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Abstract. We prove concentration compactness of a space of nonlinear p-har-
monic functions.

In this note we are concerned with nonlinear p-harmonic functions, i.e. solutions
of a degenerate nonlinear elliptic equation

(1 div(|Vul|’”2Vu) + Colu|*?u=0  (2<p<n)

on a domain Q of R", where ¢q:=np/(n—p). The equation of the above type is the
Euler-Lagrange equation of the p-energy functional

1 C
f(u)=v'[ IIVuII"—*&JIuI"-
Pla q Ja

Then u is called a weak solution of the equation (1) (on Q) if the following two
conditions hold:
(1) ueL"?(Q),i.e., u, Vue LP(Q). (Then the Sobolev inequality implies ue L(RQ).)
(2) The function u satisfies

—j IIVuII”'ZVu'pr+Cof 4|9 2up=0
e Q

for any ¢ e C(R2), where Cg°(2) denotes the space of all C*-functions with compact
support on €.
The equation (1) for p=2

Au+Colul*2u=0 (2*:: 2n )
n—2
is of Yamabe type, and has been studied from various viewpoints. (See Lee-Parker
[4], Bahri [1], Struwe [10], etc. and their references.) Lions [6], [7], Takakuwa [11]
showed a concentration phenomenon of the L?*-norm in a sequence of solutions (or
an approximating sequence) of this equation. In this note we give the following
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generalization of their results to the case of general p (2< p<n).
THEOREM 1. Letu;(j=1,2,...) be weak solutions of the equation (1). Assume that
lull L1p): = %l Loy + IVl oy < C< 0,

where C i$ a constant independent of j. Then there exist
(i) a subsequence of {u;} (we use the same notation {u;} below for this sub-
sequence),

(i) aset & of points x4, ..., x, of Q,
and

(i) positive numbers a, ..., a,
satisfying the following two conditions:

(1) u; is continuous on Q, and {u;} converges to a function w uniformly on any
compact set of Q—, where w is a weak solution of (1) on Q. Furthermore for any
compact set K in Q—, there exists a>0 such that u; has a uniformly bounded
C'*-norm on K. ‘

(2) The measure |u;|%dx converges weakly to lwl"dx+zz‘=la,~6n as j—oo, where
dx denotes the volume element on Q, and §,, denotes the Dirac mass supported at x;.

The exponent g is critical; ¢ is the critical exponent of the Sobolev embedding
L'?— L1, In the case of subcritical exponents, we have & = . (See Theorem 2 in §3.)
The example in §1 shows that Theorem 1 is optimal. This is a typical example, which
gives a motivation for our theorem. The C!*-estimate is optimal for p>2, since the
equation (1) is degenerate elliptic. (cf. Ural’ceva [14], Uhlenbeck [13], Evans [2],
Lewis [5] etc.) In case p=2, the C®-estimate follows from the C!*-estimate by the
bootstrap argument in the theory of elliptic equations; hence the above subsequence
{u;} converges in the C*-topology on Q—%.

Our method is different from Lions’ theory [6], [7] of concentration compactness.
The property (2) in Theorem 1 can be proved also by the method of Lions using a
concentration function, except that & consists of only a finite number of points. Our
proof is along Schoen’s argument [9] for harmonic maps. (See also Takakuwa [11],
Pacard [8].) We use a mean-value estimate (cf. Proposition) and a simple standard
argument. In our proof of the mean-value estimate, we use Moser’s iteration
technique. This estimate says that if the L%norm is sufficiently small around a point,
we obtain a local C%estimate, hence a local C!**-estimate which follows from
regularity arguments for p-harmonic functions, div(||Vu||?~2Vu)=0. The assumption
of the boundedness of the Li-norm implies that such an estimate holds except at a finite
number of points of Q. '
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1. An example. As mentioned in the introduction, we describe a typical ex-
ample. Consider a radially symmetric function

Cille-1 (n=p)/p
u;_(x)::{ API@=D) 4 ||| Ple=D) } (4>0)

el (2t )}’
Co \p—1

Then u, satisfies the equation

div([[Vu 17~ 2Vu,) + Col u; ' 2u; =0 .

on Q=R", where

We see that

C~ ‘ dx ~ " ldr
widx=\ — _ = ,
R A ) Jee {1+ (llx]|/4)PP~ D}m , ey

which is a finite constant independent of A, where w,_, denotes the volume of the
(n—1)-dimensional unit sphere.

