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Abstract. Explicit diagonal approximations for efficient resolutions of the integers
over the dihedral groups are constructed. As an application, the multiplicative structure
of the cohomology of the dihedral groups arising from certain coefficient pairings is
determined. :

1. Introduction. The dihedral group D,, of order 2n is generated by two elements
x and y which satisfy the relations x"=y?=1, xy=yx~'. Efficient free resolutions of
the trivial D,,-module Z over the integral group ring ZD,, have been given by Wall
[7] and Hamada [3]. Our main contribution is the construction of an explicit diagonal
approximation for the Wall-Hamada resolution. This yields explicit cochain cup prod-
ucts with respect to any given coefficient pairings. It is well-known (e.g. [1, Ch. V],
[2, Ch. 3]) that these cochain cup products induce the standard cohomology cup
products.

In §2 we reformulate the Wall-Hamada resolution, and give our diagonal ap-
proximation. The construction of the latter proceeds via a well-known inductive tech-
nique which uses a contracting homotopy, and is presented in §3. In particular, we
construct an explicit contracting homotopy for the Wall-Hamada resolution, providing
an alternate proof that the latter is indeed a resolution of Z over ZD,,. In §4 we
explicitly determine the cochain complexes arising from the Wall-Hamada resolution
for general D,,-modules and determine the cochain cup products arising from our
diagonal approximation. This is applied in §5 to calculate the cohomology rings
H*(D,,; Z), H¥(D,,; Z|2Z), as well as H*(D,,; M) as a module over H*(D,,; Z) for
certain non-trivial D,,-modules M. Some of these results for trivial coefficients have
been previously obtained by other methods (e.g. [4, Prop. 3.5], [6, Ch. 1]).

I thank the referee for insisting that I include proofs which, in the original version,
were left to the reader. The result is a more easily verifiable paper.

2. The resolution and a diagonal approximation. Let n>2. We first reformulate
the Wall-Hamada resolution of Z over ZD,,. For each ¢>0, let C, be the free
ZD,,-module on generators ¢}, ¢2, ..., c4*!. For notational convenience, interpret c}
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as 0 if either i< 1 or i>g+1 or ¢<0. Using the notation of §1, let N=Y /" x'€ ZD,,.
Let

{—1 if i=0 or 3 (mod 4),
&=
1 if i=1 or 2 (mod4).

Then the augmentation ¢: Co—Z and the boundary operators d,: C,—»C,_, for g>0
are the right ZD,,-homomorphisms determined by

e(cp)=1,
ciZ\ox+eg)+ch_(x—1) if g even, i even,
o ch) = c;'_ll(y—sisq)+c;_1N if ¢ even, iodd,
e ciZi(y—eg)—ci_ N if g odd, i even,

ciZi(yx—eg)+ci_y(x—1) if godd, i odd.

THEOREM 2.1 (Wall-Hamada). The above (C, ¢, 0) is a free resolution of Z over
ZDZ"-

An explicit contracting homotopy for C will be given in §3, providing an alternative
proof of Theorem 2.1. We turn now to the description of a diagonal approximation
4: C->C®C. ® denotes ®, and C® C is a bigraded ZD,,-module via the diagonal
action (@ ® b)g =(ag) ® (bg) for a, be C, ge D,,. To avoid excessive parentheses, (ar) ® (bs)
will be written as ar ® bs whenever a, beC, r, se ZD,,. C® C is another free resolution
of Z over ZD,, with augmentation e®¢: Co® Co—Z ® Z=Z and the standard tensor
product boundary. 4 is to be an augmentation-preserving ZD,, chain map. For
1<j<n—1 write N;=Y_ x'e ZD,,, and Ny=0.

THEOREM 2.2. For q>0, let A,: C,—(C® C), denote the right ZD,,-homomor-
phism determined as follows:
For k even and 0<k<q—1,

Aq(cg"‘)= ' Z (_ 1)rq<(_ 1)’C§+1_2’®cg:f+2’_k+cf_2r®Cg:§+2'_k
lre;eon

+c::—2r®cg:::+2r—k+1y+rc£—2r®cz:::+2r—kN)

ol i v - e
+ 2 (=1 1’(c§ FRcITITT TR Ixpelm Izt T hyx
iodd
r=0

+(_ l)rc::+1—2rx®cz:::+2r—kyx+rc§—2r®cz:::+2r—kyN>.

For k odd and —1<k<gq—1,
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- i+1-— —i - i+1-2 —i+2r—k-1
Aq(Cz k)= Z (—l)"‘<c:~+1 2'®CZ_;+2' "+rc:- r®cz_; r yN
ieven
rz0

n—1
+r+ i— —j —i+2r—k+1,. .—j
F(=1TEE Y el TN TI@cdTi A R yx ’)
j=1
i+1- —it2r— i+1— —it+2r—k—-1

+ Z (——l)r(q+1)<C:+1 2r®cz_;+2r "y+rc§+1 2r®cg_; 2r—k N

iodd
r>0

n—1
+(__ 1)q+r Z C::_erj®Cz:z+2r—k+1xj>.
=1

J
Then the A, constitute a diagonal approximation for C.

The proof of Theorem 2.2 is given in §§3 and 6. An alternative approach to the
proof is to check directly that 4, preserves augmentation (trivial) and that 4 commutes
with the boundary maps. The latter task appears to be at least as tedious as the approach
we have taken.

3. Constructing diagonal approximations. Let G be any group and (X, ¢, 0) a free
resolution of the trivial G-module Z over ZG. Write X_,=Z and d,=¢: X,—X_,.
Recall that a contracting homotopy 7 for X consists of a sequence of Z-homomorphisms
T,: X;=>X,41,9>—1, such that 0, T,+ T,_,0,= 14, for each ¢>0.

PROPOSITION 3.1. Let G be a group, (X, ¢, 0) a free resolution of Z over ZG, and
U a contracting homotopy for X ® X. Suppose that for each >0, B, is a ZG-basis for
X, such that e(b)=1 for each be B,. Let Yo: Xo—X,® X, be the right ZG-module
homomorphism determined by Y o(b)=b® b for be B,. For >0 let y,: X,—»(X® X), be
the right ZG-module homomorphism determined inductively by  (b)= U, _ Y, _10,(b) for
be B,. Then  is a diagonal approximation for X.

Proor. Trivially, (¢ ® e)yo(b)=1=¢(b) for all be B,. Write d® for the boundary
operator on X ® X. Let ¢>0 and assume, inductively, 0 flpq =y,-10, (Where y_; =1,).
Let beB,,;. Then a;@+l q+l(b)=at;®+1Uq¢qaq+ 10)=(1xex,— Uq—la‘;@)‘/’qaﬁ 1(b)=
Ve 1(0)= Uy 10200, 1(0) =010, 4 1(B)— Uy (¥ g = 1000, ()= 94 (b).  Since
B, ., is a ZG-basis for X, ,, it follows that 02, ;W ., =¥,0,+;. O

Note that since the U, are not necessarily ZG-homomorphisms, the formula
Y (w)=U,_ 1Y, 10,(u) is not necessarily valid for all u€ X, but only for ue B,.

PROPOSITION 3.2. Let G be a group, (X, ¢, 0) a free resolution of Z over ZG, and
T a contracting homotopy for X. Extend T_,e: Xo— X, to a chain map T_,e: X—»X
over Z by defining (T_,¢);=0 if i#0. Let U;: (X® X),~>(X® X),, for g=>—1 be the
Z-homomorphisms given by U_=T_QT_,: Z=ZQ Z-X,® X,, and U (u® v)=
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T(W®v+(T_-1e){(w)® T,_;(v) for ue X;,veX,_;, 0<i<q. Then the U, constitute a
contracting homotopy for X® X.

PrROOF. T may be regarded as a chain homotopy from 1, to 7_,e. It is standard
(e.g. [5, Prop. 9.1]) that whenever s is a chain homotopy from f; to g, and ¢ is a chain
homotopy from f, to g,, then u given by u(a ® b)=s(a) ® g,(b)+(—1)'*'f5(a) ® #(b) is a
chain homotopy from f,®g; to f, ®g,. Applying this with fi=g,=1y, f,=9,=
T_,e,s=t=T, the u that results is U as defined above. O

THEOREM 3.3. The following defines a contracting homotopy T for the Wall-Hamada

resolution C:
T_()=c}.

If ¢>0 is even, then

cliiN; if j=0,r=1,and 0<i<n—1,

—g0h  (Ni+ckix' if j=1,r=1,and 0<i<n—1,
T(ciyix)=10 if j=0,2<r<q+1,andall i,

ciiixit if j=1,2<r<gq, reven,andall i,

ciixt if j=1,3<r<q+1,rodd, and all i.

If g>1 is odd, then

0 if j=0,r=1,and 0<i<n-2,

cliy if j=0,r=1,andi=n—1,

—gCarrt+ciiyx™t if j=1,r=1, and i=0,
Tchy'x)=1ckyx'? if j=1,r=1,and 1<i<n—1,

0 if j=0,2<r<q+1,and all i,

cpiixt if j=1,2<r<q+1, reven,andall i,

cpiixit if j=1,3<r<q,rodd,and all i.

