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HARMONIC MAPS OF NONORIENTABLE SURFACES
TO FOUR-DIMENSIONAL MANIFOLDS
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(Received June 17, 1991, revised June 22, 1992)

Abstract. We construct explicit harmonic maps of the projective plane or a quotient
space of a hyperelliptic Riemann surface into the unit 4-sphere.

1. Introduction. Harmonic maps of nonorientable surfaces are not studied so
much (see, for example, [EeLl], [EeL3]). The existence problem of harmonic

representatives in homotopy classes of maps of nonorientable surfaces was studied in
[Eel 2]. Equivariant minimal immersions of the projective plane into Sn or Pn are
determined by Ejiri [Eg]. In the present paper, we will try to construct harmonic maps
from nonorientable surfaces into 4-dimensional Riemannian manifolds. We deal with

a nonorientable surface Jί which is a quotient of a Riemann surface M by the equivalent
relation z~ w if and only if w = /(z), where / is an anti-holomorphic involution of M
without fixed points. Especially, we will be concerned with the following nonorientable
surfaces. We first identify the unit 2-sphere S2 with Cu {00} and put M= Cu {oo}. The
map corresponding to the antipodal map is an involution of M given by I(z)= — 1/z.

The quotient space is the projective plane. Next, let Γ z_! be a hyperelliptic Riemann
surface given by

(1.1) ^.^{(z^eίCufoo})2; w 2 = Π (</,- z)(3, + z)} >
7=1

where d^dj for any iΦj and d^—dj for any z/y. Let 7(z,w): = ( — z, — vP) for
(z, w)eTl_1. Then it is an antiholomorphic involution without fixed points (see [11]).

Let Pl: = Tl^1/{I} be the quotient space of Tl_ί by the equivalence relation given by
/. Then Pl is a nonorientable surface of genus /. We may regard Pl as the projective
plane and P2 as the Klein bottle. Now we return to the general setting. Let M be a
Riemann surface with involution / and π : M-^Jί the natural projection of M to the
quotient space. A map h of M into a Riemannian manifold N is factored as h = A π,
where A is a map of Jt into N, if and only if h(I(p)) = h(p) for each p e M. Let g be a
Riemannian metric compatible with the conformal structure of M. We give a natural

Riemannian structure ^ on M such that π is locally isometric. Evidently the assign-

* Partly supported by the Grants-in-Aid for Scientific Research, the Ministry of Education, Science and

Culture, Japan.

1991 Mathematics Subject Classification. Primary 58E20.



2 T. ISHIHARA

ment h\-+A is a bijective correspondence between the set of conformal harmonic maps
h : M-*N with h 7= /z and the set of harmonic maps A\ JI-+N. Hence instead of study-
ing harmonic maps A\ Jt^>N, we investigate harmonic maps h\ M-+N with h I=h.
This method was introduced by Meeks in [M] to study minimal immersions of non-

orientable surfaces and developped in [Eg], [O], [II], [12].
Let TV be a 4-dimensional oriented Riemannian manifold and S its twistor space

with almost complex structures J1 and J2. In Section 2, we introduce a natural involution

7S of S which is anti-holomorphic with respect to J1 and J2. For harmonic maps
h : M-+7V, Eells and Salamon defined the twistor lifts h : M^S and gave the fundamental
correspondence between them. In Section 2, using their results, we will show the
following:

THEOREM I. The assignment h\— >Λ is a bijective correspondence between the set of
nonconstant conformal harmonic maps h : M-+N with h I=h and the set of nonvertical
J2-holomorphic curves h: M^S with ίϊ I=Is h.

Now, let N be the unit 4-sphere S4. Then its twistor space is the complex projective
3-space CP3 = (r[«i, a2, a3, α4]} (for details, see Section 2 and [AHS], [B], [EeS], [S]).
Bryant [B] proved that a conformal map h : M-+S4 is isotropic and harmonic if and
only if the twistor lift h : M->CP3 is holomorphic and horizontal. Moreover, he showed
that for given meromorphic functions / and g on M with g nonconstant,

(1-2) 9 ,
dg dg

is horizontal and holomorphic, and that any nonconstant horizontal holomorphic map
M-»CP3 arises in this manner for unique meromorphic functions / and g on M or else
is contained in a line in CP3. If we replace / in (1.2) by //2, we get the original formula

of Bryant. In the sequel, we will call / and g the Bryant meromorphic functions for h.
In Section 3, we will show:

THEOREM II. A conformal isotropic harmonic map h: M^S4 has the property
h I=h if and only if Bryant meromorphic functions f and g for h satisfy

(1-3) 2/0* -fo0* + l)-f- = 0 >

(1.4)

where we put /* = /•/ and g* = g I.

