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Abstract. In this paper we study two-point boundary value problems for systems

of nonlinear differential equations of order greater than or equal to two. So far the

results concerning this class of problems are rare. A new Nagumo condition for systems

of higher order differential equations is presented, which is more convenient for

applications. Under this new Nagumo condition some existence theorems of solutions

for these boundary value problems are proved.

Introduction. Since Nagumo's paper [1] was published, the differential inequality

technique has become a powerful tool of studying boundary value problems for nonlinear

differential equations. Using this technique many authors had made a lot of valuable

works (for example see [2]-[29]). But works related with boundary value problems for

higher order differential systems are rare.

In discussion of different kinds of boundary value problems several Nagumo

conditions have been introduced for example by [11], [12], [15], [23], [27]. However

these classical Nagumo conditions are difficult to apply. Particularly these conditions

fail to be applicable to the following differential-difference equations (or systems)

where y,feRn, n^ 1, because they cannot restrict || y'{t — τ) ||.

Here we present a new Nagumo condition, which has a simple form similar to the

original Nagumo condition and is very convenient for applications. Particularly, it is

suitable to the above differential-difference equations (or systems) (see [34]).

In this paper we study the following boundary value problems for higher order

nonlinear differential systems

(1.1) x ( M ) =./lM,x / , . . . ,x ( M - 1 ) ),

(1.2) xU)(0) = Aj, y = 0 , l , . . . , m - 2 , xim-2)(l) = B,

where m ^ 3 is a given integer, x,feRn, Aj,j=0, 1,..., m —2 and B are all ^-dimensional

constant vectors. It is difficult to treat the boundary value problems (1.1), (1.2) by the

classical Nagumo conditions. However using our new Nagumo condition we can turn

(1.1), (1.2) into boundary value problems for second order differential systems, which
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consists of n equations independent of one another by means of differential inequalities.

Hence by Nagumo's theorem [1] and the Schauder fixed point theorem we obtain the

existence theorem for solutions of (1.1), (1.2). In Section 1, we prove other existence

theorems for solutions of (1.1), (1.2) as well. We exhibit three specific examples in

Section 2 as an application of the theorems mentioned in Section 1.

1. Main results. For simplicity we introduce the notation. For x = (xl9 x2,..., xn),

means Xt^yi9 / = 1 , 2 , . . . , « ,

* [ 0 ] i = ( * i , . , X i - 1 , 0 , x i + 1 , . . . , x n ) ,

\x\=(\Xl\,\X2\> - >\Xn\)>

|| x II = max | χt \,

N={N9N,...,N)eRn, for NeR.

For φ{t)6 C([0, 1], Rn\ we define || φ(t) | | 0 by || φ(t) | | 0 = max1 « K l l {max 0^^ x \ Ψi{t) |}. For

[0, II Rn)

DEFINITION 1. Suppose vector-valued functions ώ(ί),φ(ί)eCm([0, 1], Rn) satisfy

the inequalities

ωij)(0)*ζAU)*ζώij)(0), 7 = 0, l , . . . , m - 2 ,

and for any function φ(ί)eCw([0, 1], Rn), ωU)(t)^φu\t)^ώU)(t)9 0 < ί < 1,7 = 0, 1,...,

m - 2 ,

, i = l , 2 , . . . , « ,

Then we say that ώ(t) is an upper solution of (1.1), (1.2) and ω(t) is a lower solution

of (1.1), (1.2).

DEFINITION 2. Suppose for any real numbers r,- > 0, j=0, 1,.. ., m — 2, there exists

a vector-valued function iί(s)eC([0, oo)w, (0, oo)") nondecreasing in every sb such that



(1.3)
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for O ^ ί ^ l , || xij) || ^rp 7 = 0, 1, . . . ,m —2 and there exists a real number No>0, such

that

(1.4)

for any N^N0, where Af is the z-th component of H. Then we say that the function/

satisfies the Nagumo condition.

THEOREM 1. Assume that the following (i), (ii), (iii) are satisfied:

( i ) /(£, x, x',..., x{m~ υ ) e C([0, 1] x Rmn, Rn) satisfies the Nagumo condition.

(ii) fι is strictly increasing in x{™~2) as the other variables are fixed, i= 1, 2,. . . ,«.

(iii) The boundary value problem (1.1), (1.2) has an upper solution ώ(t) and a lower

solution ω(t).

Then (1.1), (1.2) has a solution x(t) satisfying the inequality

(1.5) ωu\ή^xu\t)^ώU)(t), 0 < t < l , j = 0,1, . . . , m - 2 .