ProOOF. We must check

(*)

(0g+ 1T+ Tp—10,)chyixY)=chyixt

whenever 1<r<g+1,0<i<n—1, and j=0 or 1.
From the definition of T and the boundary formula we obtain 8, To(cdy’x’)=
cd(yixt—1), T_ e(cyyx’)=c} which establishes (*) for g=0.
For the case ¢>0, r=1, and j=0, we obtain
ci(x*—1) if g even, 0<i<n-—1,
Og+1T(cix)=10 if g odd, 0<i<n-2,
cIN if g odd, i=n—1,

q

and
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s if g even, 0<i<n-—1,
T,—10,(cix)=1 cix’ if ¢ odd, 0<i<n-—2,
—¢yN,—, if g odd, i=n—1,

which combine to yield (*) in this case.
For the case ¢>0, r=1, and j=1 we obtain, from the definitions and the fact that
gg+1=(—1)"1g, for all g,

. ciyx'+e)—cIN if g even, 0<i<n-—1,
041 T (chyxh)= Ca(—&N,—1+y)+c2(1—x"1) if g odd, i=0,
capxt+ex ™+ c2(x'—x"1) if godd, 1<i<n-—1,

and

—g,cp+CiN if geven, 0<i<n—1,
T,—10,(cayx)=1 €CiN,_y+c2(x"1=1) if g odd, i=0,
—geax' T +el(x' —x") if godd, 1<i<n—1,

which combine to yield () in this case.

For the case 2<r<g+1, r even, and j=0, we obtain 0, ,T,(c;x’)=0 for all i. The
computational details of 7,_,0,(c;x’) are different for the subcases r=2 and r>4 due
to the presence of a ¢, term in d,(c2) and the anomaly in the definition of the T, _ ;(c;— x?).
In both subcases, one obtains T,_,0,(c;x")=cyx’ for all i, thus establishing (*) in this
case.

For the case 2<r<g+1, r even, j=1, and i arbitrary, we obtain
X =gy 801X )+ i (xI—xTTY) if g even,

0 T(c’yx‘):{ . .
aritata cfyxi—g, 418501+ IN if ¢ odd,

and

geaCpx "+ citi(x' T —x7) if g even,

T,_ 0(c'yxi)={ .
amirata —&8,Chx —ciTIN if ¢ odd.

Again, the subcases r=2 and r>4 require separate treatment. Using g, , =(—1)**lg,,
(*) now follows for this case.

For the case 3<r<g+1, r odd, and j=0, we obtain aqHTq(c;x‘):O and
T, q_laq(c;xi)=c’qxi for all i, thus establishing (*) for this case.

For the case 3<r<g+1, r odd, and j=1, we obtain
o yxi—g, 41854 1x)— i IN if g even,

0 T(C'yxi)={ . . o
aritata X + e 418,01 x )+ (x =x""1) if ¢ odd,

and



18 D. HANDEL

) —gectxi+ et TIN if g even,
Tq_laq(c;yx')={ ’ f i-1 : VN T E S !
—geepx' e i (x' T —=x") if g odd
for all i, which combine to yield (*) in this case. O

THEOREM 3.4. The diagonal approximation A for the Wall-Hamada resolution which
results from Theorem 3.3, Proposition 3.2, and Proposition 3.1 with B;={c;, ..., ci*'}
is given by Theorem 2.2.

Proor. Let iy denote the diagonal approximation which results from Theorem
3.3, Proposition 3.2, and Proposition 3.1 with B,={c},...,ci*'}. We must prove
l//q(cg"‘)=21q(c3“‘) for all ¢ and k. The contracting homotopy U of Proposition 3.2
which results from the T of Proposition 3.3 is given by U(u ® v)= T(x) ® v+ &(u)c s ® T(v).
Y is determined inductively by

Yolco)=co®co,
Ve =Uy—1¥,-10,(cy) if g=1.

To make the notation less cumbersome, write

M

Ayg, k)= ) (_1)r(q+1)c§+1—2r®cz:§+zr—k’

ieven

r=0

Aq. )= Y (1% " @citit¥ 7k,
lre;eon

Ay )= Y (=%l @ciziT T y,
¥20

A, k=Y (=1l @ciZi* 7N,
lre;e(;\

As(q = T, (1Y Vel @it i,
iofd

Agg, k)= ), (=1 Vel @ cdzi* ¥ Hyx,

iodd
r=0

A+(q, k)= 'de(— et = x®cdZi > Fyx,
io
r>0

AS(qa k)= Zd‘,d(— 1)r(q+ l)rc’;_z"® CZI::*z'_"yN,
io
r20
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Bi(g k=) (- 1yacit1-2r @ cazivark,

ieven
r>0

T PR
r20

n—1
B3(qa k)= Z Z (_1)(r+1)(q+1)c;~2rij—1®cg:;+2r—k+1yx-j’
ievebn j=1
r=

34(‘1, k): g}d(_ 1)r(q+ 1)c;‘+1 —2r® Cg:::+2r—ky,
r>0

BS(q’ k): z (— 1)r(q+ l)rc::"' 1—_2'® C::§+2r—k— IN,
iodd
r=0

n—1
Bla, =Y Y (— 1yt Dci-2N,@cazitark+iyi,
iodd j=1
r>0

Thus we must prove that for all k> —1 and all g>k+1,

8
Y A(q, k) if keven,

t=1
6

Z B(q, k) if kodd.
=1

@ Yleq =

Let P(g, k) denote the statement that ¥ (c27¥) is given by (2). The plan of the proof is
the following induction scheme:

Step 1: Establish P(q, q—1) for all ¢>0 by induction on gq.

Step 2: Establish P(q, — 1) for all g=>0 by induction on g. The case g=0 in Step
1 starts the induction here.

Step 3: Let k> —1. Assuming P(p, k—1) holds for all p >k, deduce that P(q, k)
holds for all ¢ >k + 1 by induction on q. The case g=k + 1 in Step 1 starts the induction
here.

We proceed with Step 1. The statement P(q, g— 1) reduces to

Y ad®ch i+ Y cl®ciix if g odd,
ieven iodd

3) Yolc))= ne1 _
Y il ®cii+ Zd:d Y clN;®cl x) if geven.
ieven io j=1

In the case of ¢ odd, the summations which appear in (3) are 4,(q, g— 1) and 45(q, g— 1),
respectively; the other 4,(q, g—1) are all 0. In the case of g even, the summations which
appear in (3) are B,(q, g— 1) and Bg(q, g— 1), respectively; the other B(q, g— 1) are all 0.
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The statement P(0, — 1) is immediate from (1). Let ¢>0 and suppose, inductively,
P(q—1, g—2) holds. The cases ¢ odd and g even must be treated separately.
Suppose ¢ is odd. Then d,(c])=ci_(x—1) and so by (1),

l//q(c;)=Uq—l(wq—l(c;—l)x)_Uq—l‘pq—l(c;—l)‘
By the inductive hypothesis,
n—1
‘//q(C;)=.Z Uq~1(ci1x®C;—1—ix)+zd:d _Zl Uq—l(ciIXNj®C;—1—ix1+l)
ieven io ji=
C)) ot
- Z Uq—l(ci1®c;—1—i)— Z Z Uq—l(cile®c;—l—ixj)'

ieven iodd j=1
From Theorem 3.3 and the definition of U we obtain

n—1
Z Uq—l(ci1®c;—-l—i)=0= Z Z Uq—l(cile®c;—1—ixj)s

ieven iodd j=1

5 Z Uq—l(cilx®c;—l—ix)= ) ci1+1®c;—1—ix+c(l)®c;

ieven ieven

1 1 1 1
= Z ;i Rc_ix+co®cy,
iodd

n—1
> 2 Uq—l(CiIXNj®c;—l—ixj+l)= > Ci1+1®c;—1—i= > c,-1®c,}_,-.
iodd j=1 iodd ieven
i>0 i>0
In this last summation, the only non-zero contributions come from the j=n—1 terms.
(4) and (5) imply (3) if ¢ is odd, and so P(q—1, ¢—2) implies P(q, g— 1) in this case.
Suppose ¢ is even. Then d,(c;)=c;_;N and so by (1),

n—1
1//q(c;)= 'Zo Uq—l(‘/’q-l(";—l)xl)-
j=
By the inductive hypothesis we have
ncl n_l . .
(6)  Ylcg)= Y X UpleixX ®ciy—ix)+ Y Y Upalefx'®cqoq-xi™Y).
j=0ieven j=0iodd

From Theorem 3.3 and the definition of U we obtain

Z L Ni®cqy X! if 0<j<n-2,
Z Uq—l(cilxj®c;—1—ixj)= ieven
even Z ci1+1Nj®C;_1_,-xj+C(l)®C; if j=n—1

ieven

and so, since N, =0, we obtain
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n—1

n—1
0] Z Z Uq—l(cilxj®c;—1—ixj)= 2 Z cile®c;_ixj+cé®c;.

j=0ieven

j=1iodd

From Theorem 3.3 and the definition of U we obtain

0 if 0<j<n—2,
Y U _(etx®@cl__xith= 1 1 £
G, Tam i g-1-i Y civ1®cg_y—; if j=n—1
o iodd
i>0
and so
n—1 . .
®) Y 2 U lefx®ci ™)=Y el ®cji.
j=0iodd iev%n
i>

