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Abstract. We consider the problem of deforming the metric on a complete
negatively curved manifold conformally to another complete metric whose scalar
curvature is positive in an unbounded domain. We also consider the case of the Euclidean
space. :

1. Introduction. Let (M, g) be a Riemannian manifold with or without boundary
(n=dim M = 2), and f a smooth function on M. In this paper, we consider the problem
of deforming the given metric g conformally to another metric

_{e“g if n=2
ut"=2g u>0) if n=3

with the prescrived scalar curvature f. It is well-known that this problem is equivalent
to solving the following elliptic differential equation:

(*2) —Au+S,=fe" . if n=2,

_4—n—1 Au+Su=fulrt =2
(*n) n-2 %

if n=23,
u>0

where A, is the Laplacian with respect to g, namely, A =trace VZ, and S, is the scalar
curvature of g. This problem and related ones have been extensively investigated, mainly
in the case (M, g) is a cbmpact manifold. As for the case (M, g) is the Euclidean space
(R", go), since Ni [13] was published, many authors have refined and generalized his
results, and applied the method to other equations (see, for example, [7], [11], and
their references).

We study first the case of (R", g,), and show the following sufficient conditions
for the existence of infinitely many metrics each of which is pointwise conformal
and uniformly equivalent to g,, and each of whose scalar curvature is the prescrived
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function f.

THEOREM 1. Let X be a submanifold of R" (n=3) with m=dimZ<n—3, and f a
bounded smooth function on R". Suppose X and f satisfy the following conditions:

R.1) X is the graph of some C'-map from R™ to R"~™ whose gradient is bounded,
(R.2) IfISClry  on R™\Br(2)

for positive constants C, | >2 and R, where ro(x) :=inf, s x—y|, and Bg(2) is the
R-neighborhood of X.

Then, for any small enough positive number B, the equation

_4 n—1
(*n") n—

Au =fu(n+ 2)/(n—2)

u>0

possesses a bounded smooth solution u which is also bounded away from zero, and which
has the following property:

C'/ri2 if l<n—m
R.3) Ju—pBl= C'lrym-27e if n—m<Zl<n—m+2
C'/rim=2 if n—m+2<l

for a positive constant C', where a positive number ¢ can be chosen arbitrarily small.

The same assertion holds when X is the union of a finite family of submanifolds
of R" each of which satisfies the condition (R.1) (cf. Remark 2.2). Ni [13] proved the
same assertion as above in the case where X is an affine subspace of R" (see [ibid.,
Theorem 1.4], and also [12] and [11]). He constructed a supersolution and a subsolution
of the equation (*n’) which are symmetric with respect to Z by solving certain ordinary
differential equations. However, it seems to be difficult to apply the method to our case.
Actually, we try to construct a supersolution and a subsolution directly, based on the
condition on Z.

Moreover, our method is applicable to other situations. In fact, it yields the follow-
ing results.

THEOREM II. Let X be a subset of R" (n=3) and f a bounded smooth function on
R". Suppose X and f satisfy the following conditions:

dy
(R.1") sup f —_— <4
xeR" | g (z) (Ix—y 1>+ l)a/z
for positive numbers 6 and a <n—2;

(R.2) as in Theorem 1 with
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oa+2 if a<n—2
n+2 if a=n—-2.

Then the equation (¥n') possesses infinitely many bounded smooth solutions each
of which is also bounded away from zero.

THeOREM III. Let (M, g) be a complete, noncompact, simply connected Riemannian
manifold (n=dim M = 2) satisfying

(1.1 — A% <the sectional curvatures< — B?

Jfor some positive constants A and B such that

(1t

B/) " nn-2)

Let 2 be a subset of M, and f a bounded smooth function on M. Suppose X and f satisfy
the following conditions:

dy
(H.1) sup j <+
xeM Jp 5 [cosh {Bd(x, y)} 1"

for a positive number 8, where

L= L (=17 —n(n—2)(4/B)} 2
2

(=1 i n=2);

—b*  on M\ Bg(2)

(H.2) —a éfé{g on M

for positive constants a, b, R and a certain positive constant ¢ depending only on A, B, a,
b, R and X, where py(x) :=inf, .y d (x, y).

Then the equation (¥n) possesses a bounded smooth solution (which is also bounded
away from zero if n=3).

Aviles and McOwen [2] proved the same assertion as above in the case X is a
point or Bg(Z) is compact (see [ibid., Theorems 1 and 4]). Indeed, when X is compact,
the condition (H.1) is obviously satisfied. On the other hand, even if X is noncompact,
we can construct examples of X satisfying the condition (H.1). For instance, when X is
the union of a certain family of totally geodesic submanifolds of M, the condition (H.1)
is satisfied (cf. Section 5). Furthermore, if X is invariant under the action of a certain
nontrivial subgroup I' of Isom (M), then our supersolution and subsolution are also
I'-invariant. Hence, we can regard them as those on M/I" which is not simply connected
(cf. Section7).

Sections 2-3 (resp. 4-7) are devoted to the case where (M, g) is the Euclidean space
(R", g,) (resp. the case where (M, g) has negative curvature).
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In Sections 2 and 3, we give the proofs of Theorems I and II, examples of 2, and
some remarks on generalization to other equations (cf. [14] etc.). A proof of Theorem
III and examples of X are given in Sections 4 and 5. We observe in Section 6 that the
condition (H.1) is sharp in a sense, when M is the hyperbolic plane H?=H?*(—1) of
constant curvature — 1. In Section 7, we discuss the case where M = H?/T is not simply
connected.

