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REGULARITY OF SOLUTIONS TO NONLINEAR EQUATIONS
OF SCHRODINGER TYPE

PER SiOLIN

(Received December 19, 1991)

Abstract. Regularity and local regularity of solutions to nonlinear equations of
Schrédinger type are studied.

In Sjégren and Sj6lin [5] we studied the local regularity of solutions to the equation
i0u= — Pu+ Vu.Here u=u(x, t)where x e R" and ¢ € R, Pis an elliptic constant-coefficient
differential operator in x, and V= V{(x) a suitable potential. We assume that u(x, 0)=f(x)
and that f belongs to some Sobolv space H,=H(R"). To formulate the results we
introduce the class

of ={pe C™(R") ; there exists ¢>0 such that | D*p(x)|< C,(1+]|x|)~ %7 for every a}

and set /=[0, T] where T> 0. In the special case when P=4* k=1,2,3,..., it follows
from the results in [5] that

(N I ou ”LZ(I;H,H‘vl/z(R"))SCT "f“u_, , s>1/2—k,

where C; depends on ¢ and ¢u stands for @(x)u(x, t).
Kato [2], [3] has studied the existence and regularity of solutions to the non-linear
equation

2) i0u=—Au+F(u), xeR", t>0,

and in Sjolin [6] we obtained results about the local regularity of these solutions.
We shall study here the equation

3 idu=—Au+F(u), k=1,2,3,....

To formulate the conditions of F we introduce a parameter 7y satisfying 1 <y < oo for
n=1and 2, and 1 <y<(n+2)/(n—2) for n>3. We assume that Fe C}(R*)=C*(C), F
is complex-valued, F{0)=0 and
C) |D*F)|<CICP!

for |{|>1 and |a|=1. An example is F({)=|{|"" (.
We also introduce the spaces L»"=L'(I; L*(R")), 1< p<oo, 1<r<oo, and let L?F
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denote Bessel potential spaces for 1 < p< oo and se R. Hence L?=J,LP, where J, is the
Bessel potential operator, defined by multiplication on the Fourier transform side by
(1+]¢1*») 2. In particular H,=L2. We also set LF'"=L"(I; LE(R") for 1<p<co,
1<r<o and se R. We write u(t)=u( -, t) and use the notation 9,=0/dt, d;=0/0x; and
0=(04, 03, ..., 0,).

We shall prove the following result.

THEOREM. Assume that fe H,(R"). Then there exists a T>0 such that (3) has a
solutionue C(I; H,) withu(0)=f. The functions u and du belong to LE*"" , where 1 < p<
forn=1and 2, and 1 < p<(n+2)/(n—2) for n>3, r=4(p+1)/n(p—1) and s=2(k—1)/r.
The solution u is unique.

Assume pesf. If k>2 or if k=1, 1<n<6, then

6) (P“ELZ(IiHHL/z):Lf#zx/z .
If k=1 and n>1 then (5) holds under the additional assumption y<1+2/(n—4).

In the case k=1 the first part of the theorem is proved in [2] and [3], and in this
case the second part about local regularity is partially contained in [6].

In the proof of the theorem we need two lemmas. We set P=A* and write P(¢)
for the corresponding symbol (— 1)*| £ |2, Our first lemma is a consequence of estimates
in Kenig, Ponce and Vega [4].

LEMMA 1. Set u(t)=e"Fuy, t>0. For T >0 we then have
(©) lullprir<Crliuoll,
where p, r and s are as in the theorem. Also
@) | w(®) | 21t - o0 gmy < Cp| 172 || ug | 2/(1+0) > 0<t<T,
where 0<0<1 and s=n(k—1)6.
ProOF. We set

V{t)uo(x)= Je“”"g”""g’ |€ ['do(E)dE .

