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Abstract. We consider the problem of deforming the metric on a complete
negatively curved manifold conformally to another complete metric whose scalar
curvature is positive in an unbounded domain. We also consider the case of the Euclidean
space.

1. Introduction. Let (M, g) be a Riemannian manifold with or without boundary

(w = d i m M ^ 2 ) , a n d / a smooth function on M. In this paper, we consider the problem

of deforming the given metric g conformally to another metric

eug if n = 2

u4/(n-2)g (M>0) if

with the prescrived scalar curvature/. It is well-known that this problem is equivalent

to solving the following elliptic differential equation:

( 2) -Agu + Sg=feu if n = 2,

n - 1

(*n) n-2 9 9 if n ^

M>0

where Δ^ is the Laplacian with respect to g, namely, Ag = trace Wg, and Sg is the scalar

curvature of g. This problem and related ones have been extensively investigated, mainly

in the case (M, g) is a compact manifold. As for the case (M, g) is the Euclidean space

(Rn, g0), since Ni [13] was published, many authors have refined and generalized his

results, and applied the method to other equations (see, for example, [7], [11], and

their references).

We study first the case of (/?", g0), and show the following sufficient conditions

for the existence of infinitely many metrics each of which is pointwise conformal

and uniformly equivalent to g0, and each of whose scalar curvature is the prescrived
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function/.

THEOREM I. Let Σ be a submanίfold of Rn (n^3) with m = dimΣ^n-3, and fa

bounded smooth function on Rn. Suppose Σ and f satisfy the following conditions:

(R.I) Σ is the graph of some C1-map from Rm to Rn~m whose gradient is bounded;

(R.2) \f\ύC/rι

Σ on Rn\BR(Σ)

for positive constants C, / > 2 and R, where rΣ(x):=inΐy€Σ\x — y\, and BR(Σ) is the

R-neighborhood of Σ.

Then, for any small enough positive number β, the equation

(*n') n-2
= fu{n + 2)/{n~2)

w>0

possesses a bounded smooth solution u which is also bounded away from zero, and which

has the following property:

C'/rιf2 if \<n-m

(R.3) \u-β\£ - CyrΓ m ~ 2 ~ ε if n

Cy rn-m-2 y „

for a positive constant C, where a positive number ε can be chosen arbitrarily small.

The same assertion holds when Σ is the union of a finite family of submanifolds

of Rn each of which satisfies the condition (R.I) (cf. Remark 2.2). Ni [13] proved the

same assertion as above in the case where Σ is an affine subspace of Rn (see [ibid.,

Theorem 1.4], and also [12] and [11]). He constructed a supersolution and a subsolution

of the equation (*n') which are symmetric with respect to Σ by solving certain ordinary

differential equations. However, it seems to be difficult to apply the method to our case.

Actually, we try to construct a supersolution and a subsolution directly, based on the

condition on Σ.

Moreover, our method is applicable to other situations. In fact, it yields the follow-

ing results.

THEOREM II. Let Σ be a subset of Rn (n^3) andfa bounded smooth function on

Rn. Suppose Σ and f satisfy the following conditions:

for positive numbers δ and α^n—2;

(R.2) as in Theorem I with
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fα + 2 if α<n-2

~\n + 2 if α = n - 2 .

Then the equation (*n/) possesses infinitely many bounded smooth solutions each

of which is also bounded away from zero.

THEOREM III. Let (M, g) be a complete, noncompact, simply connected Riemannian

manifold (n = dim M ^ 2) satisfying

(1.1) — A2^the sectional curvatures ^—B2

for some positive constants A and B such that

BJ ~ n(n-2)

Let Σ be a subset of M, and fa bounded smooth function on M. Suppose Σ and f satisfy

the following conditions:

Γ dy
(H.I) sup <+oo

X*M }BδiΣ)lcosh {Bdg(x, —
for a positive number δ, where

(H.2) ^ίA
[ε on M

for positive constants a, b, R and a certain positive constant ε depending only on A, B, α,

b, R and Σ, where pΣ(x): =inf y e I dg(x, y).

Then the equation (*n) possesses a bounded smooth solution {which is also bounded

away from zero ifn^.3).

Aviles and McOwen [2] proved the same assertion as above in the case Σ is a

point or BR(Σ) is compact (see [ibid., Theorems 1 and 4]). Indeed, when Σ is compact,

the condition (H.I) is obviously satisfied. On the other hand, even if Σ is noncompact,

we can construct examples of Σ satisfying the condition (H.I). For instance, when Σ is

the union of a certain family of totally geodesic submanifolds of M, the condition (H.I)

is satisfied (cf. Section 5). Furthermore, if Σ is invariant under the action of a certain

nontrivial subgroup Γ of Isom (M), then our supersolution and subsolution are also

Γ-invariant. Hence, we can regard them as those on M/Γ which is not simply connected

(cf. Section7).