The author wrote this paper while at Osaka University. He would like to express
his sincere gratitude to Professor A. Kasue for his constant encouragement and valuable
suggestion, and also to Dr. S. Nayatani for useful comments.

2. Proofs of Theorems I and II. We recall first the following:

THE METHOD OF SUPERSOLUTIONS AND SUBSOLUTIONS. Let (M, g) be a complete
Riemannian mainfold, and f a smooth function on M. If there exist a weak supersolution
u,. and a weak subsolution u_ of the equation (¥n) such that u,,u_eH?% ,,. (M) (p>n) and
u_=u,, then the equation (¥n) possesses a smooth solution u satisfying u_<uZu,.

This is well-known and we omit the proof (see, for instance, [8], [10], [13] and
[3]). First, we give a proof of Theorem II for convenience.

PrOOF OF THEOREM II. Forany yeR", letr, :=ry, and u, :=1/(r} +1)*>. By direct
computation, we see that

—Au,=a(r2+1)"*"}{(n—2—)r} +n} .
Set

Us :=J uydy—infj u,dy
Bs(%) Bs(2)

and iy : =supgnuy which is finite by the assumption (R.1"). Moreover, it follows easily
that uy is a smooth function on R", and Au; satisfies

a(n—2—a) FZ+1)"?"1dy  if a<n—2
CAm> Bs(2)
=

zxnj (rZ+1)"%*"2dy if a=n—2.
Bs(2)

Now, for any x € R"” and every r, > ry(x), there is an x, € 2 such that ry(x) <|x —xq | <r,.
Since

nX)=|x—y|=|x—=Xo|+|Xo—y|<ro+9

for any y e B;(x,) = B5(Y), it follows that
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—Augza(n—2—a) (rZ+1)"¥*"tady
Bs(x0)

Za(n—2—a)vol (By){(ro+0)>+1} %271
=a(n—2—a)vol (By){(ro+9)*+1} "2 if a<n—2,
and

_Auzganj‘ (r§+1)—a/2—2dy

Bs(xo)
2an-vol(By){(ro+96)*+1} %22
=an-vol(B){(ro+0)*+1}"* if a=n-2.
Since we can take r, arbitrarily near ry(x), we get
—Aus 2 Cy/{(rs+6)* + 1},
where
Cl:zia(n—2—oz)vol(B,,) %f a<n—2
an-vol(B;) if a=n-2.
Now, we may assume R=1. It follows from simple computations that
(rs+0)2+1<{2+4(26*+ 1)/R*}r} on R™N\ Bp(2).
Hence we get
s { Cilrs  on R'NBy(2)
C, in Bg(2),
where
C,:=C,/{2+(26%+1)/R*}¥?, Cy:=C,/{(R+6)*+1}*.

Let us now set u, :=f(1 +7n.,u;) with positive numbers f, n, and n_, where 5,
is chosen arbitrarily, n_ is chosen so as to satisfy n_ < 1/iiy, while B is chosen so as to
satisfy

ﬂ§ﬁ0:=[ n—2 max{(1+’7+ﬁs)("+2)/("_2)c (1417, i) D= D gup £

4("—1) 11+C2 ’ r’+C3 ’
c —inff}]-m—zw
n-C, ’ n-Cs )

Then we get
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u:(u+2)/(n—2)<__4 :_; Au+>

=B—(n+2)/(n—2)(1 +r,+u2)—(n+2)/(n—2)(_

Au£>
n—1

2B D (I 4y i) @D D 4 2n+( Auy)
n—

Bo e DL, D4 g Cyih 2 Cih2f  on R™NB(®)
§ -
= 1 |
Bo e (1 n iy) D 4Z g Cozoupf2f i By().
that is

4=

; Au, = fut*2e=2  on R".

On the other hand, we get

_u_—<n+2)/(n—2)<_4 n—1 Au_>

n—2
=ﬁ—(n+2)/(n'2)(1—n_uz)_("+2)/("_2)<—4 n:; ﬁ'l-Aux>
gﬂ‘4/‘"‘2’~4n: n—(— Auy)

1

By 4m=2. 4: 2,,, C,/rh=Clh= —f on R™ Bg(2)

v

—1
Bt 4T n Cyz—inff2—f in By(®),
n_

that is

—4 "—lAu_gu@”W—z) on R".

Hence u, and u_ are respectively a supersolution and a subsolution of the equation
(*n"). Since u_ <u,, by the method of supersolutions and subsolutions, the equation
(*n’) possesses a bounded smooth solution u satisfying u_ <u=<u,. It is clear that

|u—B|<p-max{n,,n_tu; on R",
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from which, for any positive number f<f,, the equation (*n’) possesses a solution
satisfying lim;_, ,u(x;)= f for any minimizing sequence {x;};2; of us;. Namely the equa-
tion (*n’) possesses infinitely many solutions. q.ed.

Proor oF THEOREM 1. Since the assertion in the case m=0 is known as we referred
to in Section 1, we assume m=1 in what follows.
By the condition (R.1), we may assume that the submanifold X is given as

Z={(xy, h(x,) eR"x R"""},

where £: R™ — R"™ ™ is a C'-map with |dh/dx, | < Cy for a positive constant Cj.
Let r, and u, be as in the proof of Theorem II. Set

ug :=J u,,ds(y)zj~ (r2+1)"2ds(y),

where ds(y) is the volume element of X, and

I+m—2 if I<n—m
o= n—2—c¢ for some &>0 if n—mZl<n—m+2
n—2 if n—m+2<1.