It is proved in [4] that

(8) I Vi(Ouo | Lrg; Lo+ 2y < C ll 1o I 2 5

where p, r and s are as above. To obtain (6) we shall estimate
J_u(t)x)=c fe“"’@**'é’(l 1€ Py &) de

We choose y € Cg°(R") so that y(x) =0 for | x | > 2, and y(x)= 1 for | x| < 1. One then has
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J_sultfx)=c fe"“” OF=NENL+I E2)"214o(E) dE

+c Jei"” @F=IA =Y (A +| E1P)*ig(&) dE
=A(x, )+ B(x, t) .

It is clear that

| A(x, t)ISCJ l4o(§) 1< Clluo I,

Isl<2

and from Plancherel’s theorem it also follows that

1/2
(IIA(x,t)Ide> <Cllugll -

We conclude that

|l A(2) ”LPH(R")S Cllug .

and hence
)] | Al e+ y<Crlitgll, .
We have
. 1 2\s/2
(10) B(x, f)=c j PO ] —w(é))&ﬂ'éf%l £ Pigl€)dE
and since
l+ é 2\s/2
A —yend e
[€]

is bounded, (8) shows that
(1) | Bllpra;Les iy <Clltgll5 -

The inequality (6) is then a consequence of (9) and (11).

To prove (7) we then set s=n(k—1)0, where 0 <6< 1. We write J_ u(t)= A(t) + B(t)
as above and it then follows from the Hausdorff-Young theorem and Hélder’s inequality
that

(12)  [1A®) 241 -0y < C | Yilo ll 21 +oy < C | il | 291 -6y < C Il i [l 21 0y S C || tho | 21 +6) -
To study B we use the formula (10) again. It follows from the results in [4] that

| B(®) | 2/1-6y<C]| 172 v, 2/¢1 +0y »
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where

2\s/2
80(&)=(1 —wc»%ao(é) .

We want to prove that

(13) 0o 21 +0) < C ll t4g ll 21 +0y »

which follows if we can prove that

A+ &2y
K45

where M (R") denotes the space of Fourier multipliers for LY(R"). For 0<6<1 (14) is
a consequence of the Hérmander-Mihlin multiplier theorem, and for =1 one can argue
as follows. We have s=n(k—1) and have to prove that

1 + é 2ys/2 .
1s) (- p@) D ey (RY.
The case k=1 is trivial and we may therefore assume k>2. According to Stein [7,
p. 133], one has

(14 (I=¥() EM 1 +9(R),

(L4 EP)P2=0(&) +] E1A),
where v and A denote finite Borel measures. Hence
(1 +] &Py W(&)
YTV -

K4y =9 K4y

Setting g=(1—y)| &| ™ it is easy to see that g and D%g belong to L? for every a and
hence ge L!. We conclude that (15) holds and hence (13) is proved for all 6. It follows
that

t'((9))

+(1=AE) .

|l B(t) | 2)1 -0y < Cl 1702 || ug 2/ +6 -

Hence

|- su(®) |21 -0 < CA+12172) [l ug | 0 +o)SCT|t|_‘W2 40 | 2¢1 +6) 5 0<t<T,

and the lemma is proved.

In the following lemma we shall use the notation
t

(Go N =€"Tf and (Gv)()= J et 9P (s)ds .
0

LEMMA 2. G, and G have the properties
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(16) 1 Gof iz <Crlflls,
17 1 Goflig+1r<Crlifllz

(18) 1Go lpaw <Crllvllgas s

(19) NG llggrir<Crllvllgan
(20) I Gollpzw<Crllvllrgumr
and

@1 I Gollg+r.-<Crllvllpigumr

where p, r and s are as in the theorem. The constant C; has the property that
SUPg <1< 4Cr< 0 for every A>0.

Proor. The lemma is well-known for k=1 (see [2] and [3]) and essentially the
same proof works for k>2 if we use the estimates in Lemma 1.

It is clear-that (16) is trivial and (17) follows from (6) in Lemma 1. The estimate
(18) is a consequence of (16).