Sections 2-3 (resp. 4-7) are devoted to the case where (M, g) is the Euclidean space

(Rn, gΌ) (resp. the case where (M, g) has negative curvature).
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In Sections 2 and 3, we give the proofs of Theorems I and II, examples of Σ, and

some remarks on generalization to other equations (cf. [14] etc.). A proof of Theorem

III and examples of Σ are given in Sections 4 and 5. We observe in Section 6 that the

condition (H.I) is sharp in a sense, when M is the hyperbolic plane H2 = H2(—l) of

constant curvature — 1. In Section 7, we discuss the case where M = H2/Γ is not simply

connected.

The author wrote this paper while at Osaka University. He would like to express

his sincere gratitude to Professor A. Kasue for his constant encouragement and valuable

suggestion, and also to Dr. S. Nayatani for useful comments.

2. Proofs of Theorems I and II. We recall first the following:

THE METHOD OF SUPERSOLUTIONS AND SUBSOLUTIONS. Let (M, g) be a complete

Riemannian mainfold, and fa smooth function on M. If there exist a weak super solution

u+ and a weak subsolutίon w_ of the equation (*n) such that u+,U- eHξl0C(M) (p>n) and

M_ ^ M + , then the equation (*n) possesses a smooth solution u satisfying u_^u^u+.

This is well-known and we omit the proof (see, for instance, [8], [10], [13] and

[3]). First, we give a proof of Theorem II for convenience.

PROOF OF THEOREM II. For any y e Rn, let ry: = r{y} and uy: = 1 /(r2 + 1 )α / 2. By direct

computation, we see that

Set

r r
ydyuΣ : = uydy — inf u

and uΣ : = supRnuΣ which is finite by the assumption (R.Γ) Moreover, it follows easily

that uΣ is a smooth function on Rn, and ΔuΣ satisfies

- 2 - α )φ - 2 - α ) (r$ + l)-*/2-1dy if α<n-2
Jβδ(Σ)

an I (r2 + l ) " a / 2 - 2 ^ if a = n - 2 .

Now, for any xeRn and every r0 > rΣ(x), there is an xoeΣ such that rΣ(x) ̂  | x — x01 < r0.

Since

for any y e Bδ(x0) c= Bδ(Σ), it follows that
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- Δ w ^ φ - 2 - α ) i^dy

( ) ( ό ) { ( 0 ) l } - / / 2 if

and

— AuΣ^.ocn I (
JBδ(xo)

l}" / / 2 if α

Since we can take r0 arbitrarily near rΣ(x\ we get

where

\<x(n-2-aί)vo\(Bδ) if oc<n~2
1 "ίαnvolφ) if α=n-2.

Now, we may assume R^. 1. It follows from simple computations that

{rΣ + δ)2 + l^{2 + (2δ2+l)/R2}rj on IT\BR(Σ).

Hence we get

- Δ M > ί C 2 / r ^ o n

Σ-{C3 in

where

C 2 : = Cx/{2 + (2δ2 +1)/^ 2 }^ 2 , C 3 : = CJ{(R + ί ) 2 + 1 }"2 .

Let us now set w± : = jS(l ±^±^2:) with positive numbers β, η+ and η_, where ?/ +

is chosen arbitrarily, η_ is chosen so as to satisfy η_< l/ΰΣ, while /? is chosen so as to

satisfy

-(n-2)/4

Then we get
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βo 4/(π

that is

n

n — 2

n-2

n - 1

» . n — 1

n — 2

On the other hand, we get

n - 2

n — 2

n — 2

on Rn\BR(Σ)

in BR(Σ),

on Rn.

n - 2

n — 2

^C/rι

Σ>-f on Rn\BR(Σ)

that is

n — 2
on Rn.

Hence u+ and u_ are respectively a supersolution and a subsolution of the equation
(*n') Since w_ ^ M + , by the method of supersolutions and subsolutions, the equation
(*n') possesses a bounded smooth solution u satisfying u_^u^u+. It is clear that

on Rn,
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from which, for any positive number β^β0, the equation (*n') possesses a solution

satisfying Iimί^00w(xi) = j? for any minimizing sequence {xi}Γ=i of uΣ. Namely the equa-

tion (*n') possesses infinitely many solutions. q.e.d.

PROOF OF THEOREM I. Since the assertion in the case m = 0 is known as we referred

to in Section 1, we assume m ^ 1 in what follows.

By the condition (R.I), we may assume that the submanifold Σ is given as

Σ={(xuh(x1))eRmχRn-m},

where h: Rm-+Rn~m is a C^-map with | dh\dxγ | ̂  CΣ for a positive constant CΣ.

Let ry and uy be as in the proof of Theorem II. Set

u Σ : = ϊ uyds(y)= ί
JΣ JΣ

where ds(y) is the volume element of Σ9 and

/+m —2 if l<n — m

α : = n — 2 — ε for some ε > 0 if n — m^l*

n-2 if n-t

For any x = (x1? x2)^Rm x Rnm = Rn, let s^x) : = | x 2-/ι(x!) |. By the assumption (R.I),

for any x1eRm, from which it follows that

-<rΣ<sΈ on Rn.