For any x=(x{, X,)e R" x R""™=R", let s¢(x) :=| x, —h(x,)|. By the assumption (R.1),
Ze{y=1 y2)|1y2—hx) S Cely,—x; 1}
for any x, € R™, from which it follows that
Sy
JerT
On the other hand, since ds(x)={det (g;;)}"/*dx, and
gy= 6ij+"i"' oW on*

i Jj
k=1 axl axl

<ry<s; on R".

for 1<i,j<m

and | 0h/0x, | £ Cy, we get
dx, ds(x) < Vdx,

for some positive constant ¥ =1 depending only on C;.
Now, if we denote s, :=s;/(CZ+1)'/? and r:=|x,—y,| for convenience, then
obviously, for any ye X,

u,=(2+1)"*<min{(Z+1)"*%,¢*+1)"*} on R",

from which it follows that
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J' uyds(y)éjl udeyl
z z
VU (s%+1)‘“/2dy1+j (r2+1)‘“’2dy1}
Vw<sl—aj r"“ldr+J r—a+m—1dr>
0 S1

(1 1 > )
=Vo| —+ ST,
m o—m

where @ :=vol {$™~!(1)}. On the other hand, since u,<1,

Juyds@)gv{f dyﬁj (r2+1)-“/2dy1}
z rs1 r21
1 1
Vw(——+ )
m a—m
uy<Comin {1,s77%},

1 1
Co:=Vol —+ .
m a—m

From this estimate and the caluculation in the proof of Theorem II, it follows easily
that uy is a smooth function on R", and Au; satisfies

[IA

lIA

IIA

Hence we get

where

oc(n—2—oc)J(rf+1)'“’2_lds(y) if a<n-—2
—Auy= '

anj(r3+1)'“/2‘2ds(y) if a=n-2.
z
Now, for any xe R" and every ye X, we have
ry(x)2=|x—J’|2=|x1_J’1 lz+|x2_)"2 |2§|x1—y1 |2+(S£(x)+cx|x1—)’1 |)2

Slxy =1 P4 255(x)2 +2CF [ X —y, P=QCF+1) | x; —y; [* +2s5(x)* .

Hence

J 2+ 1)_“/2_1ds(y)gwf {QCE+1)r?+ 253 +1} %21 ym" 14y
X 0
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=wS’z"’°"2J {QCE+1)2+2+55 2721 m= 14z,
0

If we denote s, :=(2+s5 2)'/? for convenience, then obviously

2(CZ+1)s?  forany t<s,

2CE+1 t2+s2S{
@Cs+D) 2= 2ac2 +1)e for any t=s,,

from which it follows that
J (rF+1)7*2"1ds(y)
z

;wsg““—ZU {2(C§+l)szz}_“/z_lt'"'ldt+j {2(C§+1)t2}_’/2_‘t'"_‘dt]

0 s2

1 1
=ws§"_"'2[{2(C§+ D} her et S ACEH D) s;'—H]

1 1
=w{2C}+ 1)}‘“’2_‘<~+>(szsz)'“‘2‘“
m o—m+2
1 1
2w{2Ci+ 1)}_‘"/2‘1<—+——>{2(C§+ Dri+1}m-2-a2,
m oa—m+2

Similarly
J (r2+1)"2"2ds(y)
z

1 1
2w{2(Ci+ 1)}—a/z—z<_n7+m> {2C2+1)r2+1}m=4-/2

Hence we get
—Auy2 C, [{2ACs + g +1}72,

where

1 1 .
tx(n-—Z—ot)CO{2(C§+1)}_a/2_1(;+m> if l<n—m+2

Ci:=
1 1 .
anw{Z(C§+l)}_“’2‘2<—+~——> if n—m+2<1.
m o—m+4
Now, we may assume R=1. It follows easily that

2ACF+)r2+15{2(CE+ 1)+ 1/R*}r} on R™\ Bg(2).
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Hence we get

Cyfrs  on R™\Bg(2)

_Auxg{ .
C3 n BR(Z) s

where
C,:=C,/{2(C}+1)+1/R*}!?, Cy:=C,/{2C}+1)R*+1}V>.

Using this estimate, we can prove, by the same method as in the proof of Theorem
II, that there exist positive numbers 7, #1_ and S, such that, for any positive number
B=B,, the equation (xn’) possesses a smooth bounded solution u satisfying

lu—B|<B-max{n,,n_}us on R".

Moreover, since

O<up< cos;"‘“=co(—s’—>
JCE+1
§C°< Ny “) =Co(CH+1* ™2™ on R",
CZ+1
we get the estimate (R.3) with
C':=p-max{n,,n_}Co(CZ+1)"m/2
q.e.d.

Remark 2.1. From our proof, itis not hard to see that we can replace the condition
(R.1) by the following condition:

(R.17) «G(x), ¢ :=min {| )| [veG(x), [v|=1}>er  on ZN\Zo,

for some ge G(m, n—m), a positive number ¢;, and a compact subset X, of X, where
G: Z—->G(m, n—m) is the Gauss map of X.