To prove (19) we observe that

T

I (Gu) l|L£“(R")S_[ e~ ot ) Il g+ 1mmdty
0

and

T T
I Gv IILg“"SJ e e~ Fu(ty) | g+ r.rdty SCTJ le™™Fu(ty) ldty=CrlvllLa.n,
0 0

where we have used (17).
To prove (21) we observe that it follows from Lemma 1 that

(@) lpza-0<Crl 1™ [ ug | zg+e,  0<t<T, 0<6<1,

where s=n(k—1)§/2. We set p+1=2/(1—6) so that 0=(p—1)/(p+1) where 0<f<1.
One then also has

and
1 -1 2
S ) LA | et
2 p+1 r

The above estimate therefore gives
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t
I (Go)®) | e+ ‘(R")SJ I € 0P 0(t ) [l e+ 1 mmydty
0

t
_<_Crf le—ty 72 | o(ty) prwedty,  0<t<T.
0

We have
1 1 on

e i

roor 2

and (21) now follows if we invoke Hardy’s inequality.
Finally (20) can be proved as in the proof in the case k=1 in [3, Lemma 3.2].

We remark that it is easy to see that in (16), (18) and (20) L**® can be replaced
by C(I; I?).

PROOF OF THE THEOREM. To prove the first part of the theorem we shall generalize
the proof in the case k=1 in [2].

We set
4y+1)
n(y—1)’

and introduce the following spaces:

2
r=ry)= s=s)=(k—1)--

X=L22nL*, X=C(I; B)nLI*Y, X' =L»'4 L5
Y={veX;oveX}, Y={veX;oveX}, Y ={veX';dveX'}.

It then follows from Lemma 2 that

22 I Gofllx<Cr Sz,
(23) [Goflle<Crlfllu,»
24 IGvllg<Crllvlx
and

(25 IGollg<Crlivly

It also follows from Lemma 2.2 in [2] that F maps Y into Y’ and
IF@ Iy <CT+T' "oy Hllvly,

where 0 <a < 1. Hence there exists a number 8, 0 <f <1, such that

(26) IF@)ly <CT*(lvlly+1lvlIp)

for 0<T<1.



NONLINEAR EQUATIONS OF SCHRODINGER TYPE 197

We now fix fe H{(R") and set &(v)=G,f—iGF(v), ve Y. It follows from the above
estimates that

I GF@) ly<Cr Il F©) lly <CrT*(l v lly+ 10 11}) -
We set Bg(Y)={veY: |v|y<R} and choose R>1 and ve Bg(Y). Then
I #@) ly<Crlifllg,+CrT?R.
We now choose R>C’ | f || 4,, where C’' =sup, < r < ; Cr, and then choose T'so small that
C'|lflg,+C'TPR"<R.

It follows that @ maps Bg(Y) into Bg(Y).
If v and we Bg(Y) it follows from [2, p. 117], that

I Fw)—FW) | x <CRT? | o—w||x,
where 0 <f < 1. Invoking (24) we obtain
| GF(v)—GF(w) x<dllv—wlx,

where 0 <d <1, if Tis small enough.

It is easy to prove that Bg(Y) with the X-metric is a complete metric space and it
follows that @ is a contraction on this space. Invoking the contraction theorem we find
that @ has a fixed point ue Y and that u=®(u)e Y. Hence

27 u=Gyf—iGF(u)

and u(0)=f. It follows from (27) that u satisfies the equation (3). We remark that in
proving the equivalence of (27) and (3) it is useful to observe that F(u)e C(I; H_,),
which can be proved by use of the implications

ut)eH,=u(t)e L>nL"** = Fu(t)e L*+ L** " H_,

(see [2, Lemma 1.3 and its proof]).

To prove that u is unique assume that v is another solution of (3) with v(0)=f, ve Y.
It follows that

v=Gof—iGF(v) and u—v=—i(GF(u)—GF(v)).

An application of the contraction property of GF then shows that u=v.

We have thus found a unique solution ue Y of (3) with u(0)=f. It follows that
ue C(I; H,) and that u and due L})""". We shall now prove that u and du also belong
to LP*1" where p, r and s satisfy the conditions in the theorem. For 1< p<y this
follows from the properties of the spaces LF* " (see Bergh and Lofstréom [1, pp. 107
and 153]). For p>y we can simply use the fact that

|ID*FQ)|<CI{P™"  implies |D*F()|<C[{P™}
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(1¢1=1) and we can apply the above result with y replaced by p.