(6), (7) and (8) yield (3) for g even. This completes Step 1 of the proof.
We proceed with Step 2. The statement P(q, — 1) reduces to

9 Y lcd*h= Y Pt @ciZit4 Y it @cizitly for ¢>0.

ieven

iodd

The summations which appear in (6) are B,(g, —1) and B,(q, — 1), respectively; the
other B(g, —1) are all 0. We already know P(0, —1) is true.
Let ¢>0 and suppose, inductively, P(g—1, —1) holds. We have g (ci*!)=

¢i_4(y£1) and so by (1),

l/’q(cz+ = Uq—-l(wq— 1(02— DY) E Uq—1'//q— 1(6'3—1)-

By the inductive hypothesis,

Voled™= 2 Upalei"y@ciZioin+ X Upoalel™ 'y ®cqzio))

ieven

(10)

iodd

i( Z Uq-1(6‘§“®033‘1—i)+ Z Uq—l(c§+1®03:i1—iJ’)>-

ieven

iodd

From Theorem 3.3 and the definiton of U we obtain

Y Upalei 'y ®ciZi_y)= Y ci131@®cizi_y+cd®@cit!

ieven

(11)

iodd

Z Uq—l(c::+1 ®CZ:'1

ieven

ieven

—_ i+1 —i+1 1 +1
=2 ci"'®@ciZiTy+ci®@citt,
iodd

Y Upoalci™y@caZi_)= ) ciii@ciZi_i= ) "' @cizitt,

iodd ieven
i>0 i>0

_)=0= Z Uq—1("§+1 ®c2:i1—iJ’)~

iodd
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(10) and (11) imply (9), completing Step 2.
To facilitate Step 3 we interpose six lemmas whose proofs are deferred until §6.

LEMMA 3.5. Suppose k>0 is even and q>k. Then

@) Uf4,(g, kyx)=A5(g+1, k) + 3 (=1)%h,+ ®cihyx+es®@ciii™;

r>0

(b) UyAa(g, Kyx)=Aglg+1, k)= X, (—1)%3, 41 ® ciThpx;

r>0

©) UfAs(g, kyx)=As(q+1,k)— 3 (= 1%k, ® i *x;

r>0

(d) UjfA4(q, k)yx)=Ag(q+1,k)— Y, (—1Yrch, 4y @ ciZhyN;

r>0
(©) UfAs(g, k)yx)=A;(q+1,k);
(£) UyA4(q, Kyx)=A5(q+1, k);

(8) UfA4(g, k)yx)=A,(q+1,k)— ZO(— )%, ®ciii=hys

(h)  UgfAq(g, k)yx)=A4(g+1, k).

LeMMA 3.6. Suppose k>0 is even and q>k. Then U (A/(q, k))=0 for 1 <t<8.
LemMmA 3.7. Suppose k>0 is even and g>k+1. Then

n—1
(@) UfAdy(g HN)= 3, ¥ (=19 Vc}, , N;® cih,x/;

r>0 j=1

(b) Uq(AS(q’k)N)=Z(_ (r+1)(q+l)c ®cq+1 2r>

r>0

(C) Uq(AG(qs k)N)= z ( )(r+1)(q+1)c ®cq+l 2rys

r>0

@) Ufdslg, ON)= Y, (=1 D4 —1)c3, @ cd7175,0N;

(e) Uy A(q, k)N)=(;>0for t=2,3,4,and 7.
. LemMA 3.8. Suppose k> —1 is odd and q>k. Then U/(B(q, k))=0 for 1<t<6.
LemMA 3.9. Suppose k>1 is odd and q>k. Then
(@) U Bi@ k)y)=Bylg+1,k)+cs®@ciii™;
(b) UyBy(q, k)y)=Bs(g+1, k);

n—1
(©) Uy Bs(g k)y)=Bolg+1,k)— X 3 (=" Vel N; @ity "x';

r=0 j=1
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d) U Byq k) =Big+1,)— X (—1y“ e}, ®@citiTh,;

r>0

©) UyBs(a, by)=Bylg+1,k)— 3 (=1y4" Vres, ® caih_2N;

r=0

()  UyBs(g, K)y)=Bs(g+1,k)+ 3, (—1)""“’62,®CZ+1 2¥N

r>0

=2 (=)@t Vel ®@ctih o

r>0

LemMa 3.10. Suppose k> —1 is odd and q>k+1. Then

@) UyBi(g, b)x)= Y. (=13, ®cih,x;

r>0
(b) q(Bz(‘b k)X)— ZO(_I rc2r+1®cq 2r yN
(C) q(B6(q’ k)X) - ZO ( l)rqc 2r ® cq+ 1-2r 5

(d) U/Bfg,k)x)=0 fort=3,4,andS5.

We proceed with Step 3. Suppose k> —1 and that P(p, k—1) holds for all p>%.
By Step 1, P(k+1, k) holds. Let g>k+1 and suppose, inductively, P(q—1, k) holds.
The cases k even and k odd require separate treatment.

Suppose k is even. Then aq(c“"‘)=cqi"‘1(yxi1)+c":"(x— 1) and so by (1),
wq(cq k) l(lqu l(cq l)yx)+ ll//q 1(C _-k 1)
q— 1(l//q— 1( q—'i)x)_ Uq— ltllq— 1( q-— 1)'
By the induction hypothesis,

Ylcd™) Z -1(4dg—1, k)yx) + Z ~1(4{g—1, k)
(12) .
Z ~1(Blg—1, k—1)x)— Zqu—l(B,(q~1,k*1))-
=

Using Lemmas 3.5, 3.6, 3.8, and 3.10 to express the right-hand side of (12), one easily
deduces that y (c2™%) is given by (2).

Suppose k is odd. Then 0,(ci™*)=c2Z] "My +1)+(—1)%2Z4N and so by (1),

Yoled )= Uy (W1 (2217 M) 2 Uy ¥y - 1(cd2 175+ (= 11U, - (Y- 1(c4ZHN).
By the induction hypothesis,
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6 6
Vies™= L Upr(Bla—1,9)% 3, Up-(Bla—1, k)

(13) .
+(—1)y Z U, (4(g—1,k—1)N).

Using Lemmas 3.7, 3.8, and 3.9 to express the right-hand side of (13), one easily deduces
that ,(c2™%) is given by (2).
This completes Step 3, modulo the proofs of Lemmas 3.5-3.10 (see §6). O

4. Cochain complexes and products. This section is concerned with cochain-level
computations arising from the Wall-Hamada resolution and our diagonal ap-
proximation, in preparation for the cohomology determinations in §5.

Let 4 be a right ZD,,-module. Write C%=Homgp, (C,, A) where C is the
Wall-Hamada resolution. We first describe the coboundary maps 67: C4—C%*!. If
aeAand 1<i<q+1, let aje C% denote the cochain characterized by ai(c))=dJa where
&4 is the Kronecker delta. (We will sometimes write (a); if a represents an expression
consisting of more than one symbol.) Thus for any ze C%,

q+1

z= .;1 (2(c))-

Following standard sign conventions, the coboundary maps §¢ are characterized
by %)) =(—1)""*(, + ,(u)). The following is a routine consequence of the boundary
formulas in §2:

PROPOSITION 4.1. Let n>2 and suppose A is a right ZD,,-module. Then for ac A
and 1<i<q+1,

—(alx— 1));“ —(a(y—&; 4184+ 1)):1111 if g even, iodd,
(aN).i;+1 —(a(yx—g;+ 16q+1));-:~11 if g even, ieven,
(@N)yr 1 +(@(yx+es 18441550 if godd, iodd,
(@ 1)1+ @ —ei11004 D555 if godd, i even.

%ag)=

If A and B are right ZD,,-modules, so is A ® B via the diagonal action and we
have a cochain cup product pairing
Ci®Ci—~Cles
arising from our diagonal approximation 4 (Theorem 2.2) which induces the standard
cohomology cup product pairing
H*(D,,; A)® H*(D,,; B)—»H*(D,,; A® B).

For ae C%, and Be CY, the above cochain cup product afe CS3y is characterized by

(af)u)=(a ® B)(4u) for ueC;,, where (2 ® f)v ® w)=(— 1)"«(v) @ f(w). Our next task
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is to determine the cochain cup products a%? for aeA4,beB, 1<u<s+1, and
I<v<t+1.

Let C¥ denote the ZD,,-submodule of C, generated by c¥ Then C® C is the direct
sumofthe C5 ® C;.Ifze C® C, we write z¥/ for the C¥ ® C?-component of z with respect
to this direct sum decomposition, and 4%y for the Ci ® C}-component of 4.

In the lemma below, the A4;(q, k) and B;(q, k) are as in the proof of Theorem 3.4.