REMARK 2.2. We can replace X in Theorem I by the union of a finite family
{Z}¥_, of submanifolds of R" with m;=dim Z;<n—3 such that each X; satisfies the
condition (R.1) with h=h,. Indeed, for any 1 <i<k, set

us, :=f uyds(y)=J (rZ+1)"""2ds(y),
b =
where
I+m;—2 if I<n—m
o= n—2—¢ for some ¢>0 if n—m=l<n—m;+2

n—2 if n—m+2<l.
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Then, by the proof of Theorem I,

{Czi/’f:. on R™ Bg(Z))
—Auy 2 ! )
Ca; in Bg(Z),
Uy, SCyifrgi™ ™ on R",
where
Cyi :=CoiCE+ 1) miZ
Set

k
ugi=y uy .
i=1
Now, since ry=min; ry, it is clear that
rs<rs, for any 1<i<k,
re(x)=ryg (x) for some i depending on xeR",
from which it follows that

. minCy/ry  on  R™\Bg(Z)=) {R"™\Bx(Z))}
—Auy= Z (—Aug)2 l

i=1

min C,; in Bx(Z)=U Ba(Z)),

k k
us 3 Ca / g é(,; C) / rpintm)on RPN\ Be(Z)

where
1-2 if I<n—m
min {o; —m; } = n—m—2—e¢ if n—m=l<n—m+2
l n—m—2 if n—m+2Z<l1

and m : =max; m;. Using these estimates, we can prove our assertion by the same method
as in the proof of Theorem 1.

3. Examples and generalization. In this section, we first give examples for
submanifolds X of R" such that the assertion of Theorem I holds. Secondly, we discuss
certain equations in more general forms.

ExampLE 3.1. Let h:=R—R be a C!'-function with dh/dt bounded above or
below, and

2:={t k), 0,...,00eR"|teR}  (n24).
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Even if | dh/dt| is unbounded, e.g., h(t)=e' or h(t) is a polynomial of odd degree, we
see in this case that X satisfies the condition (R.1) by a suitable coordinate change (c.f.
Remark 2.1).

ExaMPLE 3.2. Let X be as in Example 3.1. When A(t) is a polynomial of even
degree, it is clear that dﬁ/dt is unbounded above and below. However, we can easily
show that X satisfies the condition (R.1") in Theorem II with «>m. Moreover, if we set

Z:={t h(),0,...,0}  for i=1,2,
h(t - for t=0
h’(0)t + h(0) for =<0,
~ R'(0)t + h(0) for t=0
0] for t<0,
then obviously both X, and Z, satisfy the assumption in Example 3.1. Hence they
satisfy the condition (R.1). Since X=X, uX,, we see that the assertion of Theorem I

holds for X with the property which is somewhat weaker than the property (R.3) (cf.
Remark 2.2).

IIA 1

In the remainder of this section, we mention some generalization of the method
used so far to the following equation:

(%) —Au(x)=f(x)F(x,u(x)) on R",

where f(x) is a bounded locally Holder continuous function on R", and F(x,t) is a
nonnegative locally Holder continuous function on R" x (a, b) (— 0 Sa<b = + o) with
one of the following properties:

F(x,t . .
(F.1) a>—o0 and t(x )—>0 as t—a+0 uniformly in x;
—a
F(x,t . .
(F.2) a=—o and & )—>0 as t——oo uniformly in x;
F(x,t
(F3) b<+o0 and b(x,t) —0 as t—b—0 uniformlyin x;
F(x, 1)

(F.4) b=+o and —0 as t—>+oo uniformlyin x;

(F.5) a=—w, f(x)<0 and F(x,t) isbounded on (a,c] forany ce(q,b)
(F.6) b=+, f(x)=0 and F(x,t) isbounded on [c,b) forany ce(a,b);
(F.7) a=—ow, b=+ and F(x,t) is bounded.

In this situation, we can apply the same method as in the proofs of Theorems I
and II to showing the following existence results which respectively include the asser-
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tions of Theorems I and II.

THEOREM 3.3. Let X be a submanifold of R" (n=3) with m=dimX<n—3, and f
and F as above. Suppose X and f satisfy the conditions (R.1) and (R.2). Then, for any

Bel, the equation (xx) possesses a C*-solution u which is bounded away from both a and
b, and which has the property (R.3), where

(a,by)  for some bye(a,b] when (F.1) or (F.2) holds
I= (ag, b)  for some agela,b) when (F.3) or (F.4) holds
(a, b) when (F.5), (F.6) or (F.7) holds .

THEOREM 3.4. Let X be a subset of R" (n=3), and f and F as above. Suppose X
and f satisfy the conditions (R.1") with o <n—2 and (R.2) with the same [ as in Theorem
I1. Then the equation (%) possesses infinitely many C?-solutions each of which is bounded
away from both a and b.

ReEMARKS 3.5. (1) The equation —Au=fu? (p>1) satisfies (F.1) with a=0 and
b=+ 0.

(2) The equation —Au=fu? (p<1) satisfies (F.4) with a=0.

(3) The equation — Au=fe* satisfies (F.2) with b= + co. In addition, if f<0, then
this equation satisfies (F.5).

4. Proof of Theorem III. We recall first the following standard theorem:

COMPARISON THEOREM. Let (M, g) be a complete, noncompact, simply connected
Riemannian manifold (n=dim M = 2) satisfying

(1.1 — A% <the sectional curvatures < — B>

for some positive constants A and B, and let X be a totally geodesic submanifold of M
with m=dim X <n—1. Then the distance py:=d[:,Z) to X satisfies the following
estimates on M\ 2:

(4.1) IVepsI=1,
4.2) |VZps|<nAcoth Ap;,
4.3) A, ps = B{(n—m— 1)(coth Bpy) + m(tanh Bp;)} .

The equality holds in (4.3) if and only if (M, g) is the hyperbolic space H"(— B?) of constant
curvature — B>.

This is well-known and we omit the proof (see, for instance, [5] and [6]).

Proor oF THEOREM III. For any yeM, let p, :=p,;,, and u, :=1/(cosh Bp,)*. By
direct computation, we see that
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—Aju,=B*(cosh Bp,)~*"2
. { —o?(cosh Bp,)* + %(cosh Bp,)(sinh Bp )A p, +a(a+ 1)} .

