2 and qε(qn, 1), system (3.1) has n—\
periodic solutions JCM, k = 2, ...,«, with periods pktq satisfying

( i ) Λfβ E (2r//c, 2r/(k -l))fork = 29...9n,if J(a + φ-c)< π/2r;
( ii ) Λtβ E (2r//c, 2r/(k - 1)) for k = 2, . . . , «, if J(a + c)(b -c)e (π/2r + mπ/r, π/2r +

(w + l)π/r)for some nonnegative integer m\

(iii) Λtί e(2r/(fc + 1), 2r/k)for k = 2,...,n, i
(iv) Λtβ E (2r//c, 2r/(fc - 1)) for k = 2, . . .,m(ifm>2) and p^q e (2r/(k + 1), 2r/k) for

k = m + 1 , . . . , «, if ^/(a + c)(b — c) = π/2r + mπ/r for some positive integer m.

PROOF. We consider (i) only. Other cases can be dealt with analogously. First of
all, we choose α*E(0, 1) such that

(3.9) inf-gί!> _«-«**
χ*o x 1+α*

where the existence of such α* is guaranteed by (3.2). For any given integer n>2, we
consider the following neutral equation

(3'10) ~dt

where

(3-11)
π

Clearly, βn :( — oo , oo)->( — α*, qn + 1) is an increasing and continuous bijection. Therefore,

if we let B(a,φ) = Qn(«)φ(-r) for 0εC([-r, 0]; R), then β satisfies the Lipschitz
condition (2.2) with fc=max{α*, qn+1}< 1. By (3.9) we can easily show that for any

αe(- co, + oo ), (α, 0) is the only stationary point of (3.10) and 0 is never a characteristic
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value, that is, all stationary points of (3.10) are nonsingular.

Let uk = Qn1(qk) f°r k=l,...,n. Then (αk, 0) are isolated centers of (3.10). Except
at these isolated centers, there are no pure imaginary characteristic values of (3.10).
Moreover, since Q'n(a) = qn+ι+oι*/π(l +α2)>0, by (iii) of Lemma 3.1, we can show
that if wjjf(α) + ΐι;£(α) is the characteristic root of (3.10), α close to αk, such that
uf(<xk) + iv*(ak) = iβk, then (d/dα)w£(α)|α=αk>0. So the crossing number of (αk, 0, βk)
satisfies y(αk, 0, βk)= — 1 for k = 1, 2, ...,«.

We now consider the connected component C(α2, 0, 2π/β2). By Theorem 2.2,
C(α2, 0, 2π/β2) is unbounded. Let zneR denote the unique number such that βπ(zw) = 0.
Then at α = zn, equation (3.10) degenerates to the following ordinary differential equation

x(t)=-ax(t)-g(x(t)),

which has no nonconstnat periodic solutions since the origin is globally asymptotically
stable under the assumption (3.2). So we can concluded that

C α2, 0, - a BC(MJ x (zn, oo) x [r, 2r] ,
P2

α2, 0, - 1 c BC(*; R) x (zn, oo) x [0, oo) .
P2 /

Since 2π/β2e(r,2r) and for αe(zn, oo), gn(α)e(0, qn+ι), by Lemmas 3.2 and 3.4, there
exist Mn = M(qn + J > 0 such that

where

Therefore, the projection of C(α2, 0, 2π/β2) onto the parameter (α) space must be an
unbounded interval containing [α2, oo). Note that βn(α2, oo) = (#2, qn+ι). So for all
#e(#2, <7Π + 1), system (3.1) has a nonstant periodic solution x2tq with period /?2>ί in
(r, 2r).

Applying a similar argument to C(αfc, 0, 2π/βfc), A: = 3,. . . , n, we can show the

existence of periodic solutions xk^q with periods pktqe(2r/k,2r/(k—l)). This completes
the proof.

To obtain existence of periodic solutions of periods greater than 2r, we recall a
result about circulant matrices. Let aί9a2, ...,an be given numbers. A square matrix of
order n
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/ 01 02 03 ' 0Π-1 0n \

A =

#3 #4 #5

\ #2 03 04

01 02

0« 01

is called a circulant matrix and will be denoted by A =circ(aί9 a2, . . . , απ). For a circulant
matrix Λ = circ(αl9 Λ2 ) > 0«)? Nussbaum [52] proved the following result

(3.12)
i = l

We now introduce the following quantities

Σ a?J~'

where #6(0, 1) and n is any natural number.