The sequence of the measures | 1, |?dx converges to the Dirac measure supported at
the origin as A tends decreasingly to 0. These solutions look like solitons with one peak,
and as A tends to 0, the slope becomes steeper and the Li-energy density is attracted
to the origin.

2. Proof of Theorem 1. As mentioned in the introduction, the following
estimate plays a key role in our proof.

PROPOSITION (a mean-value estimate). There exist positive numbers ¢* and C*,
depending only on n, p, Cy and Q, satisfying the following property:

Let u be any weak solution of the equation (1) on Q. Let xeQ and let 0<p<
min{d(x, 0Q), 1}, where d(x, 3Q) denotes the distance between x and 09Q. If

J lulf<e*,
Bp(x)

then

C*
sup |ulf< ule.
Boj2x) P" B,

We collect here basic notation. Let C,, denote the Sobolev constant:

@ {Lw}msc’g{ anuu L| ¢|"}
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for any ¢ e L1"?(Q). All positive constants C,, C,, Cs, ... depend only on n, p, C, and
Cq. Let B,(x) denote the open ball of radius p centered at x. Let 0<p,<p,<p.
Let ne C®(Q) be a cutoff function such that

n=1 on B,(x),
nef0,11 on B, (x)—B,(x),
n=0 on Q-B,(x),

and that |Vn||2<C,/(p,—p;)>. The equation (1) implies the following inequality,
which will be used in each iteration step later.

LEMMA 1. There exist positive constants C, and Cy satisfying

1 pla C,
3) 1—— K| (uln)® 34{[ |u|"‘+C3s"'1‘[ | 1 |Ps* Palmyp
s Q (P2—p1) JB,,0 o

for any s (=1).
ProOF. The equation (1) implies that

)] f | u |75~ PunPdiv(||Vul|P ~2Vu) + COJ |ulPs~P*agP=0 .
Q 2

We assume, for simplicity, that |« |”~Pun® is a legitimate test function in the definition
of the weak solution of (1). In the general situation, we can use a standard approxima-
tion argument. See Gilbarg-Trudinger [3, pp. 189-190]. Note that 1< ps—p+1<ps.
We see

®) Jlul”_”un”div(|lVll”'2Vu)
Q
= —J IVull?=2Vu- V(| u P~ Pun®)
Q

=—<ps—p+1)j

IIVull"Iul’”_"n"—pJ IVl P~ 2| u [P~ PunP~ 'Vu-Vn
Q

(2]
s — +1 - - s s
<P Wiuplon 2 | |IVIu b2 Y u g vl
14 p—1
§ Q § 0
Applying Young’s inequality
—1 1
|4-Bl<Z—— j4)Pe-v 1~ |B|?
p p

for A=|[V|ul|?~ 2y~ 'V|u/(p—1)?~ VP, B=(p~1)?~/|u[*Vy, we obtain
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fllIVluls 1P~ 20~ u v u V'7|<—f (IVIul*llPn?+ (o= -[l PIvall?.

Hence by (5), we have
(6 f |7~ PunP div(||Vu|[?~2Vu)

Q
p—1 P Vn
< _(i_)_J‘ "V|u|s|pnp+L—f |u|ps|| ”p

Note the inequality |4+ B||? <27~ (|| A||P+ || B||P), i.e., —||A|P<—2"®"D|4+B|?+
| B||?. Using this inequality for A=nV|u|’, B=|u|*Vn, we have

1
M —f IVIullIPn? < 2,,_1f ||V(|u|s11)ll”+f [u|P|[Vn|®.
Q Q Q2

Then by (2), (6), (7), we have
®) J [P~ PunP div(||Vu||?~2Vu)

Q
1)(s nLL 1)(s Dl
NI ==

+{(p—1s)§s—1) <p—1)" H | Vl?

C 1 pla C
<-4 (1—*){.[ (lulsﬂ)"} o [ul?,
s s o} s (p2—p1) B,,(x)

since 0<p, —p,; <1. Lemma 1 follows from (4), (8), since ps—p+q=ps+ pq/n. d

We prove the Proposition. Define

. P P p—1)n/p
ET = — .
{2”6'3 (‘I) }

Suppose | Bp(x)|u|‘1<e*. Under this assumption, we prove the following lemma and
Lemma 3.

LEMMA 2.

plg* C 1/q C
B(oy +az)/2(%) (6,—0y)™ Bo,(x) (6,—0,)™

with 0<o,<0,<p.