LEmMmaA 4.2. 'Suppose I<u<s+1land1<v<t+1.Thenthe A(s+1, k)s; for k even,
0<k<s+t—1, and the B(s+1, k);; for k odd, —1<k<s+t—1, are all 0 except for the
following cases:
(@) Ay(s+t,s+t—u—v+1)sr=(—1)*rDeTurD2eu g c?
for s even, u odd, and t—v even;

(b) Ays+t,s+t—u—v)t=(—1)¢"2ct@c}
for s even, u even, and t—v even;

(©) As(s+t,s+t—u—v+1)er=(—1yc""2ctQcly
for s even, u even, and t—v odd,

(d) Agls+t,s+t—u—v)4=(—1)C"2(1/2)s—u)c* ® c!N

for s even, u even, and t—v even;

(e) As(s+t s+t—u—v+1)2r=(—1y""2c*®clx

for s odd, u odd, and t—v odd,;
(f) Ag(s+1,s+t—u—v)4r=(—1)¢"92c4 @ c’yx
for s odd, u odd, and t—v even;

(8) Ais+t,s+t—u—v+1)br=(—1)t+De"urD2eixy @ clyx

for s odd, u even, and t—v even,

(h) Ag(s+t,s+t—u—v)4=(—1y¢"21/2)s—u)c*® ciyN

for s odd, u odd, and t—v even;

(i) By(s+t,s+t—u—v+1)4r=(—1)c""*D2ciQcy

for s even, u odd, and t—v odd,

() Byls+t s+t—u—v)gr=(=1)¢C"""V2(1/2)(s—u+ e @ c;yN

for s even, u odd, and t—v even,

() By(s+t,s+t—u—v+1)2r="" (=)D D2UN XTI Q@ cPyx I

for s even, u even, and t—v even;

() Bys+t,s+t—u—v+1)4r=(—1yc""*D2c @ty

for s odd, u even, and t—v odd,

(m) By(s+t,s+1—u—v)P=(—1yC"**V2(1/2)(s—u+1)ct @ c/N

for s odd, u even, and t—v even,
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(M) Be(s+t,s+t—u—v+1)Lr=Y" "1 (=1 D2AN, @ cpx)

for s odd, u odd, and t—v even.

PrOOF. Suppose k is even and 0 <k <s+¢—1. Then term indexed by i and r in
the summation defining A4,(s+t¢, k) is (— 1y¢+ ¥ Dei*1-2r @ sti-i+2r=k Then latter will
contribute to A,(s+1, k)& ifand only if i=s, i+ 1—-2r=u,s+t—i=t,s+t—i+2r—k=v,
iis even, and s+t—i+2r—uv is even. Thus, the only possible contribution occurs when
s is even, u is odd, r=(s—u+1)/2, t—v is even, and k=s+t—u—v+ 1. The assertion
about the 4(s+t, k)5 now follows. The other parts are similar. O

PropPoSITION 4.3. Let n>2 and suppose A and B are right ZD,,-modules. Then
for ae A,be B, 1<u<s+1, 1<v<t+1, the cochain cup product a"b’e C%'gy derived
Jfrom Theorem 2.2 is as follows:

(@ (- 1)"“)(5_“”)/2(2?;1 aNx 7 @byx~J)sly™?
+(=1)"2q@b+(1/2)(s—u)a@bN)" I’ for s even, u even, and t—v even;
(b) (—=1yC"“'2(q® by)*I>~* for s even, u even, and t—v odd,
©) (=DEFVETwrD2(q@byaty ™ +(— 1T 2(1)2)(s—u+ 1)a® byN)y iy
for s even, u odd, and t—v even;
@) (=1~ “*V2(q®b)“f ! for s even, u odd, and t—v odd,
() (=1)yTerem T D2(ax @ byx)s iy +(—1)CT " V2(1/2)(s—u+ 1)(a®@bN); iy
for s odd, u even, and t—v even;
) (=1 V2q® by)“I>~ ! for s odd, u even, and t—v odd,
(& (- 1)”('“)(8—“2)/2(2;;11 aN;® bx’)7 1
+(= 16"t D2(q @ byx +(1/2)s —u)a ® byN)“}? for s odd, u odd, and t —v even;;
(h) (=1y"“*22(qQ bx)"T2~* for s odd, u odd, and t—v odd.

Proor. We have

s+t+1 s+t+1

asby= k; (@b s+ )s+e= k; (CHSEH ) L

It follows from Lemma 4.2 that the A*{(ck,,) are all 0, except possibly for k=u+v—1
or u+v.
Suppose s, u, and t—v are all even. Scanning Lemma 4.2, we see that only case
(k) contributes to 4%7(c4+7~ 1), and only cases (b) and (d) contribute to 4%7(ct;). Thus
(@ @b A%(catt™ N =(as @bIYY 12 ] (= D DETH DN XTI @ cpyx ™)
n—1

=(—1) Zl (— D) DEmur D254 U N x I @ bY(cryx )

1

1 (_ ])(r+1)(s—u+2)/2aij-—j®byx—j’

n

i

M
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and

(@ @ bNAL (csiN)=(as @ bN(— D2 @ cf +(— 1) T(1/2)(s —u)cs ® ¢;N)
= (= D= 17"*(ag(c?) @ bilc?) +(1/2)(s — w)ai(cs) @ bi(ciN))
=(—1)*""2(a®@b+(1/2)(s—u)a® bN).

Part (a) now follows. The other parts are similar. O

5. Cohomology products. We first calculate the cohomology rings H*(D,,; Z)
and H*(D,,; Z/2Z), where the coefficients are simple. Although these rings have
previously been known, it is useful to describe them in terms of cocycles coming from
the Wall-Hamada resolution in order to use Proposition 4.3 to describe H*(D,,; 4) as
a module over H*(D,,; Z) (or over H¥(D,,; Z/2Z) if A is a (Z/2Z)-module) for certain
non-trivial ZD,,-modules 4. We accomplish the latter when A is any of the non-trivial
ZD,,-modules whose underlying Z-module is Z.

For notational convenience, we write 1 instead of 1 in Z when we regard Z as a
trivial ZD,,-module. Under the canonical identification Z® Z=Z, we identify 1® 1
with 1. Thus, using the notation of §4, C% is the free Z-module with basis {1}| 1 <i<g+1}
for g>0. From Proposition 4.1 we obtain

—(1 =& 18+ 1540 if geven, iodd,

5.1 5901y = nihy—(1—gy 8,0 1% if geven, ieven,
) 4 nig+(1+ey 60055 if godd, iodd,
(1 =81 1804 1554 if godd, ieven.

If z is a cocycle, let [z] denote its cohomology class.

If n is even, it follows from (5.1) that we have the following cohomology classes:
ay=[131€ H(D,,; Z), by =[(n/2)13 +131€ H*(D,,; Z), c3=[131€ H*(D,,; Z), and d,=
[1i]e HYD,,; Z).

THEOREM 5.2. Let n>2 be even. Then H*(D,,; Z)=Z[a,, b,, c5, d,]/I where I is
the ideal generated by 2a,, 2b,, 2c;, nd,, (b,)* +ab, +(n?/4)d,, and (c;)* +a,d,.

Proor. Using (5.1), one finds that HYD,,; Z) for positive g is as follows:

If g=1 (mod 4), then HYD,,; Z)=(Z/2Z)9~ V2 (a direct sume of (g—1)/2 copies
of Z/2Z) with generators [15] for 1<i<(¢g—1)/4, and [(n/2}*2>—13*3] for
0<i<(g—5)4.

- If g=2 (mod 4), then HYD,,; Z)=(Z/2Z)*?"* with generators [1;'"*] for
0<i<(g—2)/4, and [(n/2n 41 +14+2] for 0<i<(g—2)/4.

If g=3 (mod4), then HYD,,; Z)=(Z/2Z)% V'? with generators [15'"%] for
0<i<(g—3)/4, and [(n/2n ¥ —14*1] for 1 <i<(g—3)/4.

If =0 (mod 4), then HYD,,; Z)=(Z/nZ)®(Z/2Z)"*; [1}] generates the Z/nZ
summand, and the generators of the Z/2Z summands are [15'*'] for 1<i<g/4, and
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[(n/2) 3 14447 for 0<i<(q—4)/4.

We proceed to show that a,, b,, c5, and d, multiplicatively generate H*(D,,; Z).
Using Proposition 4.3, we obtain (a,)>=[1313]1=[13], a,b,=[(n/2i313+1313]=
[n/2p2+13), asea=D013131=015), —bacs=[—m/2n313—15131=[0/2)13—13], a,ds=
[31:1=012], ax@)*=0[13131=[18), bada=[0n/2n 30 +15:51=[(/201§+12], (a2)*b, =
(/23 + 13131 =[0/15+18), cada=[13121=[13), (@ e3=[13131=[15), and —(a;b,)c3=
[—(m/2)1313— 1213 =[(n/2)1%—13], which shows that a,, b,, c;, and d, multiplicative-
ly generate H*(D,,; Z) in grades <7. Let ¢>7 and suppose, inductively, that a,, b,,
¢3, and d, multiplicatively generate H*(D,,; Z) through grade ¢ — 1. Using Proposition
4.3, we obtain the following:

If g=0 (mod 4), then

[i]=dul1)-4],
[ " 1=a,0135"] for 1<i<q/4, and
(/23 + 15 ¥ =a,[(n/2n 34 +1442] for 0<i<(qg—4)/4.
If g=1 (mod 4), then
[/ 2ug 2 —1F 3 =a,[(n/2ngt ,— 1351 for 1<i<(q—9)/4,
[(/2)2 —131=[(/212- 4 —13-41ds, and
[ =a,[152] for 1<i<(g—1)/4.
If g=2 (mod 4), then
33 =a,[1325!] for 0<i<(g—2)/4,
[n/2n 15 ) =a,[(n/2n 5" +15 5] for 1<i<(q—2)/4, and
[0/} +121=[0/2)1 1 g+ 12-41ds
If g=3 (mod 4), then
[13* 2] =a,[1}L ;] for 1<i<(g9—3)/4,
[:21=[13-41ds, and
(/2 — 13 =a,[(n/2n 32 —1451] for 1<i<(g—3)/4.
It follows that a,, b,, c;, and d, multiplicatively generate H*(D,,; Z) through grade g,
completing the induction.