LEMMA 3.7. If there exists #*e(0, 1) and n> 1 swc/z //zαί

(3.13) inJ

then (3.1) Λαί «o nonconstant periodic solutions of period nr for all ^e(0, q*).

PROOF. Suppose that x(t) is a «r-periodic solution of (3.1). Let

) = x(t)-qx(t-r),

(3.14)

Then

So
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= - — -Ly1(t)+qy2(t)+q2y3(t)+
ι—q

Using the symmetry, we get

Ly2(t)+qy3(t)+q2y4(t) +

that is,

(3.15)
x(t-r)

1-q"
ciro(l,

\x(t-nr + r)

Notice that (3.1) can be rewritten as

d

y2(t)

at
[x(t)-qx(t-r)] = -g[x(t)-qx(t-r)] + b[κ(t)-qx(t-r)] -(α + b)x(t).

Therefore, replacing t by t, t—r, t—2r,..., ί—nr + r, respectively in (3.1) and using (3.14),

we can show that (y^t), y2(t), •••, yn(t)) satisfies the following cyclic system of ordinary
differential equations

y2

\yn /

(3.16)
a
at

J I V " / i

y2(t)

\ V i f } 1

=

ίJ\J I/ ' " J 1 i

-^2) + ̂ 2

\ — ΛrΓ v ^-1- hv I

a + b

l-qn

Let

H(y) = β(y2) y= y2

\y»
where

a, =-

0,:=

a + bq"

1 l-q" '
2<j<n .
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Then (3.16) can be rewritten as

y(t)=-H(y)-Ay.

Let V(y)=(y,yy/2. Then

- <Ay, yyat

<-<H(y),yy-c(AKy,yy

where by the result of Nussbaum, we have

Observe that

y ^-i-A ' "

l-qn l-qn 1-qz

Therefore c(A)>cn(a, b, q*). Consequently,

^-F(XO)<-2( inf
dt \y*o y

which implies that

V(y(t)) < F(XO)) exp( - 2 ( inf

as f->oo, that is, the only «r-periodic solution of (3.1) is the trivial solution. This
completes the proof.

REMARK 3.8. The ideas, to associate a periodic solution of large periods to a
certain retarded equation with a cyclic system of ordinary differential equations and
then to use results about circulant matrices in conjunction with appropriate Liapunov
functions to exclude the existence of nontrivial periodic solutions of the associated cyclic
system, have been used before by Nussbaum and Potter [52], [53].

THEOREM 3.9. Suppose limz_>±00g(z)/z = oo, (3.2) and (3.5) are satisfied.
(i) In the case where ^(a + c)(b — c)<π/2r, let n0>5 be the integer such that

— c)<n0r. If there exist an integer n>n0 and a real
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number q*e(qί, 1) such that (3.13) holds, then (3.1) has aperiodic solution xίjq

of period p ltβe(4r, nr) for all qe(q^ q*);
(ii) In the case where π/2r + mπ/r < ^/(a + c)(b — c)< π/2r + (m + 1 )π/r for some

nonnegative integer m, if there exists an integer n>4 and a number q*E(q1, 1)
such that (3.13) holds, then (3.1) has aperiodic solution xlfq of period pltq e (2r, nr)
forallqe(q1,q*).

PROOF. One can easily show that in the case (i),

A 2π 2π
4r< < <n0r<nr,

and in the case (ii),

„ 2π
2r<

So employing the same argument to C(α1? 0, 2π/βl) as that for Theorem 3.6, we can
prove the conclusions.

REMARK 3.10. In cases (i) and (ii) of Theorem 3.1, we proved the existence of

periodic solutions of period greater than 2r for equation (3.1) with qe(qι,q*). We
borrow the terminology slowly oscillating for these periodic solutions, though whether
the separation between consecutive zeros of these periodic solutions is greater than r
is still an interesting problem.

REMARK 3.11. The existence of periodic solutions of period less than 2r for
equation (3.1) with qe(q2, 1) has been guaranteed in all cases. We say these solutions
to be rapidly oscillating. It has been observed, both numerically and theoretically, that
slowly oscillating periodic solutions are stable and rapidly oscillating periodic solutions
seem to be unstable for many retarded equations. It would be interesting to find out
whether the same phenomenon happens to neutral equations.
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