PrOOF. Lets=gq/p (>1). Let p, =(0, +0,)/2 and p, =0,. By Holder’s inequality,
we have
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p/n ) 201
J l u |ps+pq/n,1pg {f | u |q} {J (I u |psnp)q/p}
2 Bg,(x) Q
o p/n sng rlq 1 1 sng rla
<(e%) {L}(‘ul ) } =w<l _?>{Jﬂ(|ul n) } >

since 1 —1/s=1—p/q=p/n. Then (3) implies

rlq Cs
(uPmty <—2—| |uf”.
o (0,—04) Bo,(%)

Since gs=gq?*/p and ps=gq, we have Lemma 2. O

LEmMMmA 3.

1/ps
@(qs, a‘l) s%
(0,—0)'"

1/s
<P(s,p):=U Iuls} .
By(x)

PrOOF. Let y=n/(n—p)=gq/p and define a=ny/p=ngq/p?, b=72, c=n/p. Note
1/a+1/b+1/c=1 and y/b+1/c=1. Let p, =0, and p,=(6,+0,)/2. Then

D(ps, 0,) (0<o;y<0,<p)

for any s (=q), where

j ufps iy — J P P o)
Q B(oy +a3)/2(%)

i/a 1/b 1/c
AL el e} {[ )
Bay + ap)/2(x) Q Q
) p2/nq 1/b 1/c
AL ™ ot e}
B(‘-"l +a3)/2(X) Q 0
C 1/b 1/c
<— 10 {J ( ulsn)"} { J |u |"sn"} (by Lemma 2)
(6,—0))" I
1 plq C, s"P—1a
( ){ (ulme + = luln?,
2C 2C,sP 1 1 \"a o
l——] (o,—0y)F
s

since AB<eA"+ B°/e"4. Hence (3) implies

1 1 | pla C C, ., s"?—Dia+p-1
B i) e |
Q P2—P1 (1 __S_> (o_z_a,l)p Bo,(x)
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C13sn—1
T (s=1)"(o,—0,) Boy(x)

since np/q+p—1=n—1. Therefore

plq C,,s"
{J (Iu|sn)"} < e f |ulP*.
Q (s—1)""(6,—0,) Boy(x)

Since 1/(s—1)"?<1/(g—1)"?, we have Lemma 3. O

Let r9: =gy =py/* 1 (y=¢q/p>1), p?:=(1+1/2)p/2 (j=0, 1,2, ...). Then Lemma
3 implies

lul?,

oo ciY . .
dj(r(l)’ p(l))S 15 ¢(r(1-1). p(.l—l)).

1/99
p/V

Hence by iterating the above inequality, we have

1
o(rY, p¥) < Cie o(r'?, p(O))=_C15 {f |u|‘1} q.
,0 By(x)

(n—p)/p pn/q
Letting j — oo, we have the Proposition.

PROOF OF THEOREM 1. Let &, ¥ denote the subsets of Q defined by

%k
Z:= {er; liminff |uj|“28—},
By (x) 2

p>0 j—
— . &*
&= [){xeQ; limsup |u;|*>—7,
p>0 j— o Bp(x) 2

where ¢* denotes the constant in the Proposition.
We show that the cardinality #(<) of & is bounded by such a constant as C,,/e*.
Take any finite subset {x,, ..., x;} of &. Let

p:=min{d(x; x;), d(x;, 0Q); i#j, 1<i,j<k}>0,

where d( ,) denotes the standard distance in R". Take a sufficiently large j such that

*
J lu,-l"zs—.
Bp(x) 4

Since the open balls B,(x;) (j=1, ..., k) are mutually disjoint, we see that

8* k . C19
kTSZ jlull< | |ul?<Cys, ie., k< .
Q

; = %
i=1JB,(x)) &

Hence #(&) < Cyo/e*.
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Note that ¥ =¥ and that &, & depend on the choice of the sequence {u;}% ;.
We show that there exists a subsequence satisfying & =%. Suppose & #.%. Take any
xo€ ¥ —%. Then we can find a subsequence such that lim infj_,wj'ap(m)| u;|*>¢e*/2.
The number #(&) for this new sequence is greater than that for the old one, since x,
belongs to the new &, but not to the old one. We can iterate this step inductively
and the number #(.%) increases as long as & # %. Since #(&) is bounded from above
by the constant C,4/¢*, we have, after a finite number of steps, a subsequence such
that ¥ =.