The additive orders of a,, b,, c3, and d, are implicit in the above. We next
check that the relations (b,)? +a,b, +(n?/4)d, =0 and (c;)* + a,d, =0 hold. Equivalent-
ly, since the additive orders of a, and b, are both 2, it suffices to check that
—(b,)* +a,b, +(n?/4)d,=0 and (c;)*—a,d,=0. We have —(b,)*+ayb,+(n%/4)d,=
— [/ 41305+ (/21305 + (/2505 +15131+ (/201313 + 1331+ (% A[13] and (c3)*—
a,d, =[1212]—[1311]. We apply the appropriate parts of Proposition 4.3 to calculate the
above cochain products: From part (d) we obtain 13i1i=1}, 1311=13, and 131}=13;
from part (c) we obtain 1312 = —12+m3 and 1312 =1%; from part (b) we obtain 1313 =13;
from part (a) we obtain 1212= —Z;;lljzi+zi= —(n—1)n/2s13+1%; from part (f) we
obtain 1312 =13. The two desired relations now follow easily.

Thus if A, B, C, D are abstract symbols of grades 2, 2, 3, and 4, respectively, the
map of algebras Z[ A4, B, C, D] H*(D,,; Z) which sends A, B, C, D to a,, b,, c3, dy,
respectively, induces a surjective map of graded algebras Z[A4, B, C,D]/J=R—
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H*(D,,; Z) where J is the ideal generated by 24, 2B, 2C, nD, B*+ AB+(n?/4)D, and
C?+ AD. Since each HYD,,; Z) is finite for ¢>0, it remains only to check that the
order of R?is at most the order of HYD,,; Z) for each ¢>0. By abuse of notation we
write A, B, C, D for their images in R under the canonical projection.

If ¢ is odd, then R? is additively generated by the D'4’C where i,j>0 and
4i+2j+3=gq, and the D'4’BC where i, j>0 and 4i+2j+5=gq. All these elements have
order dividing 2, and one checks that there are (g—1)/2 such elements. Thus the order
of RYis at most 2~ 12 which is the order of HYD,,; Z).

If g is even, then RY is additively generated by the D'4’ where i, j>0 and 4i+2j=q,
and the D'A’B where i, j>0 and 4i+2j+2=gq. If g=2 (mod 4), all these elements have
order dividing 2, and one checks that there are (q+ 2)/2 such elements. If g=0 (mod 4),
D%* has order dividing n, while the rest of these elements have order dividing 2. One
checks that there are g/2 of the latter. In either case one sees that the order of R?is at
most the order of H4D,,; Z), completing the proof. O

If n is odd, it follows from (5.1) that we have the cohomology classes a,=
[:31€ H*(D,,; Z) and d,=[1;]€ H*D,,; Z).

THEOREM 5.3. Letn>3 be odd. Then H* (D,,; Z)=Z[a,, d,1/I where I is the ideal
generated by 2a, and nd,,.

Proor. Using (5.1) one finds that HYD,,; Z) for positive q is as follows:

If g is odd, then HYD,,; Z)=0.

If g=2 (mod 4), then HYD,,; Z)=Z/2 with generator [12*'].

If ¢g=0 (mod4), then HYD,,; Z)=(Z/nZ)®(Z|2Z); [1,] generates the Z/nZ
summand, and [12*'] generates the Z/2Z summand.

From Proposition 4.3(d), 1314* ' =1273 for g even, and 151} =1}, , for =0 (mod 4).
It follows by induction on ¢ that [14*']=(a,)¥? for g even, and [1,]=(d,)"* for g=0
(mod 4). The assertion now follows. O

We denote the generator of Z/2Z by A. From Proposition 4.1 we obtain, for

1<i<q+1,
. 0 if g+iis odd,
(5.4) 5‘*(1:,)={ S
nigsy if g+iiseven.

If n is even, it follows from (5.4) that 6%4})=0 for all ¢ and i. Thus for ¢>0,
HYD,,; Z|2Z) has a (Z/2Z)-basis consisting of the [1,] for 1<i<g+ 1. In particular,
we have the cohomology classes u, =[A1]e H(D,,; Z]2Z), v,=[A}]e H\(D,,; Z|2Z),
and w,=[131e HX(D,,; Z|2Z).

THEOREM 5.5. Let n>2 be even. Then H¥(D,,; Z|2Z)=(Z/2)[u,, v,, w,1/I where
1 is the ideal generated by (u;)* +u,v, +(n/2)w,.

ProOF. Under the canonical identification (Z/2Z2)®(Z/2Z)=Z/2Z, 1 ® A is
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identified with A. We first check that the relation ()% +u,v, +(n/2)w, =0 holds. Using
Proposition 4.3, (u;)?=[A}141]=[(n—1)(n/2)A}+212]=[(n/2)A} +12] by part (g), and
u,v, =[A143]=[4%] by part (h). The relation now follows.

We next check that u,, v, and w, multiplicatively generate H*(D,,; Z/2Z). As
noted above, u;v, =[43]. By Proposition 4.2(f), (v,)?=[4242]=[43] and so u,, v,,
and w, multiplicatively generate H*(D,,; Z/2Z) through dimension 2. Let ¢>2 and
suppose, inductively, that u,, v,, and w, multiplicatively generate H*(D,,; Z/2Z)
through dimension g—1. If ¢g—i is odd, 2<i<g+1, then by Proposition 4.3(f),
[Al=[AAZ1]=v,[Ai21]. If g—i is even, 1<i<gq, then by Proposition 4.3(h),
[Ald=[A1A,-1=u,[A;_,]. If q is even, then by Proposition 4.3(d), [A}]1=[A34;-,]1=
w,y[As_,]. It follows that u,, v;, and w, multiplicatively generate H%D,,; Z/2Z),
completing the induction.

Thus if U, V, and W are abstract symbols of grades 1, 1, and 2, respectively, the
map of algebras (Z/2Z)[U, V, W]—H*(D,,; Z/2Z) which sends U, V, and W to u,, v,,
and w,, respectively, induces a surjective map of graded algebras (Z/2Z)[U, V, W]/
J=R—H*(D,,; Z|2Z) where J is the ideal generated by U2+ UV +(n/2)W. Abusing
notation, we write U, ¥, and W for their images in R under the canonical projection.
R is additively generated by the monomials UV'W9 and VW7, i, j>0. An easy counting
argument, similar to that used in the proof of Theorem 5.2, shows that for each g>0,
there are precisely g+1 such monomials of grade ¢. Since HYD,,; Z/2Z) is
(g + 1)-dimensional over Z/2Z, R is mapped isomorphically onto H*(D,,; Z/2Z),
completing the proof. O

If n is odd, it follows from (5.4) that we have the cohomology class v, =
[A11e H(D,,; Z|2Z).

THEOREM 5.6. Let n>3 be odd. Then H*(D,,; Z|2Z)=(Z/2Z)[v,].

ProOF. Let {(x) denote the subgroup of D,, generated by x. Since {x) has odd
order, it follows from the Lyndon-Hochschild-Serre spectral sequence of the extension

15¢x)> =D D Dy [<xD -1

(e.g. [1, Ch. VII] or [2, Ch. 7]) that p*: H¥D,,/{x); Z|]2Z)—H*(D,,; Z/2Z) is an
isomorphism. Since D,,/{x) is cyclic of order 2, it follows that H*(D,,; Z/2Z) is a
polynomial algebra over Z/2Z on a 1-dimensional class. By (5.4), HY(D,,; Z/2Z) is
generated by v,. The theorem now follows. |

We next describe H*(D,,; M) as a module over H*(D,,; Z) when M is a nontrivial
ZD,,-module whose underlying Z-module is free on one generator. x and y can only
act via multiplication by =+ 1. If n is odd, x can only act as the identity.

Let M, denote the ZD,,-module where M, is the free abelian group on one generator

o with D,,-action given by ax=a, ay=—a. From Proposition 4.1 we obtain, for
1<i<qg+1,
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(1441844 )ity if g even, iodd,

.7) 590y = nozqﬂ+(l-i—s,;,ls,”l)ocf:lil1 if g even, ieven,
! Ugr1—(1— &4 1844 1)0‘:1111 if g odd, iodd,

—(1 811804 1)L Y if g odd, ieven.

It follows from (5.7) that we have the cohomology classes o, =[a?]e H}(D,,; M,) and
Oy = [O(é] € HZ(DZn; Ma)'

THEOREM 5.8. Let n>2 be even. Then H*(D,,; M,) is the free H*(D,,; Z)-module
on a, and o,, modulo the H*(D,,; Z)-submodule generated by 2u,, na,, c30, +a,,, and
dyay +c30t,.