On the other hand, since ds(x) = {det(gij)}1/2 dxx and

β

 n^m dhk dhk

θij = δij+ L -γτ'-^τ f o r i^
k=i dx\ dx{

and I dhldx^ \ ̂  CΣ, we get

for some positive constant V^.1 depending only on CΣ.

Now, if we denote sx : = ̂ / ( C | + l ) 1 / 2 and r : = |jc1— yί\ for convenience, then

obviously, for any yeΣ,

y + 1 ) -α/2 ? ( r 2 + 1 ) - α / 2 | Q n Rn

from which it follows that



212 S. KATO

Γ Γ
uyds(y)S u}

JΣ JΣ

Vάyx

ϊ* \Slr--ιdr+ \ rx+m-ιdr\

= Vω[— + -)—)srΐ-\
m OL — mJ

where ω : = vol{5 m " 1 (l)}. On the other hand, since w y ^l ,

ί uyds(y)^v\ ί dyx+ \ (r2 + l)-α/2d>;1j
J l IJrSl Jr^l J

m cc — m

Hence we get

where

1 1

m cc — m

From this estimate and the caluculation in the proof of Theorem II, it follows easily

that uΣ is a smooth function on Rn, and AuΣ satisfies

[ φ - 2 - α ) (r2 + l)-*/2-1ίί5θ;) if α<n-2

an ( r 2 + I)~*l2~2ds(y) if a = n — 2 .

Now, for any xeR" and every y e Σ, we have

Hence

I (r2+l)-"/2-1ds(y)^ω
JΣ J
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ί°°{(2Cl
Jo

If we denote s2 :=(2 + sΣ

 2 ) 1 / 2 for convenience, then obviously

,*^*> x i 9 f2(C| + l ) s | for any t^s2(2Cj + l)ί + s | ^ <
12(Cf +1) ί2 for any ί ̂  s2 ,

from which it follows that

1

—
m

m OL —

+
m (x — m + 2

Similarly

ί.
+

m α—m+4

Hence we get

where

<x—m + 2

+
m oc—m + 2

m α—m+4

Now, we may assume R^.1. It follows easily that

2(C2 + l)rI + 1 ̂ {2(C 2 +1) + 1/K2}r2 on Rn\BR(Σ).

if l<n-m + 2

if n-
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Hence we get

-Au >{C^ ° n Rn^B^
UΣ=[C3 in BR(Σ)9

where

C2 : = C1/{2(Ci +1) + 1/R2}112 , C3 : = 0^(2(01 + 1)K2 + l} ί / 2 .

Using this estimate, we can prove, by the same method as in the proof of Theorem
II, that there exist positive numbers η +, η _ and β0 such that, for any positive number
β^βo, the equation (*n') possesses a smooth bounded solution u satisfying

\ β \ β { η + ,η_}uΣ on Rn.

Moreover, since

we get the estimate (R.3) with

q.e.d.

REMARK 2.1. From our proof, it is not hard to see that we can replace the condition
(R.I) by the following condition:

(R.I") «G(x), q}} : =min{|πq(v)\ \υeG(x), \ v\ = 1}>εΣ on Σ\Σ0 ,

for some qeG(m, n — m), a positive number ε̂ , and a compact subset Σo of Σ, where
G: Σ^>G(m, n — m) is the Gauss map of Σ.

REMARK 2.2. We can replace Σ in Theorem I by the union of a finite family
{Σi}

1f=zl of submanifolds of Rn with mί = d iml ' ί ^n —3 such that each Σt satisfies the
condition (R.I) with h = ht. Indeed, for any lgi^fe, set

uΣi:=\ uyds(y)=\ (

where

α, : =

/ + w ί - 2

n — 2 — ε

n-2

for some ε>0

if I < n — wif

if f ! - m , ^ / < n -
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Then, by the proof of Theorem

>
Σi —

I,

ίc 2 i

l c 3 i

on

in

^ / r ? ; - m i o n R n ,

where

CM: = C0i(Ci^φ-mi)/2.

Set

k

"Σ = Σ UΣt '
i=ί

Now, since rΣ = vcάnirΣi, it is clear that

r̂  ̂  rΣ. for any 1 ̂  i ̂  fc ,

) = rΣi(χ) f°Γ some / depending on xeRn

 9

from which it follows that

k Γ minC2i/rι

Σ on Rn\BR(Σ)=f] {R^B^Σ,)}

-AuΣ= £ (-Δw^.)^ .
i = 1 m i n C 3 ί in

i = l / \i=l

where

f 1-2 if l<n-m

min{af —mj = n — m — 2 — ε if n — m^l<n — m + 2

n — m — 2 if n — m + 2 ̂  /

and m : = maxf mf. Using these estimates, we can prove our assertion by the same method
as in the proof of Theorem I.

