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Abstract. We prove concentration compactness of a space of nonlinear p-haτ-
monic functions.

In this note we are concerned with nonlinear p-harmonic functions, i.e. solutions
of a degenerate nonlinear elliptic equation

(1) div(||Vw||p-2Vw) + C0 |wr"2w = 0 (2<p<n)

on a domain Ω of Rn, where q: = np/(n—p). The equation of the above type is the
Euler-Lagrange equation of the /?-energy functional

«)=-f IIW ——f |H|*.
PJΩ q JΩ

Then u is called a weak solution of the equation (1) (on Ω) if the following two
conditions hold:

(1) ue Llp(Ω\ i.e., M, VW e LP{Ω). (Then the Sobolev inequality implies u e Lq(Ω).)
(2) The function u satisfies

"I \u\q~2uφ = (
Ω

for any φeC£(Ω), where C£(Ω) denotes the space of all C°°-functions with compact
support on Ω.

The equation (1) for p = 2

2*: = -
n-2

is of Yamabe type, and has been studied from various viewpoints. (See Lee-Parker
[4], Bahri [1], Struwe [10], etc. and their references.) Lions [6], [7], Takakuwa [11]
showed a concentration phenomenon of the L2*-norm in a sequence of solutions (or
an approximating sequence) of this equation. In this note we give the following
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generalization of their results to the case of general p (2<p<n).

THEOREM 1. Let Uj (j= I, 2,...) be weak solutions of the equation (1). Assume that

where C is a constant independent of j . Then there exist

(i) a subsequence of {uj} (we use the same notation {UJ} below for this sub-

sequence),

(ii) a set £f of points xί,...,xkofΩ,

and

(iii) positive numbers au ...,ak

satisfying the following two conditions:

(1) Uj is continuous on Ω, and {UJ} converges to a function w uniformly on any

compact set of Ω — £f, where w is a weak solution of (1) on Ω. Furthermore for any

compact set K in Ω — 9>, there exists α > 0 such that Uj has a uniformly bounded

Cίt(t-norm on K.

(2) The measure \Uj\qdx converges weakly to \w\qdx-\-YJ

k

i=ίaiδx. as j^>co, where

dx denotes the volume element on Ω, and δx. denotes the Dirac mass supported at xt.

The exponent q is critical; q is the critical exponent of the Sobolev embedding

L lp->ZA In the case of subcritical exponents, we have £f = 0. (See Theorem 2 in §3.)

The example in § 1 shows that Theorem 1 is optimal. This is a typical example, which

gives a motivation for our theorem. The C1'"-estimate is optimal for/?>2, since the

equation (1) is degenerate elliptic, (cf. UraΓceva [14], Uhlenbeck [13], Evans [2],

Lewis [5] etc.) In case p = 2, the C00-estimate follows from the C1'"-estimate by the

bootstrap argument in the theory of elliptic equations; hence the above subsequence

{UJ} converges in the C^-topology on Ω — ¥.

Our method is different from Lions' theory [6], [7] of concentration compactness.

The property (2) in Theorem 1 can be proved also by the method of Lions using a

concentration function, except that £f consists of only a finite number of points. Our

proof is along Schoen's argument [9] for harmonic maps. (See also Takakuwa [11],

Pacard [8].) We use a mean-value estimate (cf. Proposition) and a simple standard

argument. In our proof of the mean-value estimate, we use Moser's iteration

technique. This estimate says that if the ZΛnorm is sufficiently small around a point,

we obtain a local C°-estimate, hence a local C1'"-estimate which follows from

regularity arguments for /^-harmonic functions, div(||Vw||p~2V«) = 0. The assumption

of the boundedness of the ZΛnorm implies that such an estimate holds except at a finite

number of points of Ω.
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1. An example. As mentioned in the introduction, we describe a typical ex-

ample. Consider a radially symmetric function

)(n-p)/p

on Ω=R", where

Co \p-l

Then uλ satisfies the equation

div(||V«A||*-2ViiJ + Co

We see that

which is a finite constant independent of λ, where ω w _ x denotes the volume of the

(n— l)-dimensional unit sphere.

The sequence of the measures | uλ \qdx converges to the Dirac measure supported at

the origin as λ tends decreasingly to 0. These solutions look like solitons with one peak,

and as λ tends to 0, the slope becomes steeper and the ZΛenergy density is attracted

to the origin.

2. Proof of Theorem 1. As mentioned in the introduction, the following

estimate plays a key role in our proof.