Proof. From (5.7), H(D,,; M,)=0, and for ¢>0, HY(D,,; M,) is as follows:

If g=1(mod4), then HYD,,; M,)=(Z/2Z)9*"/* with generators [aj'*?] for
0<i<(g—1)/4, and [(n/2)a* +ai*1] for 1 <i<(g—1)/4.

If =2 (mod 4), then HYD,,; M,)=(Z/nZ)®(Z/2Z)* ?'*.[«,] generates the Z/nZ
summand; the generators of the Z/2Z summands are [« *'] for 1<i<(¢—2)/4 and
[(n/2)ag'*®—ogi**] for 0<i<(q—6)/4.

If ¢g=3(mod4), then HYD,,; M,)=(Z/2Z)9*V'? with generators [aj] for
1<i<(q+1)/4, and [(n/2)o; ">+ 0"+ 3] for 0<i<(q—3)/4.

If g=0(mod4), then H¥D,,; M)=(Z/2Z)"* with generators [aj**] for
0<i<(q—4)/4, and [(n/2)oj' "' —az'*?] for 0<i<(q—4)/4.

We proceed to show that «, and a, generate H*(D,,; M,) as an H*(D,,; Z)-module.
Under the canonical identification Z® M,=M,, we identify 1®a with a. Using
Proposition 4.3 we obtain b,a, = — [(n/2)a3 + 3], a,a, = [«3], b, =[(n/2)xl —a3], and
a,0, = [«2] which shows that o, and a, generate H*(D,,; M,) as an H*(D,,; Z)-module
in grades <4. Let ¢>4 and suppose, inductively, «, and «, generate H*(D,,; M,) as
an H*(D,,; Z)-module in grades <q— 1. Using Proposition 4.3 we obtain the following:

If g=1 (mod 4), then

[eg]=du[ad 4],

[og' " *]1=a,[ast ;] for 1 <i<(g—1)/4, and

[(n/2)og +og  1=a,[(n/2og 2 + a5t for 1<i<(g—1)/4.
If g=2 (mod 4), then

[og]=dalog-4],

[ogi " ] =ay[af5"] for 1<i<(q—2)/4, and

[(7/2)ay" 3 —ag' " 1= a,[(n/2)ag 5! —a g ] for 0<i<(q—6)/4.
If g=3 (mod 4), then

[eg)=a,[ai’?] for 1<i<(q+1)/4,

[(n/2)a2 +ad)=d,[(n/2)a? 4+aq 4] +2na,[a?_,], and

[("/2)0‘4'+2+0¢4'+3] ayl(n/2)ag ; +ag5'] for 1<i<(q—3)/4.
If g=0 (mod 4), then
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[og 3 =a,[afih'] for 0<i<(g—4)/4,
[(n/2)ag —ad1=d[(n/2)ag_s—0]_4]—2nd,[03_,], and
[/t —agi* 2 =a,[(n/Qog' —agt ] for 1<i<(g—4)/4.
It follows that a; and a, generate H*(D,,; M,) as an H¥(D,,; Z)-module through grade
g, completing the induction.

The additive orders of a; and a, are implicit in the above. By Proposition 4.3,
ey +a, =202+ 130l ]=[—ad+a3]=0, and d,o,+csu,=[1la?+12ad]=[a?—
«2]=0, establishing the stated relations. '

Thus if F is the free graded H*(D,,; Z)-module on two generators 4, and 4, of
grades 1 and 2, respectively, the H*(D,,; Z)-module homomorphism F—H*(D,,; M,)
which sends 4; to a;, i=1,2, induces a surjection of H*(D,,; Z)-modules F/R—
H*(D,,; M,) where R is the submodule generated by 24,, nAd,, c;A,+a,A,, and
d,A,+c3A4,. We will be done if we show that for each ¢>0, the order of (F/R)? is at
most the order of HYD,,; M,). Abusing notation, we write 4; and 4, for their images
in F/R under the canonical projection. In view of the relations above and the structure
of H*(D,,; Z) as given by Theorem 5.2, F/R is additively generated by the (a,)(d,)’4,,
(@,)/(ds) A,, by(a,y)(ds)’A,, and b,(a,)(d,)’A, for i, j>0. An easy counting argument,
similar to that used in the proof of Theorem 5.2, shows that if ¢>0, then:

If ¢ is odd, precisely (g+1)/2 of the (a,)(d,)’4, and b,(a,)'(d,)’A, have grade g,
and all of these have additive order dividing 2.

If g is even, precisely g/2 of the (a,)'(d,)’A, and b,(a,)'(d,)’A, have grade ¢, and
that all of these have additive order dividing 2, with the possible exception of (d,)~ 2?4,
(when g=2 (mod 4)) which has additive order dividing n.

In all cases, it follows easily that the order of (F/R)? is at most the order of
H*(D,,; M,), completing the proof. O

THEOREM 5.9. Let n>3 be odd. Then H*(D,,; M,) is the free H¥(D,,; Z)-module
on oy and oy, modulo the H*(D,,; Z)-submodule generated by 2o, and na,.

Proor. It follows from (5.7) that for ¢>0, HYD,,; M,) is as follows:
0 if g=0 (mod 4);
Z/nZ with generator [o]] if g=2 (mod 4);
Z|2Z with generator [ad* '] if ¢ is odd.

From Proposition 4.3(d), a,[af*']=[130d*]=[ad}3] for ¢ odd, and d,[a)]=
[1iag]=[a)+4] if g=2 (mod 4). It follows by induction on ¢ that [ad*']=(a,)9™ %,
for g odd, and [«;]=(d,)“™ #’*a, for g=2 (mod 4). In view of the structure of H*(D,,; Z)
as given by Theorem 5.3, the result now follows. O

For the remainder of this section we assume n>2 is even.

Let M, denote the ZD,,-module where M is the free abelian group on one generator
p with D, -action given by fx=—f, fy=p. From Proposition 4.1 we obtain, for
1<i<qg+1,
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2ﬂ;+1_(1 _8i+18q+1)ﬂ51:11 . if geven, iodd,
(1+&4 18,4 DB if geven, ieven,
_(l_8i+18q+1)ﬁ51:11 if godd, iodd,
—2BLs +(1—&4 18,4 )BiEY if g odd, ieven.

(5.10) 0%Bg)=

It follows from (5.10) that we have the cohomology classes f, =[f1]1€ H'(D,,; My),
B2=[B3—B31€ H¥(Dy,; My), and B3 =[f3~p31€ H* (D3 My).

THEOREM 5.11. (a) Suppose n=0 (mod 4), n>4. Then H*(D,,; My) is the free
H*(D,,; Z)-module on B, B,, and B3, modulo the H¥*(D,,, Z)-submodule generated by
2B1, 2B2, 2B3, baB1+ayB1, baBy, baBs, c3Ba+ayBs, and duB, +c3fs.

(b) Suppose n=2 (mod 4), n>2. Then H¥(D,,; My) is the free H*(D,,; Z)-module
on B, and B,, modulo the H¥(D,,; Z)-submodule generated by 2p,, 28,, c3,+b,B,, and
azby By +(a2)* By +c3pBs.

Proor. From (5.10), H%(D,,; M;)=0, and for ¢>0, HYD,,; M}) is as follows:

If g=1(mod4), then HYD,,; My)=(Z/2Z)4*? with generators [f5 '] for
0<i<(g—1)/4, and [B+>—B3**] for 0<i<(q—5)/4.

If g=2(mod4), then HYD,,; My)=(Z/2Z)"* with generators [f;] for
1<i<(q—2)/4, and [B3*2—B+*3] for 0<i<(g—2)/4.

If g=3 (mod4), then HYD,,; M;)=(Z/2Z)4*"* with generators [B; **] for
0<i<(¢—3)/4, and [B5*'—B3*?] for 0<i<(q—3)/4

If g=0(mod4), then HYD,, M;=(Z2Z)"* with generators [B3'*?] for
0<i<(g—4)/4, and [B5 — B3 '] for 1<i<q/4.

We proceed to show that B;, B,, and B; generate H*(D,,; My as an
H*(D,,; Z)-module. Under the canonical identification Z® M= M, we identify 1®
with B. Using Proposition 4.3 we obtain a,f, =[f3], a,f,=[B4— B3], and c;8,=[B%]
which shows that B, B,, and B; generate H*(D,,; M;) as an H*(D,,; Z)-module in
grades <4. Let ¢>4 and suppose, inductively, f;, B,, and f; generate H*(D,,; My) as
an H*(D,,; Z)-module in grades <q— 1. Using Proposition 4.3 we obtain the following:

If g=1 (mod 4), then

[Ba1=dilB;-41,

[B3*11=a,[B33'] for 1<i<(q—1)/4, and

(B3 —Ba " 1=a,[ B35 — Bgiy] for 0<i<(q—5)/4.
If g=2 (mod 4), then

[B21=a,[B3527] for 1<i<(¢—2)/4,

[B2—B31=ds[2-4—p3-.], and

[Bei+2— B3] =a,[BEl , — B4%'] for 1<i<(g—2)/4.
If g=3 (mod 4), then

(B3 " 1=a,[B35'] for 0.<_1S(q 3)/4,

[ﬁq ﬁz] d4[ﬁq 4= 4] and

[Ba ' —=Ba 1= az[ﬂ“‘ '—Bgt,] for 1<i<(q—3)/4.
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If ¢=0 (mod 4), then
[B21=dalB3-41,
[B4**1=a,[B3L ;] for 1<i<(g—4)/4, and
(B4~ poi* 1= a,[BE 72 — B3] for 1<i<g/d.
It follows that B, B,, and B, generate H*(D,,; M) as an H*(D,,; Z)-module through
grade ¢, completing the induction.
It is implicit in the above that 28,=0 for i=1, 2, and 3. By Proposition 4.3,

— by =~ 138+ (/23614131
=] ~p3+ i+ S i

= (/2B — (n/2)BZ] = (n/2)B .
Thus,
0 if n=0 (mod 4),

By if n=2 (mod 4).