3. Examples and generalization. In this section, we first give examples for
submanifolds Σ of Rn such that the assertion of Theorem I holds. Secondly, we discuss
certain equations in more general forms.

EXAMPLE 3.1. Let K: = R^>R be a C1-function with dίt/dt bounded above or
below, and
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Even if \dh/dt\ is unbounded, e.g., K(t) = et or K(t) is a polynomial of odd degree, we

see in this case that Σ satisfies the condition (R.I) by a suitable coordinate change (c.f.

Remark 2.1).

EXAMPLE 3.2. Let Σ be as in Example 3.1. When K(t) is a polynomial of even

degree, it is clear that dϊί/dt is unbounded above and below. However, we can easily

show that Σ satisfies the condition (R.Γ) in Theorem II with α > m . Moreover, if we set

for

~ f%) for

U'(0)ί + fi(0) for

~ f£'(0)ί + £(0) for

1%) for
then obviously both Σx and Σ2 satisfy the assumption in Example 3.1. Hence they

satisfy the condition (R.I). Since ΣczΣί u l 2 , we see that the assertion of Theorem I

holds for Σ with the property which is somewhat weaker than the property (R.3) (cf.

Remark 2.2).

In the remainder of this section, we mention some generalization of the method

used so far to the following equation:

(**) -Au(x)=f(x)F(x,u(x)) on Rn,

where f(x) is a bounded locally Holder continuous function on Rn, and F(x, t) is a

nonnegative locally Holder continuous function on Rn x (α, b) (— oo ̂  a < b ^ + oo) with

one of the following properties:

F(x, t)
(F.I) a>—co and •O as ί->β + 0 uniformly in x;

t — a

(F.2) a=— oo and >0 as t^ — oo uniformly in x;

(F.3) b<+co and >0 as t-+b — 0 uniformly in x;
b — t

(F.4) b = + o o and >0 as ί-̂ > + oo uniformly in x;

f(x) ^ 0 and F(x, t) is bounded on (a, c] for any c e (α, b);

/(x)^0 and F(x, ί) is bounded on [c, b) for any ce(a, b);

b — + oo and F(x, ί) is bounded .

In this situation, we can apply the same method as in the proofs of Theorems I

and II to showing the following existence results which respectively include the asser-

(F.5)

(F.6)

(F.7)

α =

a =

— oo

+ 00

— oo
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tions of Theorems I and II.

THEOREM 3.3. Let Σ be a submanifold of Rn (n^3) with m = dimΣ^n — 3, and f

and F as above. Suppose Σ and f satisfy the conditions (R.I) and (R.2). Then, for any

βel, the equation (**) possesses a C2-solution u which is bounded away from both a and

b, and which has the property (R.3), where

(α, b0) for some boe(a, b] when (F.I) or (F.2) holds

(α0, b) for some a0 e [α, b) when (F.3) or (F.4) holds

(a, b) when (F.5), (F.6) or (F.7) holds .

1 =

THEOREM 3.4. Let Σ be a subset of Rn (n^3), and f and F as above. Suppose Σ

and f satisfy the conditions (R.Γ) with α ^ n —2 and (R.2) with the same I as in Theorem

II. Then the equation (**) possesses infinitely many C2-solutions each of which is bounded

away from both a and b.

REMARKS 3.5. (1) The equation —Au=fup (p> 1) satisfies (F.I) with α = 0 and

b= +oo.

(2) The equation -Au=fup (p<l) satisfies (F.4) with a = 0.

(3) The equation —Au=feu satisfies (F.2) with b= 4- oo. In addition, if/^O, then

this equation satisfies (F.5).

4. Proof of Theorem III. We recall first the following standard theorem:

COMPARISON THEOREM. Let (M, g) be a complete, noncompact, simply connected

Riemannian manifold (n = dim M Ξg 2) satisfying

(1.1) —A2 ̂ the sectional curvatures ^—B2

for some positive constants A and B, and let Σ be a totally geodesic submanifold of M

with m = dimΣ^n— 1. Then the distance pΣ: = dg(', Σ) to Σ satisfies the following

estimates on M\Σ:

(4.1) | V , P I | E E 1 ,

(4.2) \V2pΣ\^nAcothApΣ,

(4.3) AgρΣ^B{(n-m- l)(cothBρΣ) + m(tanhBρΣ)} .

The equality holds in (4.3) if and only if(M, g) is the hyperbolic space Hn( — B2) of constant

curvature —B2.

This is well-known and we omit the proof (see, for instance, [5] and [6]).

PROOF OF THEOREM III. For any y e M , let py : = p { y }, and uy : = \/(cosh Bpy)
a. By

direct computation, we see that
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• \ - α2(cosh Bpy)
2 +—(cosh Bpy)(sinh Bpy)Agpy + α(α + 1) > .