PROPOSITION (a mean-value estimate). There exist positive numbers ε* and C*,

depending only on n, p, Co and Ω, satisfying the following property:

Let u be any weak solution of the equation (1) on Ω. Let xeΩ and let 0 < p <

min{d(x, dΩ), 1}, where d(x, dΩ) denotes the distance between x and dΩ. If

ί |u| <β ,
Bp(x)

then

C*
sup \u\q<-

Bp/2(x)

We collect here basic notation. Let CΩ denote the Sobolev constant:

ί I
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for any φGLlfP(Ω). All positive constants Cl9 C2, C 3 , . . . depend only on n, p, Co and

Cβ. Let Bp(x) denote the open ball of radius p centered at x. Let 0 < p 1 < p 2 < p .

Let η e C°°(Ω) be a cutoff function such that

η=l on Bpι(x),

ι je[0,l] on £,,(*)-Λ p i (*),

ι/ = 0 on O - £ p 2 ( x ) ,

and that | |V^| |2<C1/(p2 — Pi)2. The equation (1) implies the following inequality,

which will be used in each iteration step later.

LEMMA 1. There exist positive constants C2 and C 3 satisfying

(3) (l - - ) \ ί (I u γηA^K Cl

 Λp f I u Γ + C^' ι [ \ u |P + M V ,
V J/Uo J (P2-PI)PJBP2(X) JΩ

for any s (>1).

PROOF. The equation (1) implies that

f P*-p p d i P-2 Γ

J Ω JΩ
(4) I I w|ps-pM^div(||Vw||p-2Vw) + C 0 | |u\ p s ~ p + q η p = 0 .

We assume, for simplicity, that | u \ps puηp is a legitimate test function in the definition

of the weak solution of (1). In the general situation, we can use a standard approxima-

tion argument. See Gilbarg-Trudinger [3, pp. 189-190]. Note that 1 <ps— p+ 1 <ps.

We see

(5) \u\ps-puηpά\N(\\V\\p-2Vu)
JΩ

= -\ \\Vu\\p-2VwV(\u\ps-puηp)
JΩ

PS-P +

sp

Applying Young's inequality

1) I l|Vw|Hw|ps~V-/>| ||Vwp-2|M
JΩ JΩ

- ί llv|W|sιιv+-^
JΩ S

— \\B\\P

P P

for ^ = | |V|w| sp-V"1V|w|7(/?-l) ( p"1 ) / p, B = {p-\){p~1)lP\u\sVη, we obtain
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I |IIVMT~V~>I S V| W | S V*7|<—I ||V|wΠ|V
Jβ PJΩ

>), we

[\u\
JΩ

Hence by (5), we have

(6) I \u\ps-puηpdiv(\\Vu\\p-2Vu)

ί n v N n i v + ( / 7 ~ 1 _ ) i P * ί i w π
j« s jβsp

Note the inequality ||Λ + 5| |p<2p-1(IMIIp+ \\B\\'), i.e., -\\AV^-2~('-X)

\\B\\P. Using this inequality for A=ηV\u\s, B=\u\sVη, we have

(7) - I | | V | W | W < ^ r ί \m\u\sη)V+ ί \u\ps\\Wη\\p .
Jβ 2 Jβ Jβ

Then by (2), (6), (7), we have

(8) I \u\ps-puηpdiv(\\Vu\\p-2Vu)
Jβ

2p~1CΩsp

°-\P2-pιy)B,,Jur'β P 2 (x)

since 0 < p 2 ~ P i < l Lemma 1 follows from (4), (8), since ps—p + q=ps+pq/n. •

We prove the Proposition. Define

Suppose J B ( x ) |« |*<ε*. Under this assumption, we prove the following lemma and

Lemma 3.

LEMMA 2.

ίί M
U.,.,..,,,,M

0 < σ 1 < σ 2 < p .

PROOF. Let 5 = q/p (> 1). Let px = (σx + σ2)/2 and ρ2 = σ2. By Holder's inequality,

we have
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f I U r + """>η"< { f I u Λ""\ f (I U | 'V) 4 / P

JΩ UBOJX) J U Ω

since 1 — 1/^=1 —plq=p/n. Then (3) implies

C8 f

σ2^

Since qs = q2/p and ps = q, we have Lemma 2. •

LEMMA 3.