It remains to prove the local regularity (5). We first choose ¥ € CP(R?) so that
¥ =1inaneighbourhood of the origin. Set F; =y Fand F,=(1—y)Fso that F=F, +F,.
The proof of Lemma 2.2 in [2] shows that

(28) F,(u) and O(F,(u)eL**
and

(29) Fy(u) and &(F,(u)eL*+1nro)
We have

u(t)=e"rf—i ft e P F(u(t))dr

0

and choosing ¢ € &/ we obtain

t
Il ou®) .., . < | @e™"f ||Hk+1/z+J I 9" F(u(0)) | u,., , .41 -
0

Hence

T/ (T 1/2
| pu IlLZ(I;Hk+1/2)S [ ‘Peupf“1,2(1;Hk+1/2)'*'Jv (j | pe** e~ P F(u()) “%!“ mdt) dr.
o \Jo

Invoking the estimate (1) we then get

oLz sy <C IS e, + CJ Il F(2)) |l 1, 4 -

I

To prove (5) it is therefore sufficient to prove that F(u)e L(I; H,). We have
F(u)=F,(u)+ F,(u) and it follows from (28) that F,(u)e L'(I; H,). Furthermore

Fy(w)e LI+1mror c [1+1m1c 2.1

and it remains to prove that

(30) A(F(w)e L'I; L?) .
We shall use the estimate
(31) |O(F ) | <Clul"""|dul

(see [6, p. 149]).
In proving (30) we first assume k=1. Using Hoélder’s inequality we obtain

(32) f Iﬁ(Fz(u))IzdeCf |u|?*~2] 0u|?dx

Rn
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1/a 2/(y+1)
sC( f |u|<zy—z>adx) ( j .au.wxdx) ,

2 1

L

7+1  «a

where

and thus a=(y+1)/(y—1).
We now first consider the case n=1 or 2. We have
lull2y+2<Clluly
since
1 1 1
>

29+2°2 n’

and it follows from (32) that

(= 1D/2(+1)
Il O(F () ||2£C<j|u|2y+zdx> I 0ully+

<Cllulgz' loull,+1<Cyulloullysq,

where we have used the fact that ue C(I; H,). Now (30) follows since due LYt 7™,
We then consider the case 3<n<5. Wehavey<(n+2)/(n—2)and r=4(y + 1)/n(y —1)
and we may assume that y is close to (n+ 2)/(n—2). Setting

_2yn—1)+n-2
n+2+2y

we observe that since y is close to (n+2)/(n—2), p is close to

2(n+2)(n—1)/(n—2)+n—2__= 3n—2

n+2+2n+2)/(n—2) n+2
We have
3n—2 n+2
1< —<
n+2 n—2
and it follows that
n+2
1<p< .
n_

From the definition of p we conclude that
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1< 2n(y+1)
n+2+2y

and

We have ue LE* ", where r; =4(p+ 1)/n(p—1), and it follows from Sobolev’s theorem
that ue L2+,
From (32) we conclude that

(33) I O(F ) | <Clluliyfoll Oullysy
and hence

r Ur
Il O(F 5(u)) "LZ,ISCJ a3y |l ou ||y+1dtSC<J ||“||(zyﬁlz)'ldt) <J Il ou ||§+1dt> .
1 I 1

Since due L'* 1" and ue L¥'* 2" the above right hand side is finite if (y —1)7 <r,. To
show this we shall prove that

(34) 11
ro (=nr
We have
1t _mp-1 1 (1__1~>=1<1__ 2 )_ 1 "
re @-Dr 4p+1) y-—1 r 4 p+1 y—1  4(y+1)
n n+242 1 n n—2 1

7Ty ) R T | R S
_(m=2py—n-2 (n=2)(—(n+2)/(n-2)
-1 4r—1)

and since the right hand side is negative we have proved (34) and (30).
We then assume n>6. One has

b

fl 5(1‘“2(14))IZ(JIJ€SCIIul“"I@ul2 dx

and we assume y<1+2/(n—4) and that y is close to 1+2/(n—4). We remark that
14+2/(n—4)<(n+2)/(n—2) with equality for n=6. We shall choose p such that
y< p<(n+2)/(n—2) and use the fact that ue L+ 1", where r=4(p+1)/n(p—1).