In Section 4, we will construct harmonic maps h of S2 into S4 with h I=h. In
fact we obtain:

THEOREM III. Suppose f and g are the Bryant meromorphic functions correspond-
ing to a harmonic map h: S2^S4 with h I=h and with f f* or g g* constant. Then
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h gives a harmonic map h of the projective plane into S4, if and only iff and g are of the
form

ή <;-«,>
(1.5) f ( z ) = Ak(z)m, g(z)

i = l

where both λ + p and m are odd, mφn, m/2«, (— l)nm(2n — m)>0 and

(1.6) \A\ =
n

Ίn — m
B\2=(-ιγ m

2n — m

When p = 0,J,= l, m = 3, n=\, A=-l and B = J 3 , the formula (1.5) yields
/= — z3 and g = ̂ / 3 , which are the Bryant meromorphic functions corresponding to the
Veronese surface in S4 (see [EeS, §9]). We cannot interpret the condition that /•/*
or g g* is constant. Neither can we determine the general Bryant meromorphic
functions which satisfy the relations (1.3) and (1.4). We are concerned with harmonic
maps of a non-orientable surface Pl into S4 in Section 5.

THEOREM IV. Suppose f and g are the Bryant meromorpic functions corresponding
to a harmonic map h: 7T

/_1^54 with h I=h and with f f*org g* constant. Then h
gives a harmonic map A of a nonorientable surface Pl into S4 if and only if there exists
a meromorphic function k on Tl_1 such that

(1.7) f = Akm, g

where m and n are integers, m is odd, (— l)nm(2n — m)>Q and either (1) k is given by

Π (z-«>
or β= -

and \A\ = \m/(2n -m)\,\B\2 = (- l)nm/(2n - m) or (2) k is given by

Π (z-a^D Π (z~cj)+ fl(z-bt)
Ί i = l \ j = l i = l

with

(-\)δ\D\2
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, Π (*-**)= Π
i = l i = l i = l i = l

and \A \2 = c~m(n/(2n — w))2, |5|2 = c~nra/(2« — ra), c w α negative real number.
Here α l 9 . . . , aμ, bl9 . . . , bδ, c1? . . . , CΛ, e l 9 . . . , el are complex numbers and dί9 . . . , dl

are as in the definition of Pl as the quotient of Tl _ x .

ACKNOWLEDGMENT. The author would like to thank the referee for correcting
many mistakes in the previous version of this paper and providing valuable comments.

2. An involution of a twistor space. Let M be a Riemann surface with an anti-
holomorphic involution / without fixed points. Let TV be a 4-dimensional oriented
Riemannian manifold with a Riemannian metric g. Let π: SO(N)-+N be the SO(4)-
principal bundle of oriented orthonormal frames over N, that is,

= {(x, e = (el9 e2, e3, ej), xeN} .

Let π2 : S^N be the orthogonal twistor bundle over N, where

S= {(x, J)9 xeN, J is an orientation compatible almost complex structure

of TXN with g(JX, JY) = g(X, Y), X, Ye TXN} .

We also consider the projection

π, : SO(N)-+S , (x, e = (el9 e2, e3, e4))^(x, Je) ,

where J^e^) = e2 and Je(e$) = e4. Let Θ = (ΘΛ) be the /?4-valued canonical form on SO(N).
We have the structure equation,

(2.1) dΘ*=-ΣΩΛ

βΛΘe,

where Ω = (Ω°β) is the Levi-Civita connection form on SO(N).
Now we define an involution of S by

isί(χ, nr =(χ,7),
where for /(e1)-e2, J(e3) = e^9 Jis defined by J(eί)= —e2, J(e3)= -e4. The map Ts of
SO(N) into itself given by

, e = (el9 e2, e3, e4))) = (x, e = (el9 -e2, e3, -

is also an involution satisfying πx 7s = /s π1. By definition, we get

(2.2) J(β1) = β1,

From (2.1) and (2.2) it follows that
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Put E! = 1 and ε2 = — 1. Let e = (el9 e2> ^3> e4) be a local oriented orthonormal frame.
For each j (j=\ or 2), we obtain the almost complex structure Jj on S by assuming that
the 1 -forms on S which are pulled backs of

θl+iθ2, θ* + iθ4, — (flJ-flJ + e^Oi + Qi))

following by a local section of πx : SO(N)^S give a local coframe of (l,0)-forms on S
(see, [Y]). Using πx 7s = /s π1? we obtain the following by (2.2) and (2.3):

PROPOSITION 2.1. The involution Is of S is anti-holomorphic with respect to J± and

to J2.