(C sn)1/ps

Φ(qs, σx)£- Φ(ps, σ2) (0<σ1<σ2<p)

for any s (>q), where

BP(X)

PROOF. Let y = n/(n—p) = q/p and define a = ny/p = nq/p2, b = y2, c = n/p. Note

+l/Z?+l/c=l and γ/b+l/c=l. Let ρί = σί and p 2 = ( σ i + σ 2 ) / 2 τ h e n

I w | I « + M / » ^ = i u |M/»(| w |̂ p)v/fc(| M |py)i/c

< j f \u r A l l Λ \ ί (i u \pγγVlb\ f i u ι*γ}1/e

U B ( < τ l + σ 2 ) / 2 ( χ ) J U Ω J U Ω J
cr -)P2inqcr V / bίΓ V/c

= ] \u\**\ \\ (\u\sηγ\ \u\*Y\
U s ( < τ i + β2)/2(jc) J U Ω J U Ω J

{ J } (byUmna2)

since AB<εAγ + Bc/εn/q. H e n c e (3) implies

C, CΛ
1 / l \ f f lp/q

τ(-τ){M
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since np/q +p—\=n—\. Therefore

Since 1/0- l)n/p< \/(q- l)n/p, we have Lemma 3. D

Let rU): = qγj=pγj+ί (y = q/p>\), pU): = (1 + l/2j)p/2 0 = 0, 1,2, . . . )- Then Lemma

3 implies

Hence by iterating the above inequality, we have

Letting j -+ oo, we have the Proposition.

PROOF OF THEOREM 1. Let ^ , Sf denote the subsets of Ω defined by

ί
J Bp(χ)

Bp(x)

where ε* denotes the constant in the Proposition.

We show that the cardinality # ( ^ ) of 9* is bounded by such a constant as C17/ε

Take any finite subset {xί9..., xk} of <̂ \ Let
1 7/ε*

p: = min{i/(xi9 jtj), */(.*,•, δΩ); zVy, \<i,j<i

where rf(,) denotes the standard distance in Rn. Take a sufficiently large y such that

ε*

JBP(X) 4

Since the open balls Bp(Xj) (j= 1, . . . , k) are mutually disjoint, we see that

1
^ \ , i.e., k<

** J=lJBp(xj) JΩ

Hence
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Note that 9^<z.Ίf and that ^ , Ί? depend on the choice of the sequence {u3)f=1.

We show that there exists a subsequence satisfying 9_ = £f. Suppose 9_φ9\ Take any

xoe9—^. Then we can find a subsequence such that liminf,^ JB (xJ Uj\q>ε*/2.

The number S(^) for this new sequence is greater than that for the old one, since x0

belongs to the new <9̂ , but not to the old one. We can iterate this step inductively

and the number If (.SO increases as long a s ^ # ^ . Since # ( ^ ) is bounded from above

by the constant C19/ε*, we have, after a finite number of steps, a subsequence such

that y = y.

We prove the property (1) in Theorem 1. Let {uj}JLί be a subsequence such that

6^ = ̂  ( = : ^ ) . Take any xeΩ-Sf. Then it follows from the definition of 9> that for

some p > 0,

I \uj\q<ε*.
JBp(x)

Applying the Proposition, we have

C* Γ . ε*C*
sup \uj\q<-

BP/2(X)

C* f

P JBP(X)

Hence we see that Uj is uniformly bounded on Bp/2(x). Then by arguments similar to

those in the proof of the regularity for /?-harmonic functions (see Evans [2]), there

exists α>0 such that the C1'α-norms are locally bounded above by a constant

independent of/ Note that the term Co\ u \q~2u in (1) is locally bounded there. Then a

subsequence of {w,} converges uniformly to a continuous function on Bp/2(x) asy'->oo.

Hence for any compact set K in Q — Zf, there exists a subsequence of u} uniformly

convergent on K. We take an exhaustion of Ω — 9* by compact sets. By Cantor's

diagonal argument, we can find a subsequence (also denoted by {UJ}) converging in

the C°-topology to a continuous function i v o n Ω - ^ . W e can verify that w is a weak

solution of (1) on Ω — ̂ , since a subsequence of {UJ} converges to w in L^ξ{Ω — 9).

Furthermore w is a weak solution on Ω. Indeed, for Sf = {xί9 , xk}, we take a cutoff

function ηmeCco(Rn) for sufficiently large m such that

ηm(x) = 0 if \\x-Xj\\<l/m9

^ W e [ 0 , 1] if l/m<\\x-xj\\<2/m,

ηm(x)=l if \\x-Xj\\>2/m,

for y = 1, , k, and that ||V^m|| <2m. Since w is a weak solution on Ω — 9, we have

- ί
JΩ

i.e.
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(9) - I ||Vw||*~2/,mVw Vφ + Co | \wΓ2wφηm- |
JΩ JΩ JΩ

for any φeC^(Ω). By Lebesgue's convergence theorem, we have

(10)

(Π)