Now by (4.3) with Z={y} (hence m=dim{y}=0), we have
A,p,ZB(n—1)coth Bp,,
from which
—Au, = B*(cosh Bp,) ™ *~*{ —a(—n+1)(cosh Bp,)* + oo+ 1)} .
Set

Uy :=J u,dy ,
Bs(2)

and @; : =sup,, ¥y which is finite by the assumption (H.1). By (4.1) and (4.2), we can
easily get uye C*(M), and A u; satisfies

4.9 —Aus= J B*(cosh Bp,) ~*~*{ —a(a—n+1)(cosh Bp,)® + (e + 1)} dy .
Bs(3)
‘THE CASE n=2. In this case, since a=1,
—Aus= j 2B?*(cosh Bp,) *dy>0.
Bs(2)
Now, for any x € M and every p, > ps(x), there is an x, € X such that py(x) <d(x, x,) < po.
Since

py(x) = dg(x’ y) é dg(xa xO) + dg(xo, y) < Po + 6
for any ye By(x,) < Bs(2), it follows that
—Aus> J 2B?(cosh Bp,)~*dy 2 2B*volg(B;) [cosh {B(p,+)}]17>,
Bs(x0)
where voly is the volume with respect to the metric of H"(— B?). Since we can take p,
arbitrarily near pgx), we get
— A uz=2B?volg(B;) [cosh{B(ps+6)}]17 3.
It is clear that
—Aus=2B*volg(Bs) [cosh{B(R+8)}]173=:C;>0 in Bg(2).

Set u, :=Buy+log(24%/b*), where B is chosen so as to satisfy f>242/C,. If we take
£:=(BC,; —2A4%)b*/2A% exp(Biis) >0, then we get
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243
—Aju,+8,2 —PAus—24>2 BC, —2A4*=¢exp <Bﬁ2+log I~ >

>ge't = fe'r in  Bg(2),
and

2

24
—Aju, +8,>—24%=—b? exp(log

X >>-—b2e“* > fe'+ on M.

On the other hand, if we set u_ : =log(2B%/a?), then we have

2B? Y
—Agu_+Sg§—2B2=—a2exp(log 2 >=—a2e <fe*- on M.
Hence u, and u_ are respectively a supersolution and a subsolution of the equation
(*2). Since u_ <u,, by the method of supersolutions and subsolutions, the equation
(*2) possesses a bounded solution.
THE case n=3. We have first by (4.4),

4"

1 -1
" Agus+Sgus> —4%—3Agu£—A2n(n— uy

n—

gj [4 n—; B?*(cosh Bp,)*~?{ —a(a—n+1)(cosh Bp,)? + (ot + 1)}
Bs(2)

— A%n(n—1)(cosh pr)“"] dy

IR )
L6(2)4 n_2B(costhy) o*—(n—1a+ 2 B

“(cosh Bp,)* + o+ 1)]dy

=J 4 n—1 B?a(x+1)(cosh Bp,)™*"2dy>0.
Bs(x) T

Now, by the same observation as in the case n=2, we get

1 -1 -
—4 :_2 Agus+Sus 24 :_2 Ba(a+ 1) volg(B,)[cosh{B(py+8)}] %2 .
It is clear that
n—1

—4

5 Ajus+Sus> 4%3201(05 + 1) volg(Bs)[cosh{B(R +8)}] %2
n—
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Set u, :=Pus+{A*n(n—1)/b*}"~2/*>0, where B is chosen so as to satisfy B>
{A%n(n—1)/b2}~ /4. 42n(n—1)/C,. If we take

AZnn__l (n—2)/47|—-(n+2)/(n—2)
o

b2
A*n(n—1) 24
'[ﬁCZ_Azn(n—l){—bz_—} >0 N
then we get
n—1 n—1 A’n(n—1) |- 24
—4 n_2 Agu+ +Sgu+=B<_4 n_2 Agu2+Sgu£>+Sg{T
AZ -1 (n—2)/4
2 BC,— Anin— 1){L}
b2
_ A2n(n_ 1) (n—2)/47)(n+2)/(n—-2)

=s[ﬁu2+{—b2—

2eu§ NI 2 [T in Be(2),
and

n—1 An(n—1) |- 24
—4 ) A, +Sgu,>—A*n(n— 1){7}
_ _bz [{ Aln(n_ 1) }(n—Z)/4](n+2)/(n—2)
b2
> _bzug‘l'f'z)/(n—l)gfugl*-2)/("-2) on M .
On the other hand, if we set u_ :={B?n(n—1)/a?}"~?/*>0, then we have
-1 B2n(n—1) ) 214
4" Au_+Su_<—Bnn— 1){—"(1_3}
n—2 a2

_ a2 [{ an(n _ 1) }(n— 2)/4:|(n+ 2)/(n—2)
a2

= _aZu(_n+2)/(n—2)§fu(_n+2)/(n—2) on M.

Hence u, and u_ are respectively a supersolution and a subsolution of the equation
(*n). Since 0 <u_ <u,, by the method of supersolutions and subsolutions, the equation
(*n) possesses a solution u which is bounded between two positive constants. q.e.d.

5. Examples for the negative case. In this section, we give examples for subsets
2 of M such that the assertion of Theorem III holds. To begin with, we shall prove
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the following:

THEOREM 5.1. Let (M, g), Z and f be as in Theorem II1. Suppose X and f satisfy
the following conditions:

(H.1) X is the union of a family {Z;},.; of totally geodesic submanifolds of M with

1 if n=2
n+1 if n23 and <A>2<(n—1)2
nz n —
m;=dim 2; < 2 - B n(n—2)
2 _ 12
1 if n=3 and <i> =(n D s
2 B n(n—2)

such that the condition

1
5.1 su < 400
G-D xeg lezx [cosh{Bd(x, Z,)}]*

holds with the same o as in Theorem 111,
(H.2) as in Theorem II1.