Let h : M^N be a conformal harmonic map. Then h has at most isolated singular
points. Hence we can find a Riemannian metric ds2

M on M such that h*(ds%) = ds2

u except

at the singular points. Let e = (eί9 e2, e$, e4) be a Darboux frame along Λ, that is, a
local oriented orthonormal frame in N such that (eί h,e2 h) is a local oriented
orthonormal frame in (M, ds2^) and e3 h,e4 h are normal to M. Hence we have

(2.4) h*e*Θ3 = 0 , h*e*Θ4 = 0 .

We assume that the Darboux frame e is compatible with the almost complex
structure. There is a local 1-form φ such that

ds2

M = φφ and φ = h*e*θ1 + ih*e*Θ2

except at the singular points. The conformality of h implies that φ is a local (l,0)-form
on M.

The twistor lift of h is a map h: M-+S given by

where e = (eί9 e2, e^ e4) is a Darboux frame along h.
Now we assume that the map / satisfies h I=h. Since we have h*(ds%) = ds2

M

at nonsingular points, the involution / is an isometry of (M, ds^) into itself and

I*(θl + iθ2) = θί- ίθ2 holds. Hence we have

) = πl(x, (el9 -e2, e^ -e4)) =

Conversely, the relation hΊ=Is h evidently implies h I=f. By the fundamental
theorem of Eells and Salamon [EeS], we obtain Theorem I.

It is also shown in [EeS] that a conformal map h : M^N is isotropic if and only

if h is /! holomorphic.
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3. Harmonic maps into S4. In the sequel, we assume that N is the unit 4-sphere

S4. The correspondence (x, (eί9 e2, e3, £4))ι—>(jc, e^ e2, β3, e4) determines an isomor-

phism SO(N)^SO(5). The unit sphere S4 is isomorphic to the quaternionic projective

space HP1. We have the following commutative diagram

SP(2) —^ CP3 —τ-> HP1

π, , π

Φ* Φ

r<-2

S0(5) - » S - > S4,
nί π2

where Φ* is a double covering of Sp(2) to SO(5), Φ, Φ^ are diffeomorphisms and the

natural complex structure of CP3 corresponds to the almost complex structure J1 of
the twistor space S. For more details see, for example, [AHS], [EeS], [S].

We identify H2 with C4 by the correspondence (z1 +jz2, z3+jz4)\-^(zί9 z2, z3, z4).
For a matrix

c d

with a = al+ja2 and c = cί+jc2, the projection n\ in the above diagram maps A to

'[>!> α2?

 cι?

 C2\ ε CP3> where r[αl9 α2, c l 9 c2] is the complex line containing *(al9 a2, c1?

c2). We also have π/

2π
/

1(v4) = ί[«, ^eflP1.
Put t/: = C4^H2. Then £7 has a unitary base of the form {w1, u2 = ulj, w3, M4 = w37}.

Set

0° = W 1 Λ M2 + M3 Λ M4 , I?1 = M1 Λ M2 — M3 Λ M4 , f2 = t/1 Λ W3 + M2 Λ U4 ,

U3 = /(W1 Λ M3 — M2 Λ M4) , i;4 = M1 Λ M4 — M2 Λ W 3 , f5 = /(l/1 Λ M4 + M2 Λ M3) .

Then one checks directly that {y0, t;1, i;2, t;3, u4, i;5} is a unitary base of /\2U and t;0 is

invariant under Sp(2). Let ^o^ be the subspace spanned by {t;1, t;2, t;3, v4, v5}. For
), put

(3.1) Λ ι / = Σ ^ A > 7=1,. . . , 5.
7=1

Then (Atj) e 5Ό(5), and the homomorphism Φ * : S/7(2)^5Ό(5) is given by Φ*(^) = (Atj).

Since ΦJ|c(π2π
/

1(^4)) = (^4υ )e5'4, we have

(3.2) Φ*C[«» ]̂) = '(Λ!, *2, x3, x4, x5) ,

where \a\2 + \c\2=\,c = c1—jc2 and ac = (ac

Since we have (a^ja29 C1+jc2)j=( — ά2+jά1, —c2+jc1)9 we define an involution

/' of CP3 by
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(3.3) Γ(tLaί,a2,c1,c2]): = [-a2,ά1, -c2, cj .