B )

Now by (4.3) with Σ = {y} (hence m = dim{y} = 0), we have

Agpy^B(n-l)cothBpy,

from which

Set

r
u,dy,

JBs(Σ)

and uΣ : = supMuΣ which is finite by the assumption (H.I). By (4.1) and (4.2), we can

easily get uΣsC2(M\ and ΔguΣ satisfies

-ΔguΣ^ I ^2

JB6(Σ)

(4.4)

THE CASE n = 2. In this case, since α= 1,

- AguΣ ^ 2B2(cosh Bpy) ~3dy>0.
JBδ(Σ)

Now, for any xeM and every p0 >p^x), there is an x 0 eΣ such that pΣ(x)^dg(x, x 0 ) < p 0 .

Since

py(x) = dg(x, y) ̂  ^(x, x0) + dg(x0, y)<ρo + δ

for any y e Bδ(x0) a Bδ(Σ), it follows that

- AguΣ ^ I 2B2 (cosh β p y ) " 3 dy ^ 2B2 vo\B (Bδ) [cosh {B(p0 + <5)}] " 3 ,

where volB is the volume with respect to the metric of Hn( — B2). Since we can take p 0

arbitrarily near p^x), we get

- AguΣ ^ 2B2 volB (Bδ) [coshl^p^; + 5)}] " 3 .

It is clear that

- AguΣ ^ 2B2 volβ (Bδ) lcosh{B(R + (5)}] " 3 = : C, > 0 in BR(Σ).

Set M+ : = βuΣ + \og(2Λ2/b2\ where β is chosen so as to satisfy β>2A2/C1. If we take

ε : = (βC1 - 2A2)b2/2A2 exp(βΰΣ) > 0, then we get
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2 _ ( - 2 A 2

\ Σ b2

in BR(Σ),

and

/ 2A2\
-Agu++Sg>-2A2=-b2expl\og—j-)>-b2eu+^feu+ on M.

On the other hand, if we set w_ : = log(2£2/α2), then we have

/ 2B2 \
-Agu_+Sg^-2B2=-a2expl\og—--)=-a2eu-^feu- on M.

\ a2 j

Hence w+ and w_ are respectively a supersolution and a subsolution of the equation
(*2). Since w_ ^w+, by the method of supersolutions and subsolutions, the equation
(*2) possesses a bounded solution.

THE CASE n ̂  3. We have first by (4.4),

^ Σ>: -4^---AguΣ-A2n(n-l)uΣ

n2
AguΣ + SguΣ>: 4

n—2 n—2

J Bδ(Σ) L n L

-A2n(n-l)(coshBρy)~a \dy

Γ n—\
= 4 B 2(cosh2?p y)~α~ 2

JB0(Σ) n — 2

(coshJ3py)
2 + α(α+l) \dy

4
Bδ(Σ)

Now, by the same observation as in the case n = 2, we get

7t — 2 n — 2

It is clear that

+ SguΣ ^4^-B2φ +1) wo\B(Bδ)ίcosh{B(R + <5)}]
M 2

" α " 2AguΣ + SguΣ ^ 4 ^
n — 2 M — 2

= : C 2 > 0 in BR(Σ).
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Set u+: = βuΣ + {A2φ — ί)/b2Yn~2)l*>0, where β is chosen so as to satisfy β>

{A2n(n-l)/b2Y"-2)l4-A2n(n-l)/C2. If we take

J

then we get

2 n(n- l ) l < π ~ 2 > / Ί ( n + 2 ) / ( "~ 2 >

j JΊ ( n

J
and

On the other hand, if we set u_ : = { β 2 φ - l ) / α 2 } ( π ~ 2 ) / 4 > 0 , then we have

n— 1 ί B2nίn —111 ( π " 2 ) / 4

^ . + V - ^ -B 2 n(n- 1 ) | J > ^ υ |

n + 2)/(n-2)

Hence M+ and w_ are respectively a supersolution and a subsolution of the equation

(*n). Since 0 < M _ ^ u + ,by the method of supersolutions and subsolutions, the equation

(*n) possesses a solution u which is bounded between two positive constants, q.e.d.

5. Examples for the negative case. In this section, we give examples for subsets

Σ of M such that the assertion of Theorem III holds. To begin with, we shall prove
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the following:

THEOREM 5.1. Let (M, #), Σ and f be as in Theorem III. Suppose Σ and f satisfy

the following conditions:

(H.Γ) Σ is the union of a family {Σ f } ί e / of totally geodesic submanifolds of M with

1 if n = 2

i = dim Σt ^

such that the condition

if n^3 and — <
B) n(n-2)

n ., ^ . _ (A\2 (n-1)2

if n^>3 and ι χ

2 J = \Bj φ-2)'

(5.1) sup Y — < + o o
xeM tl [COSh{β^(x Σ^Y

holds with the same a as in Theorem III;

(H.2) as in Theorem III.

Then the equation (*n) possesses a bounded smooth solution {which is also bounded

away from zero ifn^.3).