In particular, f; is superfluous as an H*(D,,; Z)-module generator if n=2 (mod 4). The
remaining relations are similarly checked using Proposition 4.3.

Let F be a free graded H*(D,,; Z)-module on generators B; of grade i,i=1, 2, 3
ifn=0(mod 4), i=1, 2if n=2 (mod 4). The map of H¥(D,,; Z)-modules F— H*(D,,; M)
which sends B; to f; induces a surjection of H*(D,,; Z)-modules F/R—H*(D,,; M)
where R is the H*(D,,; Z)-submodule of F generated as follows: by 2B,, 2B,, 2B,,
b,B,+a,B,, b,B,, b,B,, c3B,+a,B;, and d,B,+c;3B; if n=0 (mod 4); by 2B, 2B,,
¢3B,+b,B,, and a,b,B, +(a,)*B, +c;3B, if n=2 (mod 4). For positive g, (F/R)? is a
vector space over Z/2Z, and it remains only to check that its dimension does not exceed
the dimension of H%D,,; M) over Z/2Z. Abusing notation, write B; for its image in
F/R under the canonical projection for each i.

Suppose n=0 (mod 4). From the definition of R and the structure of H*(D,,; Z)
as given by Theorem 5.2, F/R is additively generated by the (a,)(d,)’B,, (a,)cs(d,)'B,,
(a5)(d,)'B,, and (a,){(dy)’Bs, i, j=0. An easy counting argument shows that if g is odd,
exactly (¢+1)/2 of the (a,)(d,)’B, and (a,)(d,)’B; have grade g; if ¢ is even, exact-
ly g/2 of the (a,)'c;(d,)’'B, and (a,)(d,)’B, have grade ¢. In each case, the number
of additive generators of (F/R)? is the dimension of H4D,,; My) over Z/2Z.

Suppose n=2 (mod 4). From the definition of R and the structure of H*(D,,; Z)
as given by Theorem 5.2, F/R is additively generated by the (a,)(d,)'B,, (a,)'b,(dy)’B,,
(a2)(ds)’B,, and (a,)'b,(d,)’B,, i, j=>0. An easy counting argument shows that if g is
odd, exactly (g+1)/2 of the (a,)(d,)’B; and (a,)'b,(d,)’B, have grade g; if q is even,
exactly g/2 of the (a,)(d,)’B, and (a,)'b,(d,)’B, have grade g. In each case, the num-
ber of additive generators of (F/R)? is the dimension of HYD,,; M) over Z/2Z,
completing the proof. O

aBy +b284 2{
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Let M, denote the ZD,,-module where M, is the free abelian group on one gener-
ator y with D, -action given by yx=yy= —y. From Proposition 4.1 we obtain, for 1 <
i<q+l1,

PATE (BT A if g even, iodd,
—(1 =& 1804 V504 if g even, ieven,
(T4 &4 1804 754 if godd, iodd,
—29he1—(1+&4 18,455 - if godd, ieven.

(5.12) 0Yyi)=

It follows from (5.12) that we have the cohomology classes y, =[y}+y3]e H'(D,,; M),
y2=[y31€ H(D,,; M,), and y3=[y31€ H¥(D,,; M,).

THEOREM 5.13. .(a) Suppose n=0 (mod 4), n>4. Then H¥(D,,; M,) is the free
H*(Dy,; Z)-module on y,, y,, and y3, modulo the H¥(D,,; Z)-submodule generated by 2y,,
275, 293, byY1, @272+ 0272, @273+ b,y3, €3y +asys, and duys +ciys.

(b) Suppose n=2 (mod 4), n>2. Then H*(D,,; M,) is the free H*(D,,; Z)-module
ony, andy,, modulo the H*(D,,; Z)-submodule generated by 2y, 2y,, ¢37, + a5y, +b3y,,
and a,b,y1 +c3y,.

ProoOF. From (5.12), H%(D,,; M,)=0, and for ¢>0, H%(D,,; M,) is as follows:

If g=1(mod4), then HYD,,; M,)=(Z/2Z)4* V> with generators [y;' *3] for
0<i<(g—>5)/4, and [yF** +y4*?] for 0<i<(q—1)/4.

If g=2(mod4), then H%D,,; M)=(Z/2Z)** with generators [y3'*?] for
0<i<(q—2)/4, and [y’ +y; '] for 1<i<(q—2)/4.

If g=3 (mod4), then HYD,,; M,)=(Z/2Z)* V> with generators [y;'*'] for
0<i<(g—3)/4, and [y5*3+y5*4] for 0<i<(q—3)/4.

If ¢=0 (mod 4), then H%D,,; M,)=(Z/2Z)"* with generators [y;'] for 1 <i<gq/4,
and [y§*2+y4*3] for 0<i<(9—4)/4.

We proceed to show that y,, y,, and y, generate H*(D,,; M) as an H*(D,,; Z)-
module. Under the canonical identification Z® M, = M,, we identify 1 ® y with y. Using
Proposition 4.3 we obtain a,y; =[y3+7%], ay,=[y%], and c3y,=[y2+73] which
shows that y,, y,, and y, generate H*(D,,; M,) as an H*(D,,; Z)-module in grades
<4. Let ¢>4 and suppose, inductively, y,, 7,, and y; generate H*(D,,; M,) as an
H*(D,,; Z)-module in grades <g—1. Using Proposition 4.3 we obtain the following:

If g=1 (mod 4), then :

[y *1=a,[y3h'] for 0<i<(q—5)/4,

s +7§]=d4[?;—4+7’3—4] , and

gt +ydi* 2] =a,[y st +y5i ] for 1<i<(q—1)/4.
If g=2 (mod 4), then ’

D’z] =d4[y3—4] >

[ya*#1=a,[ys-,] for 1<i<(q—2)/4, and

D +ys =a,lys 2 +v551] for 1<i<(g—2)/4.
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If g=3 (mod 4), then

[yil=dulvs-41,
[ys* 1=a,[y;5'] for 1<i<(¢—3)/4, and
[yd*34ydit 4 =a,[y s + 9342 for 0<i<(g—3)/4.
If g=0 (mod 4), then
[ry1=a,ly357] for 1<i<gq/4,
[y? +72] =d,[yi-4+7;-4], and
e 24y 1=a,lysi, +yeh'] for 1<i<(g—4)/4.
It follows that y,, y,, and y,; generate H*(D,,; M,) as an H*(D,,; Z)-module through
grade ¢, completing the induction.

It is implicit in the above that 2y,=0 for i=1, 2, and 3. By Proposition 4.3,

by =[5y 1 +(m/2n3yi+13y1+1591]
n—1
=|:(n/2)v%—(n/2)v§+ Y (—1)’+‘jv§+v§—v§]
ji=1

=[(/2)y3— (/23 + /2y 31=(/2)y5.
Thus,
0 if n=0 (mod 4),
b= .
y; if n=2 (mod 4).
In particular, y, is superfluous as an H*(D,,; Z)-module generator if n=2 (mod 4). The
remaining relations are similarly checked using Proposition 4.3.
The remainder of the proof is formally identical to that of Theorem 5.11 with the
B replaced by y;. O
Using Propositon 4.3, other cup products resulting from pairings among the
ZD,,-modules we have considered can be computed as needed. For example, if n>2

iseven, M, ® M can be identified with M, as a ZD,,-module where we identify a ® f=7.
Under the cup product pairing

H*(D3; M) ® H¥(D 5y My) —> H¥(D,,; M)

we have o, f, =7,, a8, =a,y,, etc.