PROOF. Let ri = max {|| ώu\t) | |0, || ωu\t) | |0}, j = 0, 1, 2 , . . . , m -2. Then from

condition (i) there exists a vector-valued function H(s)eC([0, oo)π, (0, oo)w) such that

the inequality (1.3) holds for O ^ ί ^ 1, || xU) \\ *ζrp j=0, 1, . . . , m-2 and there exists a

real number No>0 such that (1.4) holds for any N^N0. Choose an N>N0 and let

B={φ(t): φiήeC"1-1^), 1], Rn), ω{

(Kίsc i ,y=o, 1, . . . , m - 2 , || φ<" -1>(ί) ||0^AΓ} .

(1) We prove that for each φ(t)eB, the corresponding boundary value problem

(1.6) yϊ=M φ{t\ φ\t\ . . ., φ ( w-2 )(ί)[yJι, Φ ( m"1 }(ί)[yί]ι), i = 1, 2,..., π ,

(1.7) y(0) = ̂ ~ 2 , 3<1) = B

has a unique solution y(ή satisfying the inequalities

(1.8) ω{m-

(1.9)

Indeed (1.6) consists of n equations independent of one another and |/J(ί, φ,φ',

•••,Φ ( M-2 )[yΛ,<P ( m-^ So that from Theorem 1

in [6] or Theorem 1.3 in [2] we can immediately conclude that the boundary value

problem (1.6), (1.7) has a solution y(t) satisfying (1.8) and (1.9). In addition y(ή is a

unique solution of (1.6), (1.7) by the condition (ii).

(2) We show that the boundary value problem (1.1), (1.2) has a solution x(t)

satisfying the inequality (1.5) by means of the Schauder fixed point theorem. From (1)
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for each φ(t) e 5(1.6), (1.7) has a unique solution y(t), which satisfies (1.8) and (1.9). Let

[tχu+1)(ξ)dξ9
Jo

Then x(t) is a solution of the corresponding boundary value problem

(1.10) X\ Jiit) ψ\t\ ψ \Ph 5 Ψ wL î Ji? *r wL î Ai) ?

i = l , 2, . . . , n ,

and x(ί) satisfies the inequality (1.5). Furthermore x(t) is a unique solution of (1.10),

(1.11). Indeed, if x(ή is also a solution of (1.10), (1.11). Let z(t) = x(t)-x(ή and

j)(ί) = iC* " 2)(ί). Then zO)(0) = 0, j = 0, 1,..., m - 2, and y(t) is also a solution of (1.6), (1.7).

From (1) y(t) = y(t\ O ^ ί ^ l , i.e., z(m~2)(ί) = 0, O ^ ί ^ l . Hence zω(ί) = 0, O ^ ί ^ l ,

j = m — 3, m — 4,..., 1, 0. Particularly z(ί) = 0, O ^ ί ^ l , i.e., x(ί) is a unique solution of

(1.10), (1.11).

Define a mapping T: B-*B by

where φ(ί) e 5, x(ή is the unique solution of the corresponding boundary value problem

(1.10), (1.11). Obviously B is a bounded closed convex subset of the Banach space

Cm~\[_0, l ] ,# w ) with norm || | | m - i In addition, for φ(t)εB the solution y(t) of the

corresponding boundary value problem (1.6), (1.7) satisfies the integral equation

+ G(t9s)fJίs9φ(s)9φ
t(s)9...9φ<m

Jo
w h e r e / = 1, 2 , . . . , « , ^ m " 2 = (a*?'2, a^~2,..., α ^ 1 " 2 ) , ^ = (fo 1 ? b2,..., bn),

ί(ls)t9

Hence it is not difficult to show that T is a continuous mapping.

Assume the {xk(ή} c= T(B). Then || (x\t))U) \\0^rp j=091,..., m - 2, || (xk(ί))(w~ υ | | 0 <

iV. Let fl = { ( ί , x , x ^ . . , x < * - 1 > ) : O < ί < l J | j c ω K r J , 7 = O,l,...,w-2, | | jc ( ϊ"- 1 ) | |^JV}

and M=max 1 ^^ π {max Ω | / ί ( ί ,x ,x / , . . . ,x ( w - 1 ) ) | } . Then ||(xfc(ί))(w) K ^ Consequently

the {(x*(f))ω}, 7 = 0, 1, . . . , m — 1 , are all equicontinuous and uniformly bounded

sequences on [0, 1]. Hence by the Ascoli-Arzela theorem there exist subsequences

{{xkι(t))U)} uniformly convergent on [0, 1], j = 0 ,1 , . . . , m - 1 , such that
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lim (xkiή)U) = (x*(t))U), j=0,1,..., m - 1 .
ll->oo

Furthermore, x*(ή e B. This shows that T is a completely continuous mapping. Thus

from the Schauder fixed point theorem T has a fixed point x*(ί) in B. x*(t) is just a

solution of (1.1), (1.2) and x*(ί) satisfies (1.5). The proof is completed.