Then it corresponds to the involution 7S of S. In fact we can show:

LEMMA 3.1. The involution Γ is antί-holomorphίc with respect to the natural com-
plex structure and satisfies ISΦ = ΦΓ.

PROOF. The anti-holomorphy of Γ is evident by the definition of /'. Since /'(w1) =
u2, Γ(u2)=-ui,Γ(u3) = u4,Γ(u*)=-u4, we get Γ(υί) = v1

9Γ(v2) = v2

9Γ(v3)=-v3

9

Γ(v4) = v4, 7'(ι?5) = - v5. This implies the equality ISΦ = ΦΓ. q.e.d.

The horizontal distribution H on CP3 is defined to be the othogonal complement
to the fiber of π'2 CP^-^HP1 with respect to the Fubini-Study metric. A map K: M->CP3

is said to be horizontal if it is tangent to H. A horizontal map K is .T^-holomorphic if
and only if /2-holomorphic. Hence a conformal map h: M->S4 is isotropic and har-
monic if and only if the twistor lift h : M-+CP3 is holomorphic and horizontal (cf. [B]).
Using Bryant's formula (1.2) and Lemma 3.1 we see that / and g are the Bryant
meromorphic functions corresponding to a harmonic map h with h I=hif and only if

/ and g satisfy

(3.4) w ,
dg dg* dg

From the second equation, we get

.
dg*

Thus the conditions (3.4) are equivalent to (1.3) and (1.4), and we get Theorem II.

4. Harmonic maps of S2 into S4. In this section, we will consider maps of S2

to S4. We identify S2 with Cu {00} and consider its involution / as given in Section 1.
Let h: S2->S4 be a full conformal isotropic harmonic map with h I=h. We look for
the Bryant meromrphic functions/, g under the condition gg* constant. From (1.4), it
follows that this conditon holds if and only if ff* is also constant, and in this case, we

can put

Π (z-β.) Π (*-*,)
(4.1) f(z)

Π (*

where α;^0, bj^O. It may happen that at = a} for iφj. Then ff* = (-\Y+ll\A \2 and
gg* = (-\y-l v\B\2. Since 4jf* + (l +gg*)2 = 0, we see that <x + μ is odd and



T. ISHIHARA

(4.2) 4\A\2 = (l+(-l)β + v\B\

Since we have g* = (-\)β + v \ B \ 2 / g , by (1.3) we get

9

9 f

where g' = dg/dz, f = df/dz. Hence we obtain, for some constant C

Substituting (4.1) into the above equation and comparing functions logz,

log(z-αj), log(tfyz+l), log(z-£k) and log^z+l) of both sides of the equation,

we find that there exists a meromorphic function

]$.<,-«>
k(z) = z

on Csuch that/=^A:(z)m, g = Bk(z)\ where (2n-m)(-l)n(λ+p)\B\2=m. Since
m(λ + ρ) is odd, both m and λ + p are odd. Thus, ΊnΦm and \B\2 = (-l)nm/(2n-m).
From (4.2), it follows | A \2 = (n/(2n — m))2. Since ff* is constant, kk* is constant. Hence

we may assume ej = Cj.
Now, we get the corresponding holomorphic map Λ(/, g) of Cu {00} to S4 for the

Bryant meromorphic functions given by (1.5) as follows:

(4.3) £(/,#) = '

7=1

If m = «, this is not full. Thus we obtain Theorem III.
Notice that the holomorphic curves given by (4.3) is contained in the quadric

mX1X2-(2n-m)X3X4 = Q in CP3 '̂̂ , X2, X3, XJ}. Using (3.2), we obtain the
corresponding conformal isotropic harmonic maps.

THEOREM 4.1. Let h: S2^S4 be given by h(z) = (xl9 x2, x3, x4, x5)

j
XΛ =~

(2n-m)2t

2nm((-\}n\k\2n-\)ABkm-



HARMONIC MAPS

XΛ + IX 5 =

(2n-m)t

ί=1

~ (2n-m)2 '

where λ + p and mare odd, m^2n,m^n, (-l)nm(2n-m)>0, |Λ | = |«/(2«-ra)|, |£|2 =
(—l)nm/(2n — m). Then h is a conformal isotropic harmonic map with h I=h. Hence h

gives a harmonic map of P2 to S4.