Then the equation (¥n) possesses a bounded smooth solution (which is also bounded
away from zero if n=3).

Although we can derive this theorem (except when m;=dim X;=(n+1)/2 if n=3
and (4/B)* 2 {(n—1)*/n(n—2)} - {1—1/(2n* —4n+1)?}) as a corollary of Theorem III, we
will prove it directly.

PROOF OF THEOREM 5.1. For any i€l, let p;:=p;y, and u; :=1/(cosh Bp;)*. By
direct computation, we see that

— Aju;= B*(cosh Bp;)™* 2
. { —a?(cosh Bp;)* + %(cosh Bp,)(sinh Bp;)A p; + oo+ 1)} .

Now by (4.3) with X=2X;, we have
A,p; 2 B{(n—m;—1)(coth Bp;)+ my(tanh Bp,)} ,
from which
—A,u; = B*(cosh Bp;)™*~*{ —a(a—n+ 1)(cosh Bp;)* +a(oc—m;+ 1)} .

Set ug 1=y, ,u;, and iy :=supyu; which is finite by the assumption (5.1). By using
(4.1) and (4.2), we can easily get uze C*(M), and A u; satisfies

—Aus= Y, B*(cosh Bp;)™*~2{—a(x—n+1)(cosh Bp;)* + a(a—m;+1)} .
iel
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In the case n=2,
—Aus> 21 (2—m;)B*(cosh Bp;)"3>0.
Since, for any x € Bg(2), there exists an ie I such that xe Bg(Z)), it follows that
— A us=(2—m)B*(cosh BR)"*2B*(coshBR)"*>0  in Bg(2).
In the case n=3,

n—1

n-1 S B(cosh Bp) ™+

—4 Aguz+ Sguzé Z 4

n—2 iel N—

. [— {az —(m—1a+ n(n;— 2) (%)2} (cosh Bp;)?* + aoc—m; + 1)]

=Y 4 n—; B?a(a.—m;+1)(cosh Bp;) "*"2>0.
iel NH—

Since, for any x e Bg(ZX), there exists an i€l such that xe Bg(Z)), it follows that

-1 -
— 4" A4S, 24" L B2a(u—m,+ 1)(cosh BR) 2
n—2 n—2
—1
>4 -BlaCycosh BR 720 in By(2).
n —
where
{(n—1)>—n(n—2)(A4/B)*}'/? i (A )2< (n—1)?
2 B n(n—?2)
C3 =
1 i (A)z_(n—l)2
2 B) nn-2°
Now we can prove our assertion by the same method as in the proof of Theorem III.

q.e.d.

In Theorem 5.1, if #I is finite, then the condition (5.1) is obviously satisfied, and
hence the assertion holds. Even if #I is infinite, we can construct examples satisfying
the condition (5.1), which is illustrated in the following:

PROPOSITION 5.2. In Theorem 5.1, the condition (5.1) is satisfied provided that I= N,
and that there exists a sequence {D,};.n of domains of M with the following properties:

(1) D;cD; forall i<j,

(2) d:=inf; Nyd,(0D;, 0D;,)>0,

(3) Z, is contained in D)\ D;_, for any i€ N, where D, :=(¥.
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Proor. For any i,je N and xe D\ D;_,,
(—i=1)d if i<j
p{x)=dyx,2)z 1 0 if i=j
(—j—1)d  if i>j.

Hence
1 1 1 1
) =X + +2
ien (cosh Bp;)* ~i<j (coshBp;)*  (cosh Bp;)* i>j (cosh Bp;)*
1 1 1
= + +
- i;j [cosh{(j—i—1)Bd}]* (cosh0)* igj [cosh{(i—j—1)Bd}]*
1
<142
i;v [cosh{(i—1)Bd}]*
2a +1

<1 +T_—e_m <+4+©.

Now the condition (5.1) is satisfied. q.e.d.

When M = H? or H?, we can construct examples having the properties above with
0D;=2Z, for any ie N.

In Section 7, the idea of Proposition 5.2 will be applied to the case where M is
not simply connected.

Now we replace the assumption on m;=dim X; in Theorem 5.1 by another.

THEOREM 5.3. Let (M, g), X and f be as in Theorem 111 (without the assumption on
A/B). Suppose X is a totally geodesic submanifold of M with m=dimX<n—1, and f
satisfies the condition (H.2) with R<R,/B, where R, is a positive constant (or + o0)
depending only on A|/B, m, and n. Then the equation (x¥n) possesses a bounded smooth
solution (which is also bounded away from zero if n=3).

ProoF. It is enough to prove the case n= 3. Set u; : =1/(cosh Bpy)®, where a posi-
tive number a will be chosen later. By direct computation, we see that

n—

—4

1 n—1
— Aus+ Sguzg4:2—B2(cosh Bp;)~**{—F(a)(cosh Bpy)* + a(a—m+ 1)},

where

N n(n—2) A 2
F(@):=a*—(n—1)a+ 2 <B>

Set
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L _, [a—m+1) nn—2) (A 2}
RO.—sup{Cosh WF(a)>0’a>4(n—m)<B> >0

Now since R< R,/B, there exists some o such that

“mtl
BR<R, :=Cosh-! [*®*~m*D _p
F(o)

cosh BR )2. aw(a—m+1)

For any x € Bg(2),

[cosh {Bps(x)}]* < (cosh BR)2=<

coshR, F(cx)
and hence
n—1
—4 — Agus+ S uy

cosh BR

-1 2
g4n——B2(coshBR)_“_2{l—< ) }a((x—m+1)>0 in Bg(2).
n—2 cosh R,

On the other hand, we have
-1 -1
—‘4%Agu£+sguz> —4%—3217((1) On M .