6. Proofs of Lemmas 3.5-3.10. The proofs proceed by direct application of
Theorem 3.3 and the definition of U. It is useful to note the following consequence of
Theorem 3.3:

If i>0,1<a<i+1,and 0<b<n—1, then

ct. N, if ieven,a=1,and 1<b<n-—1,
(*%) Ti(c*x%) =1 cl,, if iodd, a=1,and b=n—1,

0 otherwise .
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PrOOF OF LEMMA 3.5. We have

UA44(q; k)yx)=" Y (—)y@OT (i 2y @ cdZi 2 R yx 4 e @ T (cd~*yx)
teven
r>0

_ +1).i+2-2r, +2 -
= Z (—1y@Deiid 'x®cql " Z(_l)r(q+1)32r02r+1®c yx+eo®ciitT

) q+1
ieven r>0
r>0

(the second summation arising from the i=2r terms)

— +1),i+1-2 +1—-i+2r—k -
=D (=@ Vet T X @cdTiTi it Y (= 1)k ® g yx g @it
iodg r=0
r=

(since &,,=(—1)*1), which yields part (a).
For t=2, 3, and 4, A,(q, k)yx has the form

-2r q—i+2r—k+4
Z arq : yx®cq-i w

ieven
r=0

where a, ,€ Z, we ZD,,, and ¢ is either 0 or 1. We have

Uq< Y a, i yx @cizit ks )___ Y 4, Tici™2yx) @ cazitrmk+dy

ieven ieven
r=0 r>0

— i+1-2r q- 1+2r k+o i—2r q+1—i+2r—k+é
= Y  a.ciiiTT®cs w= Y a7 ®c w

q+1—l
ieven iodd
r=0 r>0
i+1-2r=>3 i—2r>3

— i—2r q+1—i+2r—k+& _ 1 q—k+d
- Z arqcl ®C —i w Z ar,qCZr+1®cq—2r w.
iodd r=0
r=0

Parts (b), (c), and (d) now follow.
For t=35, 6 and 8, 4,(qg, k)yx has the form

Z aqu. x®cq i+2r— k+¢iw
iodd
r>0

where a, ,€ Z, we ZD,,, and ¢ is either 0 or 1. We have

=2r q—i+2r—k+d i—2r q—i+2r—k+é
Uq Z arqcl yx®cq—i ) Z aqu(c x)®cq—i w
iodd iodd
r=0 r>0

i+1—2 +2r—k+d,,__ -2 +1—z+2 k+o
= Z ar.qc;+1 r®cq ki w= Z arq 1 r®cq " w.
iodd ieven
r=0 r>0

Parts (e), (f), and (h) now follow.
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We have
U,(44(q, k)yx)= Y (1T ) ® cazit 2r—k
iodd
r>0

= z (— l)rqcz+2 2r®cq i+2r—k _ Z ( l)rqcz+1—2r® q+1—:+2r k

+1-i
iodd ieven
r=0 r>0
i+2-2r>3 i+1-2r>3

= 2 (=T @zt = Y (— 1y, @it
ieven

1_.

1
r>0

r=0

k
-2

re

Part (g) now follows. O

Proors OF LEMMAS 3.6 aND 3.8. It follows by inspection, using (*x), that the

A(fq, k) for 1 <1<8 and the B(q, k) for 1 <¢<6 are linear combinations over Z of terms
which are annihilated by U,. O

PrOOF OF LEMMA 3.7. From the definition of U and (*%),

q(Al(qa k)N)— Z Z ( l)r(q+1)U (c'+1_2'x1®cq i+2r— kx)
ieven j=0
r=0

n—1
Z Z( )r(q+1)T(cz+1—2r 1)®cq i+2r— kx1+ Z c},@Tq(cg_"x’)

ieven j= j=0
r>0
n—1
= 20 ZO( )r(q+1)T2r(Cer})®cq 2rx]_ ZO Z ( )r(q+1)c;r+1Nj®cz:‘£r‘xJ'
r20 j= r>0 j=
Since N,=0, part (a) follows.
For t=35, 6, and 8, A,(q, k)N has the form
n—1
Z Z arq: 2rx}®cq i+2r— k+¢§wx
iodd j=

r=20
where a, ,€ Z, we ZD,,, and ¢ is either 0 or 1. We have

. L ’
(Z Z a,,C : 2rxj®cq i+2r— k+6wxj) Z Z a,qT(c’ 2r ])®cq i+2r—k+d,, . j
iodd j=

:odd j=
r=0 >0

k+o,, j__ 1-k+6 -1
= Z Z aqu2r+l(CZr+1x )®Cq-1— wx/= Z arqc2r+2®cq 1-2, wx"
r>0 j=0 r>0

— 1 q—1—k+d n=1
- Z ar—l,qC2r®cq+l—2r wx .
r>0

The only non-zero contributions to these last summations come from the j=n—1 terms.
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Parts (b), (c), and (d) now follow.
It follows by inspection, using (%), that the A/(q, k)N for t=2, 3, 4, and 7 are
linear combinations over Z of terms which are annihilated by U,, yielding part ().

O
PrOOF OF LEMMA 3.9. For r=1 and 2, B/(g, k)y has the form

i+1-2r q- l+2r k—d
Z a, 4C; ®c w
ieven
r=0

where a, ,€ Z, we ZD,,, and 6=0 or 1. We have

UfBAg, Ky)= Y. @, Tici™ ™)@ ciTit 2 ™ 0wt a, ,c§ ® T(cd ™ °w)
Y30

i+2-—2r q—i+2r—k-4 1 q—k—a
Z a4 qCivy T ®ciT; w+dg .0 ® Tyfcd W)
ieven
r=0

— Z a, qcl+1 2r®c¢;11_:+2r k— ‘5w+a0,qc(1)® Tq(Cg—k—JW).
i
For t=1we have gy ,=1, w=y, =0 and T (ci~*y)=c2}17* For =2 we have g, ,=0.
Parts (a) and (b) now follow.
Noting that N;x /y=yxN;, we have

n—1
U Bs(g, )y)= Y, Y (= 1)+ D DT (ci=2ryxN) @ cd =i+ 2~k * 1y

ieven j=1
r=0

(r+1)gq+1) l+1—2r q— l+2" k+1
Y Z (=1 Cii1T¥N;@ciz x/

ieven
r>0
i+1-2r>3

n—1
1\ 1)@+ 1) 2 g+1-i+2r—k+1.j
de Zl( 1) (& Nj®cq+1—i X
io j=
r=0
i—2r=3

n—1
_ 1) g+ 1) i 2r g+1—i+2r—k+1_j
~.de 21( 1) ¢ Nj®cq+1—i X
iodd j=
r>0

-2 Z (=D DEF el L N;®clis  x
r=0 j=1

Part (c) now follows.
For t=4 and 5, B(q, k)y has the form



40 D. HANDEL

Z a, cz+1 2r ®Cq i+2r—k— 6
r.q

iodd
r=0

where a, ,€ Z, we ZD,,, and §=0 or 1. We have

(Z a’q :+1 2r ®cq—z+2r—k 8 ) z aqu(ct+l—2r )®cq—l+2r k— 6w

iodd iodd
r=0
_ i+2-2r q—:+2r k—d i+1-2r q+1-i+2r—k—29o
- Z arqc1+1 ®C w= Z a,q i ®cq+1—i w
iodd ieven
r>0 r>0
i+2-2r>3 i+1-2r>3

_ i+1-2r oy q+l—i+2r—k—6,, 1 q+1-k—3
= Z ar4Ci ®cgiizi w Z A g€ @ Cqiio W,
ieven r=0
r=0

Parts (d) and (e) now follow.
We have

n—1

U,(Be(g, k)y)= Z z (— l)(r+1)qT(Cl_2'Ny)®cq—l+2r—k+1x]y

Z z ( )(r+1)qT‘_( l—2rny—J+l)@cq—l+2r—k+1yx j

iodd

r>0
i—-2r>3

n—1 L
" .

+ 2 Z( )(r+l)qT2r+1(Czr+1ny j )® g _ayx

r>0 j=1

n—1
— Z Z ( 1)(r+1)qct+1—2rNx—J®cq—t+2r k+1yx

iodd ji=1

r>0
i+1-2r>4

K j 1 k j

+ 2 Z (—1)(r+1)q(c%r+2ij_]—82r+1c2r+2)®cg—1—Zryx J

r>0 j=1

n—1

Z Z ( 1)"+1)"c‘_2'Nx"®c“:[{:ﬁ”""“yx"’
ieven j=1 4
r=0
-2 (_1)('+1)q(_1)'cér+2®< Z cq- 1—2ryx_j>

r=0

=B(g+1,k)+ Zo( 1y@* Vel @ cdih o M(N=1).
r>

Part (f) now follows.
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ProOF oF LEMMA 3.10. For t=1 and 2, B,(q, k)x has the form

Z arq :+1 2rx®cq i+2r—k-— Jw
ieven
r>0

where a, ,€ Z, we ZD,,, and =0 or 1. We have

+1-2 +2r—k-d
( Z a, ct "xX®ciZ; i+2r- w)

ieven
r>0

=Y a4, T(c ) @ciZi* Pyt ay cd ® T(cd™*°w)
ICVC(;‘I
rz

= 5 4 T3 ® il Wt ao b ® Tyed™~*w)

r=0

Z arqc2r+1®cq 2r W+a0qC0®T(cq k= 6W)-
r=0

If =1, then w=x, g—k—3=¢g—k>1 and thus T,(c2™* °w)=0. If 1=2, then g, ,=0.
Parts (a) and (b) now follow.

We have
n—1
Uq(BG(q’k)x)= Z Z( )q(r+1)T(cl 2rNx)®cq i+2r— k+1x1+1
iodd j=1
r>0

n—1
= Z Z (_l)q(’+1)T2r+ 1(Cér+1ij)®CZ:li—2rxJH

r=0 j=1
= Z (— (r+1)clr+2®c ——1-—2r Z (—l)rq02r®cq+1—2r
r>0 r>0

(only the j=n—1 terms contribute to these last summations), proving part (c).
It follows by inspection, using (*#), that the By(g, k)x for t=3, 4, and 5 are linear
combinations over Z of terms which are annihilated by U, yielding part (d). a
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