Although we can derive this theorem (except when mi = dimΣ~(n+ϊ)/2 if n ^ 3

and (A/B)2 ^{(n- l)2/n(n - 2)} {1 - l/(2n2 - 4n +1)2}) as a corollary of Theorem III, we

will prove it directly.

PROOF OF THEOREM 5.1. For any ze/, let p : = pΣi, and ui: = l/(coshBpi)
a. By

direct computation, we see that

— α (coshBpiY -\ (cosh Bpf)(sinh Bp^

Now by (4.3) with Σ = Σh we have

AgPi ̂  B{(n - mf - l)(coth Bpt) + mf(tanh βp f)} ,

from which

Set uΣ:=ΣieIuh and ύΣ: = sxxpMuΣ which is finite by the assumption (5.1). By using

(4.1) and (4.2), we can easily get uΣeC2(M), and ΔguΣ satisfies

iel
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In the case n = 2,

- AguΣ ^ Σ (2 - w ^ ί c o s h BPi) ~ 3 > 0 .
iel

Since, for any xeBR(Σ), there exists an iel such that xeBR(Σ^), it follows that

- AguΣ £ (2 - mf)£2(cosh BR)' 3 ^ 52(cosh £K)" 3 > 0 in BR(Σ).

In the case

^ Δ , κ Σ + S,κ^ Σ 4
n — 2 iei n — 2

= T 4^^-B2α(α-m i + l)(coshβpi)-<χ-2>0 .
ie/ n-2

Since, for any x e BR(Σ), there exists an i e / such that x e BR(Σι), it follows that

Δ 9 « I + S9MΣ^4
—2 n—2

1

^ 4
" n-2

where

B2<xC3(coshBR)-*-2>0 in BR(Σ)

. f

B) n(n-2)

\TJ ~ n(n-2)'

Now we can prove our assertion by the same method as in the proof of Theorem III.
q.e.d.

In Theorem 5.1, if It/is finite, then the condition (5.1) is obviously satisfied, and
hence the assertion holds. Even if %1 is infinite, we can construct examples satisfying
the condition (5.1), which is illustrated in the following:

PROPOSITION 5.2. In Theorem 5.1, the condition (5.1) is satisfied provided that / = N,
and that there exists a sequence {D^ieN of domains of M with the following properties'.

(1) Dtc Dj for all i</,
(2) d: = infieNdg(dDhdDi+1)>0,
(3) Σt is contained in Di\Di_ί for any ieN, where Do : = 0 .



CONFORMAL DEFORMATION TO PRESCRIBED SCALAR CURVATURE 223

PROOF. For any i, jeN and xeDj\Dj-1,

(j-i-l)d if i<j

Hence

0 if i=j

{i-j-\)d if i>j.

N (coshBpif i<j (coshBpif (coshBpjY i>j (coshBpi

Ί<j[cosh{(j-i- l)Bd}γ (coshO)α

^ 1

2 α + 1

Now the condition (5.1) is satisfied. q.e.d.

When M = H2 or //3, we can construct examples having the properties above with

dDt = Σ( for any i e N.

In Section 7, the idea of Proposition 5.2 will be applied to the case where M is

not simply connected.

Now we replace the assumption on m ^ d i m Z ^ in Theorem 5.1 by another.

THEOREM 5.3. Let (M, g\ Σ and f be as in Theorem III (without the assumption on

A/B). Suppose Σ is a totally geodesic submanifold of M with m = άm\Σ^n— 1, and f

satisfies the condition (H.2) with R<R0/B, where Ro is a positive constant (or +oo)

depending only on A/B, m, and n. Then the equation (*n) possesses a bounded smooth

solution (which is also bounded away from zero ifn^. 3).

PROOF. It is enough to prove the case n ̂  3. Set uΣ : = l/(cosh BρΣy, where a posi-

tive number α will be chosen later. By direct computation, we see that

- 4 A S^4^^
n-2 y y n-2

where

Set
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f α(α-m+l)
Ro : = sup <Cosh"1

I V F(α)
Now since R < Ro/B, there exists some α such that

α(α-

F(α)

For any x e BR(Σ),

r 1 r̂  , xm , i «Λχ2 /coshBΛV α(α-m+l)
[cosh{Bpxίx)}]2^ (coshBR)2 = ( — - v

\ cosh/?! / F(α)
and hence

n - 1
- 4 -

n-2 ^ & Λ

^ 4 B 2(cosh Jβ JR)"α" 2< 1—I ) >α(α — m + l ) > 0 in
n — 2 I \ cosh^! / J

On the other hand, we have

on M.4 A g u Σ + SquΣ>4
n—2 n—2

Hence we can prove our assertion by the same method as in the proof of Theorem III.
q.e.d.

When m^(n+1)/2, we can easily see

if (-Γ-I ^
B ) ~ n(n-2)

and

(A\2

as —
\BBj n(n-2)

6. The case M = H2. In this section, we consider the case n = 2. Under the
condition (1.1), if n = 2, then by the Ahlfors-Schwarz Lemma (cf. [1]), (M, g) is
conformally and uniformly equivalent to the hyperbolic plane H2 = H2( — \). Hence we
restrict our attention to the case M = H2.