We prove the property (1) in Theorem 1. Let {u;}>, be a subsequence such that
F=F (=:%). Take any xe Q— <. Then it follows from the definition of & that for
some p >0,

f |u;|7<e*.
Bp(x)

Applying the Proposition, we have

* k(O *
sup |ul1< f P
Bp/2(x) Bo(x) p

Hence we see that u; is uniformly bounded on B,/;(x). Then by arguments similar to
those in the proof of the regularity for p-harmonic functions (see Evans [2]), there
exists a>0 such that the C!-norms are locally bounded above by a constant
independent of j. Note that the term Co|u|?” 2u in (1) is locally bounded there. Then a
subsequence of {u;} converges uniformly to a continuous function on B, ,(x) as j—oo.
Hence for any compact set K in Q—, there exists a subsequence of u; uniformly
convergent on K. We take an exhaustion of Q—% by compact sets. By Cantor’s
diagonal argument, we can find a subsequence (also denoted by {u;}) converging in
the C°-topology to a continuous function w on Q—%. We can verify that w is a weak
solution of (1) on Q—%, since a subsequence of {u;} converges to w in Li;?(Q— ).
Furthermore w is a weak solution on Q. Indeed, for & ={x, - - -, x;}, we take a cutoff
function 7,,e€ C°(R") for sufficiently large m such that

n(X)=0 if x—x<1/m,
Nm(x) € [0, 1] if 1/m<|x—x;|<2/m,
(%) =1 if |x—x;ll=2/m,
forj=1, - - -, k, and that ||V#,,]| <2m. Since w is a weak solution on 2 —%, we have

—f IIVWIIP‘ZVW'V(¢nm)+Cof |wl® 2wen,,=0,
(o]

Q

ie.
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©) —j ||Vw||”‘2anw-V<p+C0j IWI"_ZW(M".—J IVwli?~2@Vw- Vi, =0
Q Q Q

for any @ € C(Q). By Lebesgue’s convergence theorem, we have

(10) Jhwup-znm-w e J”VWII""VWW,
(9] (2]
a1 J|w|q—2w<pnmﬂ'if w1~ 2w .
0 (9]
We see

J [Vw|[P~2@Vw-Vn,
(9]

(r—1)/p
SZmJ IIVuII""s2m{f IIVuII"} Vol(4,)'”,
Am Am

where A4,:={xeQ; 1/m<||x—x,| <2/m}, and Vol(4,,) denotes the volume of the
annular domain 4,,. Since Vol(4,,) < C,,/m™, we have

(12) J||Vw||"‘2<pr-Vn,,,m0.
Q
By (9)~(12), we obtain

—J ||Vw||”_2Vw-V¢+C0J w9 2wp =0
2 2

for any p e CL(Q), i.e., w is weak solution on Q.

We show the property (2) in Theorem 1. Our assumption says that the sequence
of measures {| u;|%x};> , has a uniformly finite total mass; hence so does the sequence
of signed measures {(|u;|?—|w|%dx};>,. Then we can find a subsequence of signed
measures converging weakly to a signed measure p, whose support is contained in
&. Since & is a finite set of points xi, ..., x;, the signed measure yu is written as
,u=23f=1a16xj (a;€ R). Take any x;. For any p>0, we see that

g*/2gliminfj |uj|qsaj+f fwle.
im0 JBy(x)) Bo(x))
Letting p tend to zero, we have a;>¢*/2>0. This is the property (2). d

ReEMARK 1. For each ye %, an appropriate scale-change leads us to showing that
a renormalized function

ﬁj(x)=P§'"_p)/puj(ij+J’j) (Pj“’O, yi—y as J—0)
converges to a weak solution of (1) on R".

ReEMARK 2. Theorem 1 (and Theorem 2 below) holds also for solutions of more
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general equations such as
div(||Vu||?~2Vu) +f(x, u) =0,
where f satisfies
| fGe, w)|<Clul*™t.

REMARK 3. We can extend our theorems to results on any Riemannian manifold
M, on which the Sobolev constant C,, of L'-P— L7 is positive and finite.

3. Subcritical case. In the subcritical case, an argument similar to that in §2
leads us to the following:

THEOREM 2. Let u; (j=1,2,...) be a weak solutions of the equation (1). Assume
that there exists ¢ >0 such that

4]l Lo+ ey <C< o0,

where C is a constant independent of j. Then u; is continuous on Q, and {u;} converges in
Q uniformly on any compact set. Furthermore for any compact set K in Q, there exists
a>0 such that u; has a uniformly bounded C***-norm on K.
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