Hence we can prove our assertion by the same method as in the proof of Theorem III.
q.e.d.

When m<(n+ 1)/2, we can easily see

Ry=+oo if (i)zé (n—1)? ,
B) = n(n—2)

and

<A>2 (n—1)y?
Ry—+© as |— ) - +0.
B n(n—2)

6. The case M =H?. In this section, we consider the case n=2. Under the
condition (1.1), if n=2, then by the Ahlfors-Schwarz Lemma (cf. [1]), (M, g) is
conformally and uniformly equivalent to the hyperbolic plane H? = H?(—1). Hence we
restrict our attention to the case M =H?.

Now we provide a certain necessary condition for the same assertion as in Theorem
III to hold. We begin with the following:

LEMMA 6.1. If there exists a bounded solution of the equation (x2) on H?, then for
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any 1<a§2ﬁ and xe H?,

(6.1) J)
g2 [cosh{d (x, y)} +11*

Proor. Under the assumption above, [2, Theorem 2] showed that if we regard
H? as the Poincaré disk D, then |, fdv, <0, where dv, is the volume element with respect
to the flat metric. By the same method, we can show that [ f(1 —r?)*~?dv, <0 for any
1<a<2./2, where r is the distance to the origin with respect to the flat metric. Now

if we regard xe H? as the origin of D, and use the hyperbolic distance d,, then we get
the condition (6.1). q.e.d.

dy<

THEOREM 6.2. Let X be a subset of H?, and f a bounded function H*. Suppose X
satisfies By(X")< X for a positive number 6 and a measurable subset X' of H?,

j dy 4z
sup =
xen? )y [cosh{dy(x, y)} +1]1* 2%a—1)

(6.2)

with some 1 <a<2./2, and f=¢ on X' for a positive number ¢. Then the equation (*2)
possesses no bounded smooth solution.

Proor. Clearly, there is a positive number a such that = —a? on H2. If the
equation (*2) possesses a bounded solution %, then, from Lemma 6.1,

J)
w2 [cosh {dy(x, y)} +1]*

dy

a2

> ¢ d _J
- L, [cosh{d,(x, y)} +1]* y m2 z [cosh {d (x, y)} +17° dy

_ 2 dy _ 2 j dy

(e+a) L, [cosh {d,(x, )} +11°  J s [cosh{d,(x, y)} + 1T°
=(a+a2)j dy —a? 4n
» [cosh{d(x, y)} +1]* 2%(—1)

for any x e H?. Hence

J dy - a  4n
y[cosh{d(x, y)} +1]* e+a* 2%a—1)
Finally we have

J' dy a? 4n 4n
sup =< : < .
xel? [y [cosh{d,(x,y)} +1]* e+a® 2%a—1) 2%a—1)

This contradicts the assumption (6.2). q.e.d.
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Observe 41/2*(a—1)— + o as a—1+0. Moreover,

J;

<+o00,
. cosh {dg(x, y)} +1
if and only if

J i
— < +4w.
z COSh {dg(x’ Y)}

In this sense, the sufficient condition (H.1) in Theorem III is sharp.

ExXAMPLE 6.3. Let X be a subset of H?2. Suppose there exists a horocyclic region
Uc X. Then, by replacing U, we may assume B,(U)< X with a positive number §. Now,
for any positive number R, there exists an xz e U satisfing Bg(xg) = U. Hence

j dy S J dy
v [cosh {dg(xk’ W1 Br(xr) [COSh {d (xR, y}+11 ’

from which

J dy . f dy
sup > lim
xem2 Jy [cosh{d,(x, »)} +11*°" R+ J e [COSh{dy(xg, ¥)} +1]°

_j‘ dy 4
~ Jazlcosh{d,(-, )} +11* 2%@—1)

Namely, the condition (6.2) is satisfied for X’ = U, hence the same assertion as in Theorem
III does not hold for Z.

On the other hand, in the following case, the same conclusion as in Theorem III
holds.

EXAMPLE 6.4. Suppose X is a horocycle of H?, and f satisfies the condition (H.2).
Then the equation (*2) possesses a bounded smooth solution. Indeed, let X’ be a
horocycle which is the component of dBg(Z) contained in the smaller component of
H>\ Z. Denote the Busemann function with respect to a point on X’ and the end point
of X' by p. Then we get BR(Z)={er2|0<p(x)<2R}, |V,pl=1, and Ajp=1. Let
uy :=1/cosh p. By direct computation, we see that

— A us=(cosh p) ~*{ —(cosh p)* + (cosh p)(sinh p)A p + 2}
= (cosh p) ~3{ — (cosh p)* +(cosh p)(sinh p) + 2}
=(coshp) 33 —e"29)/2.
Since 0 < p(x)<2R for any x € Bg(2),
—Ajuz>(coshp) 2>(cosh2R)™*>0  in Bg(2).
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On the other hand, we have,
—Auz=inf{(cosh p) >3 —e~2#)/2|3—e™2* <0}

> —4sup {e"

1 4
p<——log3}=——— on H?.
2 V3

Hence we can prove our assertion by the same method as in the proof of Theorem III.

REMARK 6.5. We can give an example similar to that above when M is the
hyperbolic space H* and X is a horosphere.