Now we provide a certain necessary condition for the same assertion as in Theorem
III to hold. We begin with the following:

LEMMA 6.1. If there exists a bounded solution of the equation (*2) on H2, then for
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any l < α ^ 2 χ / T and xeH2,

I f(y)

PROOF. Under the assumption above, [2, Theorem 2] showed that if we regard

H2 as the Poincare disk D, then $Dfdv0 < 0, where dv0 is the volume element with respect

to the flat metric. By the same method, we can show that JD/(1 -r2f~2dv0 < 0 for any

1 < α ^ 2 ^ / 2 , where r is the distance to the origin with respect to the flat metric. Now

if we regard xeH2 as the origin of Z>, and use the hyperbolic distance dr then we get

the condition (6.1). q.e.d.

THEOREM 6.2. Let Σ be a subset ofH2, and fa bounded function H2. Suppose Σ

satisfies Bδ(Σ')<^Σ for a positive number δ and a measurable subset Σf of H2,

(6.2) s u p ' dy 4 πI ίcosh{dβ(x, 30} + 1 ] " 2*(α-1)

with some 1 < α ^ 2 ^ / 2 , andf^.ε on Σ' for a positive number s. Then the equation (*2)

possesses no bounded smooth solution.

PROOF. Clearly, there is a positive number a such t h a t / ^ — a2 on H2. If the

equation (*2) possesses a bounded solution w, then, from Lemma 6.1,

/ω
[coάi{dg{x,y)} + \γ

\^\ 1 ~l ft I Γ" 1 ί' 1 /* \ "̂  "ί ~l /y

U

dl a2

)} 1]«

dj 2 4π

) Σ/ [cosh {d (̂x, y)} + l ] α 2α(α —

for any xeH2. Hence

Finally we have

sup
x e H'

This contradicts

:ί.
the

JrCcoshίd,

dy

•> [cosh {d^(x,

assumption

dy

g(χ,y)}

y)} + i:

(6.2).

α2

-hl]α ε + α

]" ε + α2

2 2«(

4π

2 α (α-

4π

α-i:

1)

)

4π

2"(α-l)

q.e.d.
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Observe 4π/2α(α—1)-> + oo as α->l + 0. Moreover,

dyL cosh{djx,y)}

if and only if

dy

< +00 ,

< + 00 .

In this sense, the sufficient condition (H.I) in Theorem III is sharp.

EXAMPLE 6.3. Let Σ be a subset of H2. Suppose there exists a horocyclic region

UaΣ. Then, by replacing [/, we may assume Bδ(U)czΣ with a positive number δ. Now,

for any positive number R, there exists an xR e U satisfing BR(xR) cz U. Hence

f dy

 > [ dy

J „ [cosh {dβ(xR, y)} + iγ J BR(XR) [cosh {dβ(xR, y)} + l ] α '

from which

dysup ^ lim
xeH* Jvlcosh{dg(x, y)} + l ] α R^ + «> JB

-ί dy 4π

Namely, the condition (6.2) is satisfied for Σ = U, hence the same assertion as in Theorem

III does not hold for Σ.

On the other hand, in the following case, the same conclusion as in Theorem III

holds.

EXAMPLE 6.4. Suppose Σ is a horocycle of H2, and/satisfies the condition (H.2).

Then the equation (*2) possesses a bounded smooth solution. Indeed, let Σ be a

horocycle which is the component of dBR(Σ) contained in the smaller component of

H2\Σ. Denote the Busemann function with respect to a point on Σ and the end point

of Σ by p. Then we get BR(Σ) = {xeH2\θ<ρ(x)<2R}, \Vgp\ = l, and Δgρ = l. Let

uΣ : = 1/coshp. By direct computation, we see that

- AguΣ = (cosh p) ~ 3{ — (cosh p)2 + (cosh p)(sinh p)Agp + 2}

= (cosh p)" 3 { - (cosh ρ)2 + (cosh p)(sinh p) + 2}

Since 0 < ρ(x) < 2R for any x e BR(Σ),

- AguΣ > (cosh p) ~ 3 > (cosh 2K)" 3 > 0 in BR(Σ).
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On the other hand, we have,

- AguΣ ^ inf {(cosh p) ~ 3(3 - e " 2p)/2 | 3 - e " 2p < 0}

>-4sup<ep ρ< Iog3>= — on H2 .
3

Hence we can prove our assertion by the same method as in the proof of Theorem III.

REMARK 6.5. We can give an example similar to that above when M is the

hyperbolic space H3 and Σ is a horosphere.

Next, as a generalization of [2, Theorem 3] on the behavior of a solution of the

equation (*2), we get the following:

THEOREM 6.6. Let Σ be a subset ofH2, and fa bounded smooth function on H2.