Unfortunately, in the present paper we cannot determine the general forms of Bryant

meromorphic functions on S2. There seem to exist a lot of Bryant meromorphic functions

with gg* nonconstant. We here give only some examples. Put

,
(z-c)2' (z-c)

where

Then if one of the following conditions (4.4) and (4.5) is satisfied, /and g are the Bryant

meromorphic functions with gg* nonconstant.

(4.4)

(4.5)

x2= -\A\xJ2, x3=±5\A\x1/2.

5. Harmonic maps of nonorientable surfaces of genus / into S4. Let Γ^ be a
hyperelliptic Riemann surface with an involution / as given in Section 1. Let / and g

be the Bryant meromorphic functions given by

, i
f= — - — , g=-

-'M *^2

where Pi9 gp Rt are polynomial functions of a variable z and have no common factor
for each ι= 1 or 2 (see, for example, [SP, Chapter 10]). Moreover, we can set for ι= 1,2

Ai

j=ί
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We investigate which /and g satisfy the equations (1.3) and (1.4). It is very difficult to
determine such / and g in general. Hence we impose the same condition as in Section
4, that is, ff* and gg* are constant. In this section, for a polynomial function P(z) of
a variable z, we put P*(z) = P( — z). Put

(5.1) ff*=cl9 gg* = c2,

where ct and c2 are constants. These imply PfQ—PtQf, i= 1, 2 and

(5.2) PiPf-Q&fw^cΛRf , /= 1, 2 .

Now, from (1.3) and (5.1), we get 2c2dg/g = ( \ + c 2 ) d f / f . Hence we obtain

(5.3, 2cllo

This implies that Q1 =0 if and only if Q2 = 0.

LEMMA 5.1. Iff and g satisfy (5.1), cί and c2 are real. Moreover, Q^ and Q2 do
not vanish.

PROOF. Relacing z by — z and taking the complex conjugates of both sides, from
the equation (5.2), we get

Hence cί and c2 are real.
If Q1 vanishes, we have

Π (z-eij

Hence, we get μ^λ^H^^z-a^H^^z + e^ and H^^z-e^^H^
Thus, we have cl = \Aί\

2. Since c2 is real, this contradicts (1.4). q.e.d.

From (5.3), it follows that P± =0 if and only if P2 = Q. The equation (5.3) implies
that the irreducible factors of the polynomial P± + Q^ω (resp. R^) of variables z and ω
(resp. a variable z) coincide with those of the polynomial P2 + Q2ω (resp. R2). Hence,
there exists a meromorphic function

,_P+Q\v
κ> —

R

such that
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were P = DYl*=1(z — aj), β = ΠJ=ι(z~*/) and ^ = Π;=ι (z~*v) have no common
factor, and the integers m and n satisfy

(5.4) 2c2n = (\+c2)m.

From (5.1), it follows that kk* is also constant. Hence we have

(5.5) Cl = \A\2cm, c2 = \B\2cn, c = kk*

and

(5.6) P*Q = PQ*, PP*-QQ*w2 = cRR* .

If Q = 0, then Qί = Q2 = 0. Hence we have Q φ 0. Since cί < 0, we see that c < 0 and that

m is odd. Hence P=0 if and only if P1 = 0 and P2 = 0.
We first assume P = 0. Then, from (5.6), we get

Hence, we have l = v + / and c= — 1. We may put ej=—bj (1^/^v), and

(v+ 1 ̂ j^λ) or ^7 = — 5y-v (v+ 1 ̂ j-^λ). Thus we can set

Using (5.4), (5.5) and 4^ + ίl +c2)
2 = 0, we obtain |5|2 = (- l)nm/(2n-m) and

2π-/w)|.
Next, we assume that P^O. From (5.6), it follows that

(5.7) (-l)V) Π (z-βj) l (z-5 ,) = (-l)^ Π (z + 5̂  l (z-bj) .
J = l J = l j=ί j=l

(5.8) (-l
J = l 7=1 j=l

From (5.7), it follows that D is real if μ + v is even and pure imaginary otherwise.
Moreover, we can set

P=£»Π(z-α(), β= ft (z-fl,)ft(*-*ί), R= fl
i = /ίι + l .7=1 i = μι +

where μ = μ1-\-μ29 v = v1 +μ2 and A = A1+μ2. Thus (5.8) gives

(-\r\D\2 l (z-β j)
2-(-l)V ll (r-ft,)2 = (-l)λ lc l (z-

7=1 7=1 j = ι
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From (5.4) and (5.5), we get | B\2 = C-
nm/(2n-m) and | A \2 = c-m(n/(2n-m))2. Summing

up we obtain Theorem IV.
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