THEOREM 2. Assume that f(t9 x, x ' , . . . , xim~1]) e C([0,1] x Rmn, Rn), ft satisfies the

Lipschitz condition with respect to x ( m - 1 ) , i = 1, 2 , . . . , « , and the conditions (ii), (iii) in

Theorem 1 hold. Then the boundary value problem (1.1), (1.2) has a solution x(t) satisfying

(1.5).

PROOF. By assumption for any numbers rk>0, A; = 0,1, . . . , m — 2, let M t be the

supremum of l/^ί, x, x',..., x ( m " 2 ) , 0 ) | on O ^ ί ^ l , || xik)\\ *ζrk, k = 0, l , . . . , m - 2 . Then

7 = 1

for 0 ^ t ^ 1, || x(k) | K rfc, fe = 0, 1,..., m — 2, where Lf is the Lipschitz constant. We define

) = (Λ1(s), h2(s)9..., An(s))e C([0, oo)", (0, oo)w) by

Since

(»-wr+M, \

let us consider the function/(0)eC([2rm_2, oo), R):

It is easy to see that

lim
n —1

lim ^ ^
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Hence w = kθ + b is the asymptotic line of f(θ) as 0->oo. Hence / ( # ) - • oo (0->oo).

Consequently there exists a real number No>0 such t h a t / ( 0 ) > 2 L I r m _ 2 for Θ>NO. This

shows that

Γ
J 2ι

: > 2rm_
m_ 2

for any N>N0.

From this we conclude that/(ί, x, x', . . ., x ( m - 1 ) ) satisfies the Nagumo condition.

Hence by Theorem 1 we know that Theorm 2 holds.

For an nxn matrix A = {aij), we let \\A || : = m a x 1 < i > J < n { | a 0 | } . Similarly we can

prove the following:

COROLLARY 3. Assume thatflt, x, x',..., x ( w~1 }) e C\[0, 1] xRm\ JT), δ/7<9x(m" υ

is bounded and the conditions (ii), (iii) w Theorem 1 AoW. 77*e« ί/ze boundary value problem

(1.1), (1.2) to a solution x(t) satisfying (1.5).

COROLLARY 4. Assume thatf(t,x,x\...,x(m"υ) = 4( i )x ( m " υ +g( t ,x ,x\ . . . ,x ( m ~ 2 ) ) ,

A(t) is a continuous nxn matrix on [0,1],geC([0,1] xR ( m~ 1 ) w, i^w) Λ«rf ίΛ^ conditions

(ii), (iii) /« Theorem 1 /wW. 7% «̂ /Â  boundary value problem (1.1), (1.2) to « solution

x(t) satisfying (1.5).

THEOREM 5. ^Asirae //zα//(ί, x, x r,..., x ( m" υ ) e C\IO, 1] x i^mM, Rn), df/dx^'^ is

bounded, df/dx^'^^l^O and/fax, x\ . . ., x ( m " 2 ) [0] f , x ^ " 1 ^ ) is ώwiέferf, i = l ,

2,..., n. Then the boundary value problem (1.1), (1.2) has a solution.

PROOF. Since df/dx{m ~ υ is bounded, the function/satisfies the Nagumo condition.

Hence we need only to show that the boundary value problem (1.1), (1.2) has upper

and lower solutions. Assume that Aj = (a{, a{,..., aζ), y = 0, 1,..., m — 2, B = (bί,b2,

and let

) = - ώ\m ~ 2\t), 0 < t < 1 ,

)-" Σ~V/+*l-£-+7 ^—- {\t-ξ)m-3-Jώt
fc=o A:! ( m - 3 - ; ) ! J o

ω P ( t ) = - ώ i

0 ) ( t ) , 0 < t < l ,

where A,=(ffίj + Vmf + 4/, )/2, i = 1,2 n, j=m—3, m—4,..., 1,0. Then it is not diffi-
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cult to verify that

ωO)(0) ̂  Aj tζ ώ ω (0) ,

, y = 0 , l , . . . , m - 2 ,

j=0,1,..., m-2 ,

Furthermore for any φ(t) ε B,

jίiUφ,φ,...,φκm-Z)lώi

—flU φ,φ',..., φim~2)[

+fi(Uφ,φ',...,φim-2)[

—flu φ,φ\ "-, φ(m~2)[

+flUφ,φ',...,φ(m-2)[

d-Γ—
Jo oxi

φ
im~

Analogously we have

This shows that ω(t) and ω(t) are upper and lower solutions of (1.1), (1.2), respectively.
Thus from Theorem 1, (1.1), (1.2) has a solution.