Using Holder’s inequality one obtains

(3% | 0(F @) I, <Cllu "}i(_yl— (p+1)/(p—1) || Ou "p+ 1-
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Now assume that we can choose p so that

i —1 o1
(36) > P > - .
p+1- 2—1)Np+ 1) p+l n

Then
'l 26— o+ 1p- < C ll ull Lo+
and it follows from (35) that

I 8(F ) ll,<CllullLp++ and ||5(Fz(u))||Lz.ISCJ g+ dr .
I

However, the above right hand side is finite since y<2<r.
It remains to prove that the above choice of p is possible. The right hand side
inequality in (36) is equivalent to

p—1 S1— r—1
20y—1) n

and to

( 1 1 > 1 1

p +— - >1——.

-1 n/) 204-1) n

Thus we can find a suitable p by choosing p close to (n+2)/(n—2) if

n+2 < 1 1 > 1 1
—t—)- >1——.

n—2\2(y—-1) n 2(y—1) n

This inequality is equivalent to

1 <n+2 ) n+2 1
-1 )+ >1——
2p—1) \n—-2 n(n—2) n

and to

——>n—4,
y—1
which holds since y<1+2/(n—4).

The left hand side inequality in (36) is equivalent to 2(y — 1)>p— 1, which is easily
seen to be true if p is chosen close to (n+2)/(n—2). Thus (30) is proved also in the case
n>6.

We shall then study the case k>2. The above argument for k=1 clearly works
also in the case k>2. Thus it only remains to prove (30) in the case k>2 and n>7. In
fact, in the following proof it is sufficient to assume n>5.
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We start from the estimate

37 JI@(FZ(u))lzdstflulzy“z|6ul2dx
and define g by
1 1 1
q T2 n
It then follows that g=2n/(n—2) and
(38) lu@) lg<Cllu) .
We have
n+2 8
2y-2<2 —2= <q,
’ n—2 n—2 1
since n>5, and we set a; =q/(2y —2)=n/(n—2)(y—1). Also define «, by
1 1
=
% %

From (37), (38) and the fact that ue C(I; H,) we obtain
1/ay 1/az
j'5(Fz(“))|2dxsc(f|u|“dx) (ﬁam“zax)
and

(39 I OF ) 2 < C,ull Ou |l 5, -

We have due LY* 1", where r=r(y), s=s(y) and we will obtain (30) from (39) if
we can prove that

(40) 1 0u | 20, < C Il Ou [l y+1 -
To prove (40) it is sufficient to prove the inequality

1 1 1
@l) > > 2

y+1 20, yp+1 T n
The right hand side inequality in (41) is equivalent to

which gives
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(k—l)(v—l)Z 1 _L+ (n=2)y-1)
2(y+1) y+1 2 2n

and

(k—l)(y——l)n—2n+n(y+1)—(n—2)(y—1)(y+1)>0
2n(y+1) -

We may assume k=2 and the above numerator then equals

2 +2 2
(2—n)v2+2nv—n—2=(2—n)<v2— "yt " >=(2—n)<y~1)<y—”+ )
n—2 n—2 n—2

which is positive since 1 <y <(n+2)/(n—2).
The left hand side inequality in (41) leads in a similar way to the inequality

(n—2py*—ny+2>0.

However,

n 2 2

(n—2)v2—nv+2=(n—2)<v2——~ v+———)=(n—2)(v— 1)<v——> ;
n—2 n—2 n—-2

which is positive for 1 <y <(n+2)/(n—2). Hence (41) is proved and (40) and (30) follow.

The proof of the theorem is complete.
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