Next, as a generalization of [2, Theorem 3] on the behavior of a solution of the
equation (*2), we get the following:

THEOREM 6.6. Let X be a subset of H?, and f a bounded smooth function on H>.
Suppose X is the union of a finite family {Z.},., of complete geodesics of H?, and f satis-
fies the following condition:

H.2) f=<0, and

|f+2b2|<CY e =

iel

for positive constants b, C and a < 1.
Then the equation (*2) possesses a bounded smooth solution u which has the following
property:

(H.3) lu+2logh|<C’Y e~=:

iel
for a positive constant C'.

PrOOF. Let p;, 4; and uy be as in the proof of Theorem 5.1. Then

—Aguz="7 (cosh p;)~*~ *{o(1 —ax)(cosh p;)? +a?}
iel

>o(l1—a)Y (coshp) *>a(l—a) Y, e %,

iel iel
Set u, := + Puy;—2logh, where p:=b"2C/a(l —a). Now we get
—Agu,+S,—fe'* = —PAus—2—fb" P2 — BA u; —2—fb~2

= ‘ﬂAgux—b_2(2b2+f)>{ﬂa(l—a)—b‘zc}z e~ Wi—().

iel

On the other hand, we get
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—Aju_+S,—fe"- =pAjus;—2—fb"2e  PE< A uy—2—fb~?

=BAus—b"22b* + ) <{— Pl —a)+b 2C}) e *=0.
iel
Hence u, and u_ are respectively a supersolution and a subsolution of the equation
(*2). Since u_<u,, by the method of supersolutions and subsolutions, the equation
(*2) possesses a bounded solution u satisfying u_<u<u,. Namely, u satisfies the
estimate (H.3). q.e.d.

Under the assumption of Theorem 6.6, we do not have much information on u at
2(00), but we see

u——2logh as x—>H?*(0)\Z(x0).

7. The case M =H?/I'. In this section, we consider the case where M = H?/I" is
not simply connected. First, from Theorem 5.1 and Example 6.4, we immediately get
the following:

COROLLARY 7.1. Let X be a subset of M= H?|T, and f a bounded smooth function
on M. Suppose I' ~ Z, X is compact, and f satisfies the condition (H.2). Then the equation
(*2) possesses a bounded smooth solution.

Proor. There are two cases. When I' is a hyperbolic subgroup of Isom(H?),
let 2~ be the lift of the minimal closed geodesic of M, and when I' is a parabolic
subgroup of Isom(H?), let X be a suitable horocycle on M. In both cases, since uy=
1/cosh{d,(-, Z)} on M=H? is I-invariant, we can regard u; as a function on M.
Hence, by the method of supersolutions and subsolutions, we get a bounded solution
of the equation (*2) also on M. q.ed.

Now we consider the case where I' is purely hyperbolic.

DErFINITION 7.2. Let (M =H?/T, g) be a complete, noncompact, oriented surface
which is finitely connected with 4 handles and e ends. Set

(T | i#j

dp :=sup [min {d{T, Tj)}:| ,

where {T;}\_, runs through families of complete geodesics of A = H? which bounds a
fundamental domain of I', N :=2(2h+e—1), and § is the standard metric on H?.

It is easy to verify that d;->0 if and only if I is purely hyperbolic.

THEOREM 7.3. Let (M, g) be as in Definition 7.2, X a subset of M, and f a bounded
smooth function on M. Suppose dy>1og(N —1), X is the union of a finite family {Z.},,
of complete geodesics of M, and f satisfies the condition (H.2). Then the equation (x2)
possesses a bounded smooth solution.
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PrOOF. Let {T;}_, be a family of complete geodesics of A= H? which bounds
a fundamental domain Q of I, and d:=min;,;d(T, T;)>log(N—1), that is
(N—1)e~%<1. Without loss of generality, we may assume that some lift £; of Z, is
contained in Q for any iel. Now, since

]
#{yel|d;(px, @)<ld}<1+ ), N(N—1y7!
j=1

for any Xe H? and every le N, it is clear that

@ N(N—1y!

—=—= ———=<1+42N ) N—1)e 4!
vngOSh{dg(?i, 2)} =1 cosh{(j—1)d} j; (V=15
2N
=l+— <+
1—(N—1)e™*
for any iel. Hence we can define
1

u f ) = —_— =T

o ;e:: yZ:r cosh{d;(yx, 2}
on H?. Since uy is I'-invariant, we can regard u; as a function on M = H?/T". Hence by
the method of supersolutions and subsolutions, we get a bounded solution of the
equation (*2) on M. q.ed.

The hyperbolic case of Corollary 7.1 is obtained also as a corollary to Theorem
7.3. Indeed, in this case, we have N =2 since h=0 and e=2. Hence log(N —1)=0.

ExamPLE 7.4. Let D (=H?) be the Poincaré disk, and {7;}%_, a family of circular
arcs in D which are orthogonal to 6D (= H?*(0)) (those are geodesics of (H?, §)) as in
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Figure. We can easily take {T;}}_, satisfying d=min,.;d{T;, T;)>log7. (In fact, we
can take it for arbitrarily large d.) Let y, be the hyperbolic isometry (with respect to
g) such that y,(T;)=Ts, and that the axis is the geodesic orthogonal to T, and Tj.
Define y, similarly by T, and T, y; by 75 and T, and y, by T, and Tg. Suppose that
I is the purely hyperbolic subgroup of Isom(H?, §) generated by y,, 7,, 73 and y, (see,
for instance, [4]). Then clearly M = H?/I" has one handle and three ends. Hence N—1=
7, and M satisfies the assumption of Theorem 7.3.
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