2. Examples. As applications of our main results obtained in Section 1 we now
exhibit three examples.

EXAMPLE 1. Consider the following boundary value problem:

f x"' = x" + exp[-(y")2 ] +Λ(t, x, y, x/, /)

(2.2)

where x
and /2(ί, x, y, x', 0) are all bounded.

Let

), df2/dy'^l2>0, Λ(ί, x, y, 0,/)
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Fx = x" + exp[ - (/')2] +Λ(ί, x, * *', / ) ,

jp2 = sin x" cos / ' +/2(ί, x, j;, x', / ) .

Since

τr=l>
dx"

= |COSΛ:" C O S / Ί < 1 ,
8F2

dy"
= |-sinx" s in/' |<l

from Theorem 5 the boundary value problem (2.1), (2.2) has a solution.

EXAMPLE 2. Consider the following boundary value problem:

x"r = [2 + sin(x + y)~\x" + y—— + x' + arctan / + ̂
l+(/ ')(2.3)

(2.4) xu\0)

First we shall prove that functions on the right hand side of (2.3) satisfy the
Nagumo condition. For any real numbers r0, rί >0,

y=0,1, χ'(l) = y(l) = 0 .

[2 + si
y"

x' + arctan

where Mi is the maximum of | x' + arctan / + ̂  | on 0 < ί < 1, | x' |, | /1 < rx. Similarly to
the proof of Theorem 2, we know that there exists a real number Nx>0 such that

Γ
for any N>Nί. On the other hand,

where M2 is the maximum of | /coshx' + e~(*2+y2) + log(l +ί) | on 0 < ί < 1, | x |, |y | <r 0 ,
Iχ' U / \^rί- It is n o t difficult to show that there exists a real number N2>0 such that

Γ
J 2ι

[s2//j2(JV,s2)]ds2>2r1

for any N>N2, because of
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J2Π

ls2/h2(N, s2)] ds =
J2n

s2

\/N s2

- 2r,

+ M2

M

ds

2
log

2rίy/N+M2

>oo(ΛΓ->αo).

Let N0 = max{N1, N2}. Then we see that the functions on the right hand side of
(2.3) satisfy the Nagumo condition.

Second we show that the boundary value problem (2.3), (2.4) has upper and lower
solutions. Let

ώ2(t) = e',

ω2(ί)=-e'-(l

Then

For any g(t)=(gM g2(t))eC3([0,1], R2), ω
we have

ω<Λ(ί)<0<ώίΛ(ί), 0 < t < l , 7 = 0,1,

ωψ(t)<0<ώψ(i), 0 < ί < l , 7 = 0 , 1 .

^t), 0<ί< 1, i = 1,2,7=0, 1,

[2 + ύn{ώί + g2)]ώ'ί A [ + arctan g'2 + e' - ώ'{'

_

i" ^ώ'2-ώ'2"=0,

Similarly we have

g2
[2 + sinίί?! + flf2)] φϊ + g 2 , + ωl + arctan g'2 + έ - ω'{' < 0, 0 < ί < 1,

1 + )

This shows that ώ(ί)=(ώi(t)» ώ2(t)) and ω(t)=(ω1(t), ω2{t)) are upper and lower solutions
of (2.3), (2.4), respectively. Consequently from Theorem 1 we know that (2.3), (2.4) has
a solution.
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EXAMPLE 3. Consider the boundary value problem:

V" = (1 + x2 + y2)x" + x' log[ 1 + (y")2] + * ' +Λ(t)
(2.5)

(2.6) x<Λ(O) = yω(O) = O, j=O,ί, x'(l) = / ( l ) = O ,

where x,ysR, fMfiit) e C([0,1], R).

First of all for any real numbers r0, T^ >0, we have

for O ^ ί ^ l , |x|, | y | < r 0 , |x'|»l.y'l^ri> where Mι is the maximum of |x ;+/i(ί)l o n

| x ' K r l 5 O ^ ί ^ l and M2 is the maximum of | ( l + x 2 ) / + sinx/+/2(ί)| on | x | ^ r 0 ,

l χ ' U / l ^ r i > 0 < ί < l . Similarly to the proof of Theorem 2, we conclude that the

functions on the right hand side of (2.5) satisfy the Nagumo condition. Similarly to

the proof of Theorem 5, we conclude that (2.5), (2.6) has upper and lower solutions.

Thus from Theorem 1 we conclude that (2.5), (2.6) has a solution.
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