We see

I HVwIÎ -^Vw V φ ^ ^ | ||
JΩ JΩ

\ \w\"-2wφηm-^^ \ \
JΩ JΩ

ί \\Vw\\p-2φVwVηm <2m\ \\Vu\r1 <2mU HVwIÎ Γ

where Am: = {xeΩ; l/m< \\x—xo\\ <2/m}, and Yol(Am) denotes the volume of the

annular domain Am. Since Vol(^4m) < C20/fnm, we have

(12) ί \\Vw\Γ2φVwVηm^^O.
JΩ

By (9)-(12), we obtain

- ||Vw||p"2Vw Vφ + C 0 \w\q~2wφ =
JΩ JΩ

for any φeC^(Ω), i.e., w is weak solution on Ω.

We show the property (2) in Theorem 1. Our assumption says that the sequence

of measures {| uj\
qdx]f=ι has a uniformly finite total mass; hence so does the sequence

of signed measures {(\uj\
q — \w\q)dx}JLί. Then we can find a subsequence of signed

measures converging weakly to a signed measure μ, whose support is contained in

£f. Since 9* is a finite set of points xl9 ...,xk, the signed measure μ is written as

μ = Σk

j=1 afiXj (cijER). Take any Xj. For any p > 0 , we see that

72<liminf| \uj\q<aj+ \ \
j^°° JBP(XJ) JBP(XJ)

w

Letting p tend to zero, we have α J >ε*/2>0. This is the property (2). •

REMARK 1. For each y e £f, an appropriate scale-change leads us to showing that

a renormalized function

(Pj-+0, y^y as j^co)

converges to a weak solution of (1) on Rn.

REMARK 2. Theorem 1 (and Theorem 2 below) holds also for solutions of more
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general equations such as

where / satisfies

\f{x9u)\<>C\u\*-1 .

REMARK 3. We can extend our theorems to results on any Riemannian manifold

M, on which the Sobolev constant CM of Lίp^>Lq is positive and finite.

3. Subcritίcal case. In the subcritical case, an argument similar to that in §2

leads us to the following:

THEOREM 2. Let Uj ( j = 1, 2, . . . ) be a weak solutions of the equation (1). Assume

that there exists ε > 0 such that

where C is a constant independent of j . Then Uj is continuous on Ω, and {UJ} converges in

Ω uniformly on any compact set. Furthermore for any compact set K in £2, there exists

α > 0 such that Uj has a uniformly bounded CliΛ-norm on K.

REFERENCES

[ 1 ] A. BAHRI, Critical points at infinity in some variational problems, Pitman Research Notes in Math.

182, New York, 1989.

[ 2 ] L. C. EVANS, A new proof of local C1>α regularity for solutions of certain degenerate elliptic P.D.E.,

J. Differential Equations 45 (1982), 356-373.

[ 3 ] D. GILBARG AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order,

Springer-Verlag, New York, 1983.

[ 4 ] J. M. LEE AND T. M. PARKER, The Yamabe problem. Bull. Amer. Math. Soc. 17 (1987), 37-91.

[ 5 ] J. L. LEWIS, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana

Univ. Math. J. 32 (1983), 849-858.

[ 6 ] P. L. LIONS, The concentration-compactness principle in the calculus of variations, The locally

compact case, Part 1: Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), 109-145; Part 2: ibid.,

223-283.

[ 7 ] P. L. LIONS, The concentration-compactness principle in the calculus of variations, The limit case,

Part 1: Rev. Mat. Iberoamericana 1 (1984), no. 1, 145-201; Part 2: ibid., no. 2, 45-121.

[ 8 ] F. PACARD, Convergence of surfaces of prescribed mean curvature, Nonlinear Anal. 13 (1989),

1269-1281.

[ 9 ] R. SCHOEN, Analytic aspects for the harmonic map problem, in Seminar on Nonlinear Partial

Differential Equations, Springer-Verlag, New York, 1984, 321-358.

[10] M. STRUWE, Variational Methods, Springer-Verlag, Berlin, 1990.

[11] T. TAKAKUWA, Behavior of minimizing sequences for the Yamabe problem, preprint.

[12] T. TAKAKUWA, Convergence theorems for harmonic maps, preprint.

[13] K. UHLENBECK, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240.

[14] N. N. URAL'CEVA, Degenerate quasilinear elliptic systems, Seminars in Mathematics, Steklov



NONLINEAR /^-HARMONIC FUNCTIONS 295

Mathematical Institute 7, 1970.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

YAMAGUCHI UNIVERSITY

YAMAGUCHI 753

JAPAN