Suppose Σ is the union of a finite family {Σι}ieI of complete geodesies ofH2, and f satis-

fies the following condition:

(H.2') / ^ 0 , and

iel

for positive constants b, C and α < 1.

Then the equation (*2) possesses a bounded smooth solution u which has the following

property:

(H.3)

iel

for a positive constant C".

PROOF. Let ph u{ and uΣ be as in the proof of Theorem 5.1. Then

iel

>α(l-α)Σ (coshp,)-β>α(l-α)Σ e~"Pi

iel iel

Set u± :=±βuΣ-2\ogb, where β : = 6~2C/α(l-α). Now we get

-Agu+ +Sg-feu+ = -βAguΣ-2-fb-2e^ ~βAguΣ-2-fb~2

iel

On the other hand, we get
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-Agu_ + Sβ-feu-=βAguΣ-2-fb-2e-^^βAguΣ-2-fb-

iel

Hence u+ and w_ are respectively a supersolution and a subsolution of the equation
(*2). Since M _ ^ H + , by the method of supersolutions and subsolutions, the equation
(*2) possesses a bounded solution u satisfying w_^w^w+. Namely, u satisfies the
estimate (H.3). q.e.d.

Under the assumption of Theorem 6.6, we do not have much information on u at
£(00), but we see

w->-21og6 as x^

7. The case M = H2jΓ. In this section, we consider the case where M = H2/Γ is
not simply connected. First, from Theorem 5.1 and Example 6.4, we immediately get
the following:

COROLLARY 7.1. Let Σ be a subset of M=H2\T, and fa bounded smooth function
on M. Suppose Γ^Z, Σ is compact, andf satisfies the condition (H.2). Then the equation
(*2) possesses a bounded smooth solution.

PROOF. There are two cases. When Γ is a hyperbolic subgroup of Isom(//2),
let Σ be the lift of the minimal closed geodesic of M, and when Γ is a parabolic
subgroup of Isom(//2), let I" be a suitable horocycle on M. In both cases, since uΣ =
l/cosh{dg( , Σ)} on M=H2 is Γ-invariant, we can regard uΣ as a function on M.
Hence, by the method of supersolutions and subsolutions, we get a bounded solution
of the equation (*2) also on M. q.e.d.

Now we consider the case where Γ is purely hyperbolic.

DEFINITION 7.2. Let (M = H2/Γ, g) be a complete, noncompact, oriented surface
which is finitely connected with h handles and e ends. Set

: = sup ^ T , , Tj)} \,

J
where {Γjf=1 runs through families of complete geodesies of M=H2 which bounds a
fundamental domain of Γ, N : = 2(2h + e— 1), and g is the standard metric on H2.

It is easy to verify that dΓ > 0 if and only if Γ is purely hyperbolic.

THEOREM 7.3. Let (M, g) be as in Definition 7.2, Σ a subset of M, and fa bounded
smooth function on M. Suppose dΓ>\og(N—l), Σ is the union of a finite family { £ j i e /

of complete geodesies of M, and f satisfies the condition (H.2). Then the equation (*2)
possesses a bounded smooth solution.
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PROOF. Let {Ti}f=ί be a family of complete geodesies of M=H2 which bounds
a fundamental domain Ω of Γ, and d: = miniΦjd^Ti, Tj)>\og(N—l)9 that is
(N— l)e~d<\. Without loss of generality, we may assume that some lift Σt of Σt is
contained in Ω for any i e I. Now, since

for any xeH2 and every / e N, it is clear that
Λ 00

£ i + Σ

= 1+ — τ<+oo

j=i cosh{(j-

2N

<1+2N

for any i e I. Hence we can define

on H2. Since uΣ is Γ-invariant, we can regard uΣ as a function on M—H2\T. Hence by
the method of supersolutions and subsolutions, we get a bounded solution of the
equation (*2) on M. q.e.d.

The hyperbolic case of Corollary 7.1 is obtained also as a corollary to Theorem
7.3. Indeed, in this case, we have N = 2 since h = 0 and e — 2. Hence log(iV —1) = 0.

EXAMPLE 7.4. Let D (= H2) be the Poincare disk, and { Tt}f= x a family of circular
arcs in D which are orthogonal to 3D ( = //2(oo)) (those are geodesies of (H2, g)) as in

FIGURE.
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Figure. We can easily take {Ti}f=1 satisfying d = mmiφjd£Ti9 7})>log7. (In fact, we

can take it for arbitrarily large d.) Let yx be the hyperbolic isometry (with respect to

g) such that 7i(T1) = Γ8, and that the axis is the geodesic orthogonal to 7\ and Ts.

Define y2 similarly by T2 and TΊ, y3 by Γ3 and Γ5, and y4 by Γ 4 and T6. Suppose that

Γ is the purely hyperbolic subgroup of Isom(//2, g) generated by γl9 y2, y$ and y4 (see,

for instance, [4]). Then clearly M = H2/Γ has one handle and three ends. Hence iV— 1 =

7, and M satisfies the assumption of Theorem